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A B S T R A C T 
 

We aim at testing Gibrat's Law, a building block of the corporate growth 
dynamics. Using a Bayesian statistical framework that nests previous 
approaches, we provide evidence against Gibrat's law on average, within or 
across industries. Notwithstanding, data show only weak evidence of mean 
reversion, i.e. initial larger firms do not grow relatively slower than smaller 
firms. Moreover, differences in growth rates and in size steady state are 
persistent and firm-specific. Previous results confirming Gibrat's argument are 
likely to be incorrect being based on models that do not exploit appropriately 
all information contained in a panel data set. 
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1. INTRODUCTION

After several years of neglect, considerable attention has recently been devoted
by industrial economists to the study of the processes of corporate growth. The
large majority of empirical studies in this field is based on testing the “Law of
Proportionate Effects” (Gibrat’s Law), which assumes that firm’s size follows a
random walk and hence that firm’s growth is erratic. As a consequence there is no
convergence within or across industries, and no stable or predictable differences
in growth exist either in the short or in the long run. Rather, growth is driven
by small idiosyncratic shocks.1

Gibrat’s Law was originally used as an explanation of the highly skewed dis-
tribution of firms’ size. Even if the growth rate of each firm in an industry is
unrelated to its current size, the variance of the firm size distribution and the
level of concentration increase over time (Simon and Bonini, 1958, Ijiri and Si-
mon 1974 and 1977). Subsequently, the Law of Proportionate Effects has become,
both empirically and theoretically, a benchmark for discussing the processes of
firms’ growth. Nevertheless, it is in contrast with most fundamental theories of
firms’ growth, ranging from standard models of convergence to an optimal size to
models where heterogeneous firms, facing idiosyncratic sources of uncertainty and
discrete events, are subject to market selection, so that the most efficient firms
grow while the others shrink and eventually leave the market (e.g. Geroski, 1998,
for a discussion). Indeed, many recent theoretical models of firm’s growth and in-
dustry evolution imply several violations of standard Gibrat-type processes (e.g.
Jovanovic, 1982; Ericson and Pakes, 1995; Dosi et al., 1995; Pakes and Ericson,
1998; Winter, Kaniovski and Dosi, 2000). Moreover, Gibrat’s Law is at odds with
other observed empirical phenomena like the persistence of heterogeneity in some
firms’ characteristics and measures of performance (e.g. profits, productivity and
- more controversially - innovation) (Baily and Chakrabarty, 1985; Mueller, 1990;
Geroski et al., 1993; Cefis and Orsenigo, 2001).

However, the hypothesis that firms’ growth rates are erratic is often taken
almost for granted and even considered as a stylized fact (Geroski, 1998). More
generally, Gibrat’s Law enters in the models and in the empirical discussion as
a fundamental way of conceptualizing firm’s growth (Klette and Griliches 2000,
McCloughan 1995).

A large empirical literature has explored this issue in different data sets and
with different statistical methodologies. Typically, the starting point of the anal-
ysis is an equation having the following form:

lnSit = β0 + β lnSit−1 + uit
1For a recent discussion, see Sutton (1997) and Bottazzi et al. (2000).
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where Sit is the size of firm i at time t, and uit is an i.i.d. shock.
Gibrat’s Law would be confirmed if the null hypothesis Ho : β = 1 could not

be rejected versus the alternative H1 : β < 1. Empirical results are far from being
uncontroversial. Some studies confirm the view that firm’s size indeed follows a
random walk (β = 1), at least as large firms are concerned. Nevertheless, the
considerable body of results that reject the null hypothesis has been interpreted
as data showing a reversion to the mean, at least in the sense that small or young
firms tend to grow faster on average - but with a higher variance - than large or
old ones2. In other words, according to this empirical finding, in the long run
firms would tend to converge to an ideal size (steady state), common to all firms.

In this work we suggest that both the random walk and the mean reversion
view might be unwarranted. Previous literature attempts to verify Gibrat’s law
and its consequences using cross-section regressions or short-panel econometric
techniques with homogeneity in the parameters across units and over time. We
consider both approaches as problematic. The former ignores the information
contained in unit-specific time variation in growth rates. The latter forces the
parameters to be the same across individuals, thus pooling possibly heterogeneous
units as if their data were generated by the same process, even if it considers
information available for all periods and all cross sectional units.3 A fixed effect
bias may emerge as a consequence of this assumption, as it is well known in the
panel data literature (e.g. Hsiao et al. 1999).

The general conclusion of our study is a skepticism towards Gibrat’s law as an
unconditional referent of corporate growth dynamics. At the same time we point
out that the mean-reversion argument must be qualified and re-formulated in a
broader context. These considerations are justified by the fact that most results
previously obtained could be econometrically biased. Even though they convey
attention on important aspects of the data, they are based on methodologies
that force units to be homogeneous and hence that exploit only one side of the
information contained in a panel data set. As we will discuss, these methodologies
are inappropriate for studying Gibrat’ law and its implications.

The present study shares part of the view expressed in Goddard et al. (2002).
The authors compare the properties of the standard cross sectional test of Gibrat’s
law with those of three alternative panel unit root tests, by means of simulated and
real data on Japanese manufacturing. They conclude that Gibrat’s law should be
rejected, based on the idea that cross sectional procedure produces biased param-
eter estimates and the test suffers from a loss of power if there are heterogenous
individual firm effects while suitably designed panel tests avoid these difficulties.

2Differentials in growth rates have been explained with firm’s age (Mata, 1994; Dunne,
Roberts and Samuelson, 1989)), firm’s size (Harhoff, Stahl and Woywode, 1998; Hart and Oul-
ton, 1996; Hall, 1987; Evans 1987a and 1987b) or both (Farinas and Moreno, 2000).

3Notice that there is not much difference between the cross section and the panel data ap-
proaches if in the latter we force the parameters to be exactly equal in all units, a case that
should be formally tested instead.
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We share the general view that a panel data approach is a better vehicle to in-
vestigate Gibrat’s argument than cross section, but we argue that it is not just
a matter of testing procedure that makes the difference, if the panel data model
is not well suited. Our work proposes a general framework whose main charac-
teristic is plain heterogeneity, i.e. heterogeneity in the intercept and in the slope
of the statistical model, which has the twofold useful feature of exploiting all
information contained in a panel data set and nesting previous studies on the
same topic. Given that there are too many parameters to estimate relative to the
number of time series observations for each cross sectional unit, our point of view
is Bayesian. This means that a flexible prior on the parameters must be combined
with information contained in the data (likelihood) to obtain posterior estimates.
As it will be discussed in section 2, the procedure solves the small sample problem
encountered by estimating separately using only the observations on unit i, since
Bayesian estimates are exact regardless of the sample size, and, at the same time,
it does not require the stringent assumption of equality of the coefficients across
units. The chosen prior shares features with those of Lindlay and Smith (1972),
Chib and Greenberg (1995, 1996), and Hsiao et al. (1999), and it is specified to
have a hierarchical structure, which allows for various degrees of ignorance in the
researcher’s information about the parameters. Both the econometric argument
and the Bayesian technique are also related to Canova and Marcet (1998), who
studied the issue of convergence of per-capita income across economic regions.

Using two different data sets, we find that: (i) the main assertion of the
Gibrat’s law that firm’s growth rates are erratic over time is not true on average;
(ii) there is a strong possibility that previous results, based on cross sectional or
pooled panel data models are econometrically biased because they do not exploit
all information contained in the data and hence they misspecify the econometric
model without considering heterogeneity, even among firms of the same industry;
(iii) estimated steady states differ across units, and firm sizes and growth rates
do not converge within the same industry to a common limiting distribution;
(iv) initial conditions are important determinants of the estimated distribution
of steady states, but there is weak evidence of mean reversion, i.e. initial larger
firms do not grow relatively slower than smaller firms. In other words, differences
in growth rates and in the size steady state are firm-specific, rather than size-
specific; (v) differences in firm size and in growth rates are likely to reduce at
a very slow rate but they do not seem to disappear over time, i.e., they persist;
(vi) the specified model provides an adequate fit to the data and results do not
change under plausible alternative models. In other words, they are robust to
more general families of prior information.

The paper is structured as follows. Section 2 discusses the statistical model.
Section 3 describes data and comments on the estimation results. In section 4
we check the robustness of the results. Section 5 concludes, while details of the
estimation and testing techniques are given in appendix.
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2. THE ECONOMETRICS

2.1. Model specification

Given that our observations are collected across units and time, the evolution
of size for all units is determined by a doubled indexed stochastic process {Sit},
where i ∈ I indexes firms, t = 0, 1, .. indexes time and I is the set of the first
n integers. Following Sutton (1997), if εit is a random variable denoting the
proportionate rate of growth between period t− 1 and t for firm i, then

Sit − Sit−1 = εitSit−1

and
Sit = (1 + εit)Sit−1 = Si0 (1 + εi1) (1 + εi2) ... (1 + εit)

In a short period of time, εit can be regarded as small and the approximation
ln (1 + εit) = εit can be justified. Hence, taking logs, we have

lnSit * lnSi0 +
T[
t=1

εit

If the increments εit are independently distributed with mean β0 and variance σ
2,

then lnSit follows a random walk and the limiting distribution of Sit is lognormal.
Hence, to test Gibrat’s law, the vast majority of previous literature have used

the following logarithmic specification

lnSit = β0 + β lnSit−1 + uit (2.1)

where Sit is the size of firm i at time t, and uit is a random variable that satisfies

E (uit | Sit−s, s > 0) = 0

E (uitujτ | Sit−s, s > 0) =

+
σ2 i = j, t = τ
0 otherwise

Gibrat’s law is confirmed if the null hypothesis β = 1 is not rejected by the data.
An equivalent specification used by the literature and based directly on cor-

porate growth rates is

ln
Sit
Sit−1

= β0 + β1 lnSit−1 + uit

where clearly β1 = β − 1. In this case Gibrat’s law is confirmed if data do not
reject the null β1 = 0.

In this work we follow a similar specification. The main difference is that we
study the behavior of the (log of) each unit’s size relative to the average, i.e., of
the variable git = ln

�
Sit/S̄t

�
, where S̄t represents the average size over all units
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at each time t. The use of the proportion of size git as our basic variable, instead
of (the log of) plain size Sit, alleviates problems of serial and residual correlation,
in that possible common shocks are removed by the normalization.

Therefore, we specify the following statistical model

git = αi + ρigit−1 + ηit (2.2)

where the random variables ηit are assumed normally and identically distributed,
with mean zero and variance σ2i , and are uncorrelated across units and over time.

Notice that this specification is more general than either a simple cross sec-
tional analysis or a homogeneous dynamic panel data model. On the one hand,
Eq. (2.2) allows for a more efficient use of the information contained in the time
dimension of the panel since the parameters of the model are estimated by using
the firm sizes for all t’s. On the other hand, we are not forcing the parameters
to be the same across units, as it is usually assumed in the empirical literature
on Gibrat’s law. The reason for considering different intercepts for each unit is
simply to avoid the well known fixed effect bias due to lack of consideration of the
heterogeneity typically found in micro data. Moreover we think that, even with
a fixed-effect specification, the assumption of common slope is too restrictive.
If units are heterogeneous in the slopes but the statistical model does not take
this feature into account, then bias and inconsistency problems arise.4 It is not
difficult to show that the neglect of coefficient heterogeneity in dynamic models
creates correlation between the regressors and the error term and causes serially
correlated disturbances (Pesaran and Smith, 1996, Hsiao et al., 1999). Hence,
any traditional estimator is biased and inconsistent, the degree of inconsistency
being a function of the degree of coefficient heterogeneity and the extent of serial
correlation in the regressors.

Our main point in this paper is that the traditional results on Gibrat’s law may
be econometrically biased for the lack of consideration of possible heterogeneity
in the data. This argument motivates the choice of the model specification (2.2),
which is flexible enough to formally test the restrictions that previous studies
impose on the data, i.e., αi = α, and ρi = ρ, ∀i.5

Provided we can estimate the short run parameters for each unit, we are also
able to estimate the steady states directly. Therefore we can test the Gibrat’s law
both for each single firm and on average, and we can separately examine three
further implications of the law. Precisely, we are able to estimate the speed of
adjustment (1− ρi) of each unit to its own steady state (αi/ (1− ρi)), a question

4Notice that the opposite is not true, in that a well specified heterogeneous model nests a
model without such heterogeneity.

5In fact, other studies (e.g. Bottazzi et. al., 2000) sometimes estimate git = ρgit−1 + uit,
forgetting the specific effect αi, as if the expected proportionate rate of growth were zero. Even
with the kind of normalization used in our paper, this is not a correct approach. If uit = αi+ηit,
then ols estimates are inconsistent because E (gitαi) = 0 for each t, and inefficient given that
the uit’s are serially correlated.
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related to the mean reversion argument and the decrease in the variance of the
firm size over time. Second, we can verify whether steady states are all equal
across units. Finally, if steady states are not common, the model specification
can easily be used to test whether these differences across firms are transitory or
permanent, i.e., whether there is persistence in size differences.

Given that there are too many parameters relative to the number of time
series observations for each cross sectional unit, we impose a Bayesian prior on the
parameters to be combined with information contained in the data (likelihood)
to obtain posterior estimates. The procedure solves the small sample problem
encountered by estimating separately using only the observations on unit i, since
Bayesian estimates are exact regardless of the sample size, and, at the same time,
it does not require the stringent assumption of equality of the coefficients across
units.6

Let θi = (αi, ρi)
�. Eq. (2.2) can then be written in a more compact form as

git = X
�
itθi + εit (2.3)

where Xit = (1, git−1)�. Though allowing heterogeneity, the imposed prior distri-
bution assumes that the intercept and the slope of the model do not differ too
much across units. Concretely, the population structure is modelled as:

θi ∼ N
�
θ̄,Σθ

�
(2.4)

where θ̄ and Σθ are common to all individuals. In other words we assume that the
parameters of each cross sectional units come from a distribution which is common
to all firms. The variance of this distribution then determines the degree of
uncertainty that the researcher has about the mean. Notice that this assumption
is more general than forcing the parameters to be the same for each unit. This
limiting case can be obtained by imposing Σθ = 0. Our opinion is that these
restrictions might be formally tested instead of simply imposed.

Notice also that (2.4) is just a prior assumption and must then be combined
with the data to obtain posterior estimates. If data are sufficiently informative,
the posterior need not be the same as the prior, as it will be clear from the
estimation results.

For the prior information to be complete, we assume a normal-wishart-gamma
structure

θ̄ ∼ N (µ,C) (2.5)

Σ−1θ ∼ W
�
so, S

−1
o

�
(2.6)

σ2i ∼ IG

#
v2

2
,
v2δ2

2

$
(2.7)

6See Canova and Marcet (1998) and Hsiao et al. (1998) for a more detailed discussion on
this points.
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where the notation Σ−1θ ∼W
�
so, S

−1
o

�
means that the matrix Σ−1θ is distributed

as a Wishart with scale S−1o and degrees of freedom so, and σ2i ∼ IG
�
v2

2 ,
v2δ2

2

�
denotes an inverse gamma distribution with shape ν and scale νδ. The hyperpa-
rameters µ,C, so, So, v and δ are assumed known. Independence is also assumed
throughout.

The entire specification (2.3) through (2.7) is standard in Bayesian literature
(e.g. Gelfand et al., 1990) and has the advantage of being sufficiently flexible
to answer the kind of questions posed in this work. In particular, notice that
this specification easily nests the pure cross section, the fixed effect and the pure
time series models. In fact, setting Σθ = 0 is equivalent to impose equality of
coefficients across firms. If the prior variance-covariance matrix is zero, no cross
sectional heterogeneity is present and the parameter vector θi is pooled towards
the common cross sectional mean θ̄. This setting therefore would replicate the
cross sectional and the homogeneous panel data analysis, while the fixed effect
specification is obtained by forcing only the variance of ρi, σ

2
ρ, to be zero. In

discussing the empirical results, we will call these two specifications the pool
ols and the fixed effect respectively. On the contrary, if Σθ → ∞, the prior
information is diffuse. This means that the degree of uncertainty about the mean
is infinite, and hence that estimated parameters for different firms are similar to
those obtained applying OLS to (2.3) equation by equation. In other words, when
Σθ → ∞ only the time series properties of each git are used and the estimation
results will resemble the mean group estimator proposed by Pesaran and Smith
(1995). Finally when Σθ is a finite, positive definite matrix, the coefficients
are estimated using information contained both in the cross-section and in the
time series dimensions of the panel. In the empirical section we will denote the
estimation results relative to this setting as Bayes. In a recent work, Hsiao et al
(1999) establish the asymptotic equivalence of the Bayes estimator and the mean
group estimator, and show that the Bayes estimator is asymptotically normal for
large n (the number of units) and large T (the number of time periods) as long as√
n/T → 0 as both n and T →∞. They also show that the Bayes estimator has

better sampling properties than other consistent estimators for both small and
moderate T samples. Concretely, the bias of the Bayes estimator never exceed
10% for T = 5, while for T = 20 it is always less than 2%.

Posterior inference can then be conducted using the posterior distributions of
the parameters of interest. Specifically, in discussing the validity of the Gibrat’s
law, we will be interested in examining whether the mean coefficient ρ̄ is equal to
one, as well as, how large is the percentage of firms for which the null (ρi = 1) is
not rejected.

In discussing the implications of the law, we also need to verify the null
hypothesis αi/ (1− ρi) = αj/ (1− ρj) ∀i, j, i.e., the null that the steady states
are the same across units versus the alternatives that they are different. The
rejection of the null αi/ (1− ρi) = αj/ (1− ρj) ∀i, j provides evidence in favor of
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lack of unconditional convergence to a common steady state. The final question,
then would be if the initial differences in size are going to persist as time goes by.
This issue is examined by running a cross sectional regression of the form:gSSi = c+ bgi0 + ωi (2.8)

wheregSSi is the mean of the posterior distribution of the steady state for unit i,
and gi0 is its initial (scaled) size. A positive b would indicate that the distribution
of initial size matters for the cross sectional distributions of steady states, while
the magnitude of this estimate will provide an indication of how persistent these
differences are.

2.2. Estimation and testing

The posterior distributions of the parameters of interest are obtained, as already
remarked and as detailed in the appendix, by combining the prior information
with the likelihood. More formally, if ψ =

�
θi, θ̄,Σθ,σ

2
i

��
is the vector of unknown

parameters, and y represent the data, the Bayes rule

p (ψ | y) ∝ p (ψ) l (y | ψ)
can be applied to obtain the joint posterior distribution of ψ =

�
θi, θ̄,Σθ,σ

2
i

�
. The

marginal distribution of each element of ψ can be derived by integrating out the
others. Given the complexity of our specification, this integration is analytically
intractable and must rely on a numerical method. We use the Gibbs sampling.
The ergodic mean of the marginal posterior distributions obtained from the Gibbs
sampler are taken as our point estimate.

The null hypotheses ρ̄ = 1, ρi = 1, ρi = ρj , and SSi = SSj , ∀i, j are verified
by calculating the (log of ) Posterior Odds ratio (PO) as in Leamer (1979) and
Sims (1988). The null is not rejected whenever the computed statistics is positive.
We also compute the largest prior probability to attach on the alternative in order
for the data not to reject the null. This statistics, that we will call ω∗, represents
the degree of confidence the researcher should attach on the null so that the data
do not overturn her prior beliefs. Small values of this measure are the signal that
the researcher should put more weight on the null to not reject it, or, equivalently,
that the null is unlikely.

In order to choose a preferred model (e.g., Σ = 0 vs. Σ > 0) we compare
the posterior predictive power of the two models instead of relying on PO ratios.
The reason is that the PO ratio may not provide good inference in the case of
comparing the no pooling (0 < Σ <∞) and the complete pooling (Σ = 0) models.
The argument can be sketched in a simple way. Let yi = (gi1, ..., giT )

�. Assuming
known variances σ2i , the two models can be summarized as:

0 < Σ <∞ : p (y | θ1, ...θn) =
n\
i=1

N
�
yi | θi,σ2i

�
, p (θ1, ..., θn) ∝ 1

9



Σ = 0 : p (y | θ1, ...θn) =
n\
i=1

N
�
yi | θi,σ2i

�
, θ1 = ... = θn, p (θ) ∝ 1

If we use the PO ratio to choose or average among these models, the ratio is
not defined because the prior distributions are improper, and the ratio of density
functions is 0/0. Therefore, we should assign either proper prior distributions
or improper prior carefully constructed as limits of proper prior. In both cases
results are unsatisfactory, as shown by Gelman et al. (1995, p. 176-177).

The details of estimation and testing techniques are in appendix.

3. EMPIRICAL RESULTS

In this section we describe the data sets used in the analysis and present the
empirical results. The latter are shown in Figures 1-9 and Tables 1-3.

3.1. The Data

The issue analyzed in this paper seems particularly relevant in the specific case of
the pharmaceutical industry. The latter can be considered an ideal case where the
process of growth behaves in accordance with Gibrat’s Law, due to the peculiar
pattern of innovation of that industry. As a matter of fact, innovation in this
industry has often been described and conceptualized as a pure “lottery model”,
where previous innovation (in a particular submarket) does not influence in any
way current and future innovation in the same or in other submarkets (Sutton,
1999). Thus, to the extent that firms’ growth is driven by erratic innovation, it
should also be erratic.

Data come from the data set PHID (Pharmaceutical Industry Database) de-
veloped at University of Siena. It collects data on the top incumbents in the
seven major western markets (France, Germany, Italy, Spain, UK, Canada, and
USA) during the period 1987-1998. As we are interested in the process of inter-
nal growth of firms, we use sales as proxy for firm size, considering as unity of
analysis the international firm.7 Therefore, sales for each firm stand for the sum
of their sales in each of the national markets. Furthermore, in order to control
for merger and acquisition processes during the period, we constructed ”virtual-
firms”. These are firms actually existing at the end of the period for which we
constructed backward the series of their data in the case they merged or made an
acquisition during the period of observation. Hence, if two firms merged during
the period, we consider them merged from the start, summing up their sales from
the beginning.

The data set is constituted of 210 firms that are the results of the intersection
of the top 100 (in terms of sales) in each national market, at the beginning of the

7Other proxies can be used. We tried invoices and the number of employees as alternative
proxies for size without experimenting different qualitative results.
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period of observation. A balanced panel is obtained by censoring the entrants
among the top ranks, using 199 observations out of 210.

Figures 1 report the histograms at each time period for these firms. The
distributions do not show important departures from stability over time. The
only relevant feature which is worthwhile observing is that firms whose size was
relatively low at the beginning (left tale of the empirical distributions, years
87/88) have probably moved towards the center of the distribution by the end of
the sample. We will come back to this point in section 4, where the robustness of
the results is checked by specifying differently the distributional assumption both
of the error term εi and of the population structure θi.

3.2. The speed of convergence

The first set of results which is worthwhile commenting is contained in Table 1
and in Figure 2.

For four different settings of Σ, Table 1 reports the following information. The
first four lines summarize the posterior distribution of ρ̄, showing the mean, the
median and the 68% confidence bands. Line 5 reports the value of the posterior
density computed at the posterior means of the parameters. Line 6 reports the
percentage of firms for which we could not reject the null ρi = 1, while in line 7
and 8 the average log (PO) and the ω∗ are computed to test for unit root across
firms. Lines 9 and 10 reports the same statistics for the firms whose growth
behaves erratically (ρ = 1) and for those this is clearly not the case (ρ < 1).
Lines 11-12 show the statistics for testing the equality ρi = ρj . Finally lines 13-
14 report the statistics for testing the equality SSi = SSj , with i 9= j. The entire
posterior distribution of ρ̄ under the four settings is also shown in Figure 2.b,
while the histograms of mean individual ρi are reported in Figure 2.a. Figure 2.c
plots the scatter relation between the mean convergence rates (1− ρi) and the
initial firms’ sizes, to examine the mean reversion argument.8

Several important facts can be discussed.
First of all, notice that by forcing the units to have the same coefficients

αi and ρi (pool ols) or just the same slope (fixed effect) we obtain the results
generally obtained in the literature. Therefore, under this set of restrictions the
model is indeed able to reproduce the standard cross-sectional/pooling-panel and
the fixed effect regression results (e.g. Goddard et al (2002), p.417, table 1). In
these two cases we cannot reject the null hypothesis that the average ρ is equal to
1, because the log (PO) ratio is positive, meaning that the posterior odds favor
the null, and the largest prior probability we should assign on the alternative in

8The histograms and the scatter plots are based on the average of the estimated posterior
distribution of ρi firm by firm. The information contained in the histogram is therefore different
form the one contained in the posterior distribution of ρ̄ which represents the common part of
ρi across firms, or the central value to which ρi would collapse if there where no heterogeneity
in the data.
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Figure1.  Histograms of observed data
Pharmaceutical industry
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 Figure 2. Convergence rates: pharmaceutical industry

(a)  Histogram of individual ρ(i)

(b)  Posterior distribution of average ρ

(c)  Mean reversion
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Table 1. Estimation and testing: Pharmaceutical industry

pool ols fixed effect mean group bayes

Posterior distribution of ρ

1 16% 0,9924 0,9787 0,7612 0,8924

2 mean 0,9948 0,9827 0,8686 0,9142

3 median 0,9948 0,9827 0,8688 0,9141

4 84% 0,9972 0,9868 0,9774 0,9361

5 P.D. 4455,59 4505,75 4704,13 4677,45

Testing  ρ  = 1 

6 % ρ  = 1 86,08 84,09 23,54 21,71

7 ln(PO) 0,39 0,34 -0,99 -6,61

8 ω* 0,92 0,85 0,67 0,01

  ρ  = 1           ρ  < 1   ρ  = 1           ρ  < 1   ρ  = 1           ρ  < 1   ρ  = 1           ρ  < 1

9 ln(PO)   1,92             -1,35   1,05            -0,48   0,67            -2,06   0,58             -1,67

10 ω*   0,97              0,61   0,94              0,77   0,90             0,50   0,91              0,60

Testing  ρ (i) =  ρ (j)

11 ln(PO) -107,12 -15,94 -131,19 -67,87

12 ω* 0,00 0,00 0,00 0,00

Testing ss(i) = ss(j)

13 ln(PO) -2,37 -2,84 na -703,16

14 ω* 0,09 0,06 na 0,00



order for the data not to reject the null is very high (ω∗ = 0.92, and ω∗ = 0.85
respectively). The latter result means that we must have almost zero confidence
in the null for the data not to overturn our prior beliefs. In other words when we
force coefficients to be the same across units, on average the null is a posteriori
highly likely. Results are confirmed if we test for unit root firm by firm, under the
same set of restrictions. Concretely, for 84-86 percent of the firms in the sample
we cannot reject the null of ρ = 1 (line 6). The same information is contained in
Figure 2.a and 2.b, where the histograms of the posterior mean of the parameter
ρi for each firm and the average posterior mean ρ̄ are respectively plotted. The
limiting distribution of the autoregressive parameter is not very dispersed around
a mean very close to one.

When we allow for heterogeneous parameters across units (either Σ → ∞
or 0 < Σ < ∞), the average ρ ranges from 0,86 to 0,91 (line 2, mean group and
Bayes). The average log(PO) is negative and favors the alternative versus the null
of ρ = 1, while ω∗ ranges from 0.01 (Bayes) to 0.61 (mean group), meaning that,
especially for the Bayes estimator, a high prior probability should be attached on
the null in order for the data not to reject it (lines 7-8). In other words, when
the coefficients are estimated using the information contained both in the cross
section and in the time series dimension of the panel, the size of the firms does
not follow a random walk on average. The same statistics by firm (lines 6, 9-10)
confirm that only for 21-23 percent of firms we cannot reject the null. A similar
information is contained in Figures 2.a and 2.b where, as for the pool ols and the
fixed effect cases, the histograms of the posterior mean of the parameter for each
firm and the posterior distribution of ρ̄ are plotted. The figures reveal that when
we use the information contained both in the cross section and in the time series
dimension, data show a considerable dispersion in the estimated distribution of
ρ across firms, which rends the a posteriori probability of facing a random walk
very unlikely on average. At the same time, the information contained in Fig. 2.a
is also a way of testing the null hypothesis ρi = ρj . The substantial dispersion of
ρi supports the view that the estimated autoregressive coefficients are far from
collapsing toward the central value ρ̄, and hence that the null hypothesis is likely
to be rejected. The statistics shown in line 11-12 confirm this results under the
four settings.

Line 5 shows that the posterior density is higher under these two settings than
under the pool and fixed effect specifications. Therefore the models that allow for
heterogeneity in the parameters are to be preferred, according to what discussed
in the previous section, at least in the sense that they have a better predictive
power. Notice that when only the time series dimension is used (mean group),
given that we have just 12 time observations, a small sample downward bias in
the estimation of the average ρ is present, as it is well known. In this case the
distribution of average ρ is centered on a lower value than the Bayes estimator,
though being more dispersed.
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Finally, note that the simple observation of ρ < 1 is not sufficient to indicate
the existence of “catch-up” or “mean reversion”. On the contrary, there seems to
be a weak relation between the initial conditions and the speeds of adjustment
(1− ρi). As shown in Figure 2.c, there is a slight negative relationship between
the two variables, but it seems not enough to claim that initial larger firms grow
relatively slower than initial smaller firms. On the other hand, the chart and
the results commented above indicate that it is also not true on average that big
firms follow a random walk while small firms don’t, as it as been argued in recent
works.9 Therefore it is not the levelling out in growth rates between large and
small firms that bounds the overall rise in the variance of firm sizes, but rather
the absence of a unit root on average. At this respect, notice however that ρ < 1,
and hence, failure of Gibrat’s law, is not incompatible with a growing variance.
To show this, assume in our model specification that αi = λgi0. Then the model
becomes

git = λgi0 + ρigit−1 + ηit (3.1)

or, going backward

git = λgi0
[
j

ρji + ρtigi0 +
[
j

ρjiηit−j

Therefore the variance of git is

V ar (git) =

λ[
j

ρji

2 V ar (gi0) + ρ2ti V ar (gi0)

+
[
j

ρ2ji σ
2
iη +

λ[
j

ρji

 ρtiV ar (gi0)

Notice that when |ρi| < 1 this expression converges to

V ar (git) =

�
λ

1− ρi

�2
V ar (gi0) +

σ2iη
1− ρ2i

as t becomes sufficiently large. Therefore it may very well be the case that
V ar (gi0) < V ar (git), even in the case of a failure of the Gibrat’s law and without
implying that predictions of git+k become increasingly uncertain as k gets larger.

Summarizing this first set of results, the above discussion suggests the view
that only a small percentage of firm sizes drift unpredictably over time and clearly
diverge within industry, while the size of the vast majority of firms in the sample
converges to a stable steady state. An interesting question now is to see whether
firms converge to the same steady states or not. A negative answer to the question
does not necessarily mean that differences in firm sizes are permanent and not
transitory, because firms can converge to different steady states and the “biblical
prophecy” that small firms may have greater steady states than big ones can hold.

9See Lotti et al. (2000), for instance.
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3.3. The steady state

Focusing on the cases with higher posterior predictive densities, which in our
opinion are the most reasonable ones, the dispersion of steady states is substantial.
Figure 3.a plots a histogram of firms estimated posterior steady states.10 The
histogram is constructed so that firms are grouped in 10 classes of steady state
size: up to 5%, 6-10%, 11-35%, 36-60%, 61-85%, 86-100%, 101-115%, 116-125%,
126-135%, above 136%, where 100 is the average size, i.e., the steady state level
of git which we would obtain if all the units converged to the same steady state
(the bold line in the figure). Clearly the estimated steady state distribution is far
from collapsing toward the central value. Table 1 (lines 13-14) reports, as said,
the statistics for the hypothesis that the steady states are the same across units.
Under the four settings log (PO) is negative and ω∗ is zero, meaning that the
null is highly unlikely, or that unless we assume that the alternative is impossible
(ω∗ = 0), the null hypothesis is always overturned by the data. Whenever the
value of the statistics is not available, log (PO) must be regarded as minus infinity.

These results indicate that the estimated distribution of steady states is non-
degenerate, i.e., firms converge to different steady states. The next question is to
find the appropriate variables which may account for the cross-sectional dispersion
in estimated steady states. This is not the purpose of the paper, though we can at
least propose a natural candidate to explain the limiting distribution. Figure 3.b
plots the estimated steady states against the initial (scaled) size levels. It is clear
that there is a strong positive relationship, i.e., initially large firms have also
the highest steady states and the initial ranking is largely maintained. Figure
3.c measures the strength of this relation running a cross sectional regression
of estimated steady states on a constant and the initial condition (see Eq 2.8
above). Clearly the estimated b is positive, i.e., the distribution of the initial size
of firms matters for the limiting distribution of the steady states. In other words,
differences in firm size are persistent, and given the estimated value of 0.7, one
would argue that inequalities are strongly persistent. The R̄2 can be interpreted
as a measure of long run mobility.11 A small value would suggest that individual
units may move up and down in the ranking, whereas a high value indicates that
the ordering in the initial distribution is the same as in the steady states. The
latter seems to adjust better to our estimation results. A slope of 0.7 in the cross
sectional regression suggests that, on average, the gap between the big and the
small firms will be reduced in the limit only by 30%, while R̄2 = 0.57 indicates
that the initial conditions alone explain almost 60% of the variation of the cross
sectional distribution of steady states. We regard this results as strong evidence
in favor of persistence of differences in firm sizes.

10Whenever ρ > 1, we compute steady states using the small sample formula S (i) =

αi
1−ρT+1

i
1−ρi + ρTi gi0 at each draw of the Monte Carlo in the Gibbs Sampler

11See Canova and Marcet, 1998, for instance.
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Figure 3. The steady state: pharmaceutical industry

(a)  Histogram. Posterior estimates

(b)  Persistence of differences

(c)  test of persistence in differences of firm size
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Summing up, the first set of results does not confirm the conventional wisdom
that firm’s size drifts erratically over time. Even more interesting, data show that
firms converge to different steady states, that their speed of convergence does not
depend on initial size and that the steady state is strongly correlated to initial
size. In other words, there is only weak evidence of reversion to the mean, and
firms’ size differentials tend to persist over time.

4. ROBUST INFERENCE AND SENSITIVITY ANALYSIS

In this section we check the robustness of previous results by performing the
analysis with a different data set and different prior assumptions.

4.1. A different data set: UK manufacturing firms

Compared to the Pharmaceutical database, the new data set has a shorter time
series dimension and includes different industries belonging to one single country.
The analysis is performed on a sample of 267 UK manufacturing firms. Data
constitute a balanced panel of five years, from 1988 to 1992. The histograms for
each year are plotted in Figure 4. The same remarks as for the previous data set
can apply.

The aim of this subsection is twofold. On the one hand we can verify if our
main results on Gibrat’s argument are robust to a different data set. On the other
hand, given that the new data set contains different industries and hence another
level of possible heterogeneity, one could cast light on some other features which
explain firms growth across industries.

The model specification is the same as before, and so are the prior assump-
tions. The estimation results, shown in Table 2 and Figures 5-6, confirm the
previous findings. In particular, when both types of information (cross-sectional
and time series) are controlled for, we reject the null hypothesis of unit root both
on average (table 2, line 7-8) and by firms (table 2, lines 6, 9-10). The average
autoregressive parameter ρ ranges from 0,55 (mean group) to 0,81 (Bayes) in the
settings where heterogeneity is controlled for, while it is 0,99 in the plain pool and
in the fixed effect cases (Table 2, lines 1-4). The dispersion of the mean estimates
of ρi by firms (Fig. 5.a) is again a way of rejecting the null hypothesis that ρi = ρj
in all settings (see also Table 1, lines 11-12), although the mean group and the
Bayes specification provide more dispersed estimators. There seems to be even
less relation between the convergence rate and the initial conditions, with respect
to the previous data set (Fig. 5.c), confirming the view that no mean reversion
is present in the sample data.

All together, these findings support again the fact that firm size does not drift
unpredictably over time on average. Notice that when we pool the data forcing
the parameters to be the same across units, for most firms we do not reject the
null that Gibrat’s law holds (Table 2, line 6-8). Even for firms where the test
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Figure 4.  Histograms of observed data
UK manufacturing
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 Figure 5. Convergence rates: UK manufacturing

(a)  Histogram of individual ρ(i)

(b)  Posterior distribution of average ρ

(c)  Mean reversion
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Table 2. Estimation and testing: UK manufacturing

pool ols fixed effect mean group bayes

Posterior distribution of ρ

1 16% 0,9915 0,9874 0,4596 0,7726

2 mean 0,9949 0,9913 0,5516 0,8072

3 median 0,9952 0,9915 0,5508 0,8074

4 84% 0,9983 0,9954 0,6456 0,8422

5 P.D. 421,48 445,14 1449,06 845,83

Testing  ρ  = 1 

6 % ρ > = 1 87 89,44 8,87 4,23

7 ln(PO) 1,84 0,68 -11,49 -14,71

8 ω* 0,98 0,92 0,00 0,00

  ρ  = 1           ρ  < 1   ρ  = 1           ρ  < 1   ρ  = 1           ρ  < 1   ρ  = 1           ρ  < 1

9 ln(PO)   1,55             -0,35   1,27            -0,32   0,44            -6,99   0,25             -2,26

10 ω*   0,97              0,94   0,96              0,93   0,78             0,34   0,83              0,54

Testing  ρ (i) =  ρ (j)

11 ln(PO) -19,39 -11,70 -115,51 -93,67

12 ω* 0,00 0,00 0,00 0,00

Testing ss(i) = ss(j)

13 ln(PO) -1,64 -1,79 na na

14 ω* 0,16 0,14 na na



rejects the unit root hypothesis, the largest prior probability to attach on the
alternative in order for the data not to reject the null is very high (0,93-0,94),
meaning that the specifications with little or no heterogeneity in practice would
never reject the null of unit root. On the contrary, when we do not impose this
restriction only 4 to 9 percent of the firms in the sample behave according to
a random walk in the size. Among these firms there seems not to be a clear
pattern, at least across industries. In table 3 we report the number of firms and
the percentage of firms with ρ = 1 for each industry, as well as the scaled size
of the average firm in the industry. It can be noticed that only in one industrial
group (motor vehicles & parts) all firms have a ρ significantly less than 1, while in
the others the percentage of firms whose size drifts unpredictably does not follow
a clear pattern at a first glance (see also the histogram below the table). Thus,
for instance, the simple argument that big firms may follow a random walk while
small firms certainly not is contradicted by the evidence that in the first industry
(metal manufacturing), where the average size is relatively high, 50 percent of
firms grow erratically, while in industry 14 (footwear & clothing), whose firms
are among the smallest, all firms follow Gibrat’s law.

Conclusions on the limiting behavior of firm size can be appreciated from Fig.
6. As before, we reject the null hypothesis of equal steady states. The dispersion
of estimated steady states is again substantial (Fig. 6.a) and, unless we assume
a priori that the alternative is impossible, the null hypothesis will always be
overturned by the data (in Table 2, lines 13-14 the log (PO) is negative and ω∗ is
approximately zero under the four settings). Moreover differences in firms size are
extremely persistent. The evidence contained in Fig. 6.b and c is overwhelming.
The position in the initial size distribution of a given unit strongly determines
the position of the same unit in the steady state distribution. On average, the
gap between the big and the small firms will be reduced in the limit only by 10%,
while the initial conditions alone explain more than 80% of the variation of the
cross sectional distribution of estimated steady states.

Although results may suffer from a small sample bias, they point out once
again the importance of controlling for heterogeneity in the coefficients when a
panel data set is used, as well as the importance of using efficiently all information
contained in the sample.

4.2. Different prior assumptions: model checking

In this section we assess the fit of the model to the data and the plausibility of
the specification for the purposes for which the model has been used. The basic
questions are: how much does the posterior predictive distribution fit to data?
and how much does previous posterior inference change when other reasonable
probability models are used in place of the present model? It is important to
distinguish between the two questions because, even if the present model provides
an adequate fit t o data, the p osterior inferences c an still differ under pl ausi ble
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Table 3. UK manufacturing firms by industry

Sectors (SIC80 - digit) INDUSTRY 
number

firms % of  ρ = 1 average scaled 
size

Metal manufacturing (22) 1 8 0,50 0,520
Non- metallic manufacturing (24) 2 9 0,11 0,180
Chemical (25 and 26) 3 28 0,07 0,246
Other metal goods (31) 4 21 0,19 0,034
Mechanical engineering (32) 5 59 0,24 0,052
Office and data machinery (33) 6 12 0,08 0,086
Electrical & electronic machinery (34) 7 45 0,16 0,080
Motor vehicles & parts (35) 8 8 0,00 0,195
Other transport (36) 9 6 0,33 0,369
Instrument engineering (37) 10 18 0,17 0,036
Food, drink & tobacco (41/42) 11 9 0,44 0,295
Textiles (43) 12 11 0,09 0,122
Leather goods (44) 13 1 1,00 2,718
Footwear & clothing (45) 14 3 1,00 0,002
Timber (46) 15 6 0,33 0,046
Paper & printing (47) 16 11 0,18 0,086
Rubber & plastics (48) 17 10 0,10 0,062
Other manufacturing (49) 18 2 0,50 0,059

Industry distribution of firms with ρ=1
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Figure 6. The steady state: pharmaceutical industry

(a)  Histogram. Posterior estimates

(b)  Persistence of differences

(c)  test of persistence in differences of firm size
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alternative models.
The technique used for checking the fit of our model to data was to draw

simulated values from the posterior predictive distribution of replicated data and
to compare these samples to the observed data. This search is combined with a
more general family of distributions for both the error term in the regression (2.3)
and the population structure (2.4) to analyze the sensitivity of the results. Con-
cretely, we assume the tν distribution in place of the normal. The t distribution
has a longer tail than the normal and can be used for accommodating occasional
unusual observation in the data distribution or occasional extreme parameters
in the prior distributions or hierarchical model. Histograms for observed data
(Figures 1 and 4) do not reveal extreme values in both data sets. Therefore we
expect results based on the normal distribution for data fit the data better and
use the tν distribution just for sensitivity analysis. In other words, as long as
the assumptions on data distribution are concerned, the tν is chosen simply as
a robust alternative to the normal, provided the degrees of freedom ν are fixed
at values no smaller than prior understanding dictates in our example. On the
other hand, given the small time series dimension of the panel, we would expect
a better predictive performance by assuming a tν distribution with finite ν for
the parameters of the hierarchical model.

The procedure for carrying out both posterior predictive model check and
sensitivity analysis is the following. Let y be the observed data and ψ the vector
of parameters (including all hyperparameters). Define yrep as the replicated data
that could have been observed, or, the data we would see tomorrow if the experi-
ment that produced y today were replicated with the same model and the same
value of ψ that produced the observed data. The distribution of yrep given the
current state of knowledge, i.e. the posterior predictive distribution, is:

p (yrep) =

]
p (yrep | ψ) p (ψ | y) dψ

The discrepancy between the model and the data is measured as suggested by
Gelman et al. (1995) by defining a discrepancy measure T (y,ψ), which is a
scalar summary of parameters and data. Lack of fit of the data with respect to
the posterior predictive distribution is then measured by the tail-area probability
(p-value) of the quantity, and computed using posterior simulations of (ψ, y).
This p-value is defined as the probability that the replicated data could be more
extreme than the observed data, as measured by the test quantity:

p-value = Pr (T (yrep,ψ)) ≥ Pr (T (y,ψ))

where the probability is taken over the joint posterior distribution of (ψ, yrep).
Major failures of the model typically correspond to extreme tail-area probabilities
(less than 0.01 or more than 0.99).
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The discrepancy measure chosen is the χ2 discrepancy quantity, an omnibus
measure for routine checks of fit, and is defined as

T (y,ψ) =
[
i

(yi −E (yi | ψ))� [var (yi | ψ)]−1 (yi −E (yi | ψ)) (4.1)

Other technical details are in appendix.
We compute these statistics, the p-values and the relevant results for inference

of interest, first fitting a range of tν distributions with ν = 10, 50, 100 for the errors
in (2.3), maintaining the normality assumption on θi, and then fitting a range of
tν distributions with ν = 5, 10, 15, 50 for the vector θi in (2.4), maintaining the
normality assumption on εi. Infinite degrees of freedom have already been fitted
(the normal-normal data model). Results are reported in Figures 7-9 and Table
3. Most of them refer only to the pharmaceutical industry because those for the
UK manufacturing are very similar.

Some comments are in order.
Figure 7 reports scatter plots showing prior and posterior simulation of the

chosen test quantity (4.1) based on 2500 simulations from the posterior distribu-
tion of (ψ, yrep) for different values of the degrees of freedom of the t. The p-value
is computed as the proportion of points in the upper-left half of the plot with
respect to an imaginary 45o line. As expected, more extreme values are encoun-
tered when a t distribution is fitted for the error terms than when a t replace the
normal for the vector θi. The values of the posterior predictive density in table
3 confirm this finding. Among the specifications fitted, the one assuming normal
errors (ν =∞) has the highest predictive power (P.D. = 4677,45). Under the
assumption of normality of the error term εi, the t15 distribution for θi is also
well performing (P.D. = 4342,99). Notice that the p-values when θi ∼ tν is always
around 0.02, regardless of ν. Figures 8-9 report the histograms of replicated data
for both data sets. They are computed as posterior averages over the simulation
draws at each time across firms, with the benchmark specification: normal εi-
normal θi. They look very similar to those already shown in Figures 1 and 4 for
observed data, confirming that our basic assumptions are clearly able to capture
the variation observed in the data. We regard these findings as evidence that no
potential failings of our model are present, in the sense that it does not produce
any systematic differences between the simulations and the data, and hence that
it fits well to data.

Finally, for each value of ν, Table 3 reports also the posterior distribution of
ρ̄ and the relevant statistics to test for unit root, for the cases Bayes and pool
. It is easy to check that under all tried values of ν, results are essentially the
same as those obtained under the normal-normal model as displayed in Table
2, except for the fact that under the assumption θi ∼ tν , the 68% confidence
interval is larger than under the normality assumption, as expected. The plain
heterogeneous model (Bayes) always provides estimates of ρ far from being equal
to 1 a posteriori, while the pool model is not able to reject on average Gibrat’s
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             Table 4. Robust inference and sensitivity analysis
Pharmaceutical industry

a.  y ~ t-student ( ν ),  θ  ~ Normal

ν 10 50 100 inf

median ρ 0,913 0,912 0,913 0,914

16%     84% 0,891      0,935 0,891      0,935 0,890      0,935 0,892      0,934

P.D. 2629,33 3460,83 3736,86 4677,45
Bayes

ln(PO) -6,961 -6,782 -6,320 -6,610

ω* 0,006 0,008 0,013 0,010

p-value 0,997 0,388 0,185 0,120

median ρ 0,994 0,994 0,994 0,995

16%     84% 0,991      0,997 0,991      0,998 0,991      0,997 0,992      0,997

P.D. 1942,25 3327,66 3514,02 4455,59
Pool

ln(PO) 0,840 0,849 0,772 0,393

ω* 0,937 0,937 0,945 0,921

p-value 0,994 0,411 0,180 0,130

b. θ  ~ t-student ( ν ),   y ~ Normal

ν 5 10 15 30

median ρ 0,893 0,893 0,891 0,888

16%     84% 0,834      0,950 0,857      0,931 0,860      0,924 0,835      0,918

P.D. 2340,19 4459,74 4532,62 3784,17
Bayes

ln(PO) -2,501 -3,917 -5,066 -3,361

ω* 0,371 0,136 0,041 0,201

p-value 0,017 0,020 0,018 0,022

median ρ 0,980 0,987 0,990 0,987

16%     84% 0,924      1,083 0,945      1,032 0,957      1,023 0,967      1,021

P.D. 1906,27 4262,26 4341,99 3529,69
Pool

ln(PO) 0,424 0,825 1,584 0,298

ω* 0,905 0,934 0,947 0,841

p-value 0,018 0,016 0,018 0,019



Figure 7.  Sensitivity analysis
Pharmaceutical industry
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Figure 8.  Histograms of replicated data
Pharmaceutical industry
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Figure 9.  Histograms of replicated data
UK manufacturing
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argument. The resulting inference therefore is unchanged, meaning that it is
robust to a model expansion which uses the tν as a more general and robust
alternative to the normal.

5. SUMMARY AND CONCLUDING REMARKS

Results discussed above can be summarized as follows:
(i) The estimated average speed of adjustment is far from being zero when the

information contained both in the cross sectional and in the time series dimension
is used. This implies that the main assertion of the Gibrat’s law that growth rates
are erratic is not true on average, within or across industries;

(ii) When we allow for heterogeneity both in the intercepts and in the slope
coefficients, data show a considerable dispersion in the estimated distribution of
ρ across firms, whereas when we force the parameters to be the same across units
the distribution of ρ is centered around values very close to one. This confirms
our initial suspect that previous results, based on cross sectional or pooled panel
data models may be econometrically biased because they do not exploit all infor-
mation contained in the data and hence they misspecify the econometric model
without considering heterogeneity, even among firms of the same industry. The
null hypothesis ρi = ρj is a posteriori very unlikely, meaning that the distribution
across firms of the autoregressive parameter is far from collapsing to the central
value ρ̄, as a priori imposed in the cross section or in the pool-panel data models;

(iii) There is only weak evidence of mean reversion. Even if on average ρ < 1,
this does not necessarily mean that initial larger firms grow relatively slower than
smaller firms. Therefore the overall rise in the variance of firm growth turns out
to be bounded, but for different reasons than the conventional one linked to the
levelling out in growth rates between large and small firms. In any case, as shown
in section 3.2, the variance may increase, as time goes by, even if ρ < 1;

(iv) Estimated steady states differ across units, and firm sizes do not converge
within or across industries to a common limiting distribution. This fact does not
imply per se that firm size drifts unpredictably over time, as argued by some
authors (see Geroski, 2001, p. 6). It is true that a unit root in the process of
firm size implies divergence, but the reverse causality does not necessarily hold,
as shown in this paper;

(v) Initial conditions are important determinants of the estimated distribution
of steady states. Differences are like ly to reduce at a ve ry slow rate but they do
not seem to disappear over time. A firm with an initial size below the average
is going to narrow the gap with respect to bigger firms, but it does not seem
to increase its relative size in the cross sectional distribution. In other words,
differences in firm size persist.

(vi) The model we used to perform the analysis does not show failings in
fitting to data. Moreover, results are unchanged with a robust alternative to the
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priors chosen.
Our conclusion is that the simple empirical fact on the growth of firms is

that growth is not erratic or that firm’s size does not drift unpredictably over
time, as in many previous studies was claimed, and hence that Gibrat’s argument
does not hold on average. Moreover, the result that small firms tend to grow
faster than large ones is also not confirmed. Rather, initially smaller firms tend
to remain smaller in steady state and their convergence rate is not higher as
compared to larger firms. In other words, there are systematic differences in
growth rates among firms. These differences are not size-specific and may depend
on other firm-specific features that are not observable in our data. Given that
these results are robust to different data sets either within or across industries,
and to general models, they open rooms for investigating further the determinants
of firms growth.

Most likely, size is not the only correct variable which growth should be condi-
tioned on. Other sources of heterogeneity (age being a primary - but certainly not
the only - candidate) may plausibly be responsible for differential growth rates
of firms over time. In particular it would be interesting to explore some com-
mon features across clearly divergent/convergent firms as well as the role of other
variables in the explanation of the cross sectional dispersion in estimated steady
states. Finally, the mechanisms through which market selection operates in pro-
moting the growth and the decline of firms should also be explicitly modelled and
tested.

At a more general level, the results of this paper cast serious doubts on the
validity and the robustness of all those conventional econometric exercises that
do not treat heterogeneity appropriately. How pervasive these problems might be
is a fundamental question for future research.
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A P P E N D I X

1. The Posterior Distributions

Given the prior information previously specified, we look for the posterior density

of the parameter vector ψ =
�
θi, θ̄,Σ

−1
θ ,

�
σ2i
�N
i=1

�
which is given by

p (ψ | y, yio) ∝ f
�
y | θi, θ̄,Σ−1θ ,

q
σ2i

rN
i=1
, yio

�
p (ψ | yio)

Assuming a vague prior for σ2i , i.e., taking vo = 0, the joint density of all the
parameters can be written as

p
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(soSo)Σ
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��
×
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σ−2i

where yi = (gi1, ...giT )
� and Xi = (X �i1, ...,X �iT )

� . The first line of the formula
represents the standard likelihood conditional on the initial conditions and the
others represent the prior information.

As said in the text, in order to obtain the marginal posterior distributions
of each component of ψ, a numerical integration is needed. We use the Gibbs
sampler, a sampling—based approach, firstly introduced by Geman and Geman
(1984) and successively popularized by Gelfand and Smith (1990) among others.
If we dispose of the full conditional distributions of the parameters, the idea
is to construct a Markov chain on a general state space such that the limiting
distribution of the chain is the joint posterior of interest. The relevant conditional
distributions are obtained from the above formula. For example, the conditional
distribution for θi is obtained by combining line one with line two, completing the
square for θi. The conditional distribution of θ̄ is obtained by combining line two
with line three, completing the square, and so on. Concretely, the conditional
distributions needed to implement the Gibbs sampler are the following:

p (θi | y,ψ−θ) = N
k
Ai
�
σ−2i X

�
iyi +Σ

−1
θ θ̄

�
, Ai

l
i = 1, ..., n

34



p
�
θ̄ | y,ψ−θ̄

�
= N

k
B
�
nΣ−1θ θ̃ + C−1µ

�
, B
l

p
�
Σ−1θ | y,ψ−Σ−1

θ

�
= W

# n[
i=1

�
θi − θ̄

� �
θi − θ̄

��
+ soSo

$−1
, so + n


p
�
σ2i | y,ψ−σ2i

�
= IG

k
T/2,

�
(yi −Xiθi)� (yi −Xiθi)

�
/2
l

i = 1, ..., n

where Ai =
�
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�
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θ

�−1
, B =

�
nΣ−1θ +C−1

�−1
, θ̃ = (1/n)

S
i θi, W ()

denotes the wishart, IG () the inverse gamma distribution and ψ−γ denoting ψ
without γ.

After iterating, say, M times, the sample value ψ(M) can be regarded as a
drawing from the true joint posterior density. Once this simulated sample has
been obtained, any posterior moment of interest or any marginal density can be
estimated using the ergodic theorem. Convergence to the desired distribution can
be checked as suggested by Gelfand and Smith (1990).

In our exercise the number of Monte Carlo iterations is set equal to 5000, and
the first 1000 are discarded. Convergence is achieved already with the first 3000
iterations. Moreover, the third stage of the hierarchy is assumed vague, or non-
informative, i.e., we set C−1 = 0. This means that the only hyperparameters to
be assumed known are so and So, i.e., the degrees of freedom and the scale matrix
of the wishart prior for Σθ. These hyperparameters control the four settings under
which we estimate the model. Concretely, the pool ols (Σθ = 0) is approximated
by choosing So = diag (0.0001 0.0001); for the fixed effect (σρ = 0) we choose
So = diag (0.1 0.0001). The setting mean group (Σθ →∞) is approximated with
So = diag (100 100). Finally for the Bayes setting we choose So = diag (1. 1.).
In the four cases prior degrees of freedom are chosen randomizing uniformly over
the interval (3, 10), i.e. so ∼ uniform (3, 10).

The conditional posterior distributions need to be modified when a tν distri-
bution is used in place of the normal either for the error term or for the population
structure. Recalling that the tν can be interpreted as a mixture of normal dis-
tributions with variances distributed as scaled inverse-χ2, the Gibbs sampler is
easily extended to include one or more conditional distributions. For instance, in
the case of yi ∼ N

�
Xiθi,σ

2
i IT

�
and θi ∼ tν

�
θ̄,Σθ

�
, the latter is equivalent to

θi | vi ∼ N
�
θ̄, viΣθ

�
vi ∼ Inv-χ2 (ν, 1)

where Inv-χ2
�
ν, s2

�
denotes a scaled inverse-χ2 with scale factor s2.

Therefore, the change in the distributive assumption on the population struc-
ture is equivalent to an expansion of the model. This, in turn, implies that the
posterior distributions of the parameters must change accordingly and also that
a new variable, vi, must enter the Gibbs Sampler. A similar hierarchy holds for
yi when yi ∼ tν

�
Xiθi,σ

2
i IT

�
.
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The sensitivity analysis is performed by comparing different sets of results
corresponding to different values for ν. To compute the test-quantities T (y, θ)
and tail-area probabilities we proceed as follows. If we already have, say, L sim-
ulations from the posterior density of ψ, we draw one yrep from the predictive
distribution for each simulated ψ. We now have L draws from the joint poste-
rior distribution p (yrep,ψ | y). The posterior predictive check is the comparison
between the realized test quantities, T

�
y,ψl

�
, and the predictive test quantities

T
�
yrep,l,ψl

�
. The estimated p-value is just the proportion of these L simulations

for which the test quantity equals or exceeds its realized value; that is, for which

T
�
yrep,l,ψl

�
≥ T

�
y,ψl

�
, l = 1, ..., L. For further technical details on model

checking and sensitivity analysis, see also Gelman et al. (1995, Ch. 6 and 12).

2. Testing

The statistics used to test the hypotheses discussed in the text is the logarithm of
the posterior odds (PO) ratio suggested by Leamer (1978) and applied by Sims
(1988). The statistics can be written as

ln (PO) = ln

�
(1− ω)

ω

φ (q)

Φ (q)
|V |− 1

2

�
(2.1)

where the c.d.f of the standard Normal distribution, Φ (), and its p.d.f., φ () ,

are evaluated at q =
t
(Rγ − r)� V −1 (Rγ − r), V is the matrix RQR�, Q is the

posterior variance covariance matrix of γ, R is a restriction matrix, r is the value
to which we are restricting the vector γ, and ω is the prior probability we assign
to the alternative, i.e., the probability we initially put uniformly on the interval
(0, 1), while 1− ω is the probability we put on the null Rγ = r.

For instance, in the concrete case of testing for unit root on average, q becomes

equal to the conventional t-statistics for ρ = 1, (1− ρ∗) /σ∗ρ, and |V |−
1
2 = 1/σ∗ρ,

where variables with a (∗) denote estimated posterior means. On the other hand,
in the case of testing that steady states are the same across units, the standard

normal c.d.f. and p.d.f. are evaluated at q =
t
(RS)� (RQR�)−1 (RS) where S is

the n×1 vector containing posterior estimates of the (linearized) steady states of
each unit, R is the (n− 1)×n restriction matrix with ones on the main diagonal,
-1 on the following upper diagonal and zero elsewhere, and Q is the variance
covariance matrix of the posterior estimates of the (linearized) steady states.

Notice that by selecting ω < 1 we are implicitly placing higher weight on the
null hypothesis, since ω is spread over infinitely many possible alternative values.
For this reason, in testing for unit root, Sims (1988, p. 471) suggests to choose a
value in the interval (0.5, 1), proposing as a reasonable value 0.8. In this paper, to
verify the null ρ = 1, we randomize uniformly over this interval, while we assume
ω = 0.5 to test for equality of steady states and for ρi = ρj .
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As said in the text, we can also compute the largest prior probability ω∗ to at-
tach to the alternative for the test to accept the null, given the data. Such a prior
probability can be computed from (2.1) and it is equal to ω∗ = 1/ (1 + exp (w))
where

w = ln (Φ) + 0.5 ln (|V |)− ln (φ)
For more details on this testing procedure, see Sims (1988) and Canova and
Marcet (1998).
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