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A B S T R A C T 
 

This paper explores the relative progressivity of the main bankruptcy 
rules in taxation problems. A rule F is more progressive than a rule G when the 
after-tax income vector generated by F Lorenz dominates that generated by G. 
We focus our analysis on four classical rules (proportional, equal-awards, 
equal-losses and Talmud) and on the TAL-family, introduced in Moreno-
Ternero & Villar (2002). This family depends on a parameter θ ∈  [0,1] and 
encompasses the constrained equal awards rule, the constrained equal losses 
rules and the Talmud rule. 
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1 INTRODUCTION

A bankruptcy problem is one in which one has to allocate a given amount
of a divisible good when there is not enough to satisfy the demands of all
the incumbent agents. It can be regarded as a particularly simple case of
rationing situations in which the only information available refers to the
number of agents, their corresponding claims, and the amount of the good to
be distributed. To solve this type of problem one uses certain procedures or
rules that implement some ethical and operational criteria. Different rules
result from alternative combinations of these criteria. Therefore, a good deal
of the literature on bankruptcy refers to the analysis of the properties that
different rules satisfy and their characterizations in terms of well defined,
intuitive and sensible principles. The reader is referred to Thomson (1995)
and Moulin (2001) for a review of this literature.
In spite of its formal simplicity the bankruptcy problem is a model ca-

pable of accommodating a number of quite different situations. The best
known examples are the bankruptcy of a firm, the execution of a will with
insufficient assets, the allocation of equities in privatized firms, the distrib-
ution of commodities in a fixed-price setting, the allocation of food supplies
in a refugees camp, sharing the cost of an indivisible public facility, etc. The
ethical properties of different rules may help choosing the most suitable distri-
bution method applicable to each different rationing situation. These ethical
properties usually refer to the equitable treatment of agents, the behaviour
of the rule with respect to very large or very small claims, the securement of
minimal amounts, etc.
The bankruptcy problem can also be interpreted as a particular taxa-

tion problem [e.g. Young (1988)], which is the one we shall endorse here.
It consists of collecting a given amount X > 0 of taxes out of a popu-
lation N whose gross income vector is y. Therefore, a taxation problem
can be identified with a triple (N,X, y), with Y ≡ i∈N yi > X. A tax
rule is a mapping F that applies the space of taxation problems into the
space of allocations. The solution proposed by the rule F is an allocation
F (N,X, y) which specifies the amounts of taxes paid by the agents, with
0 ≤ F (N,X, y) ≤ y and i∈N Fi(N,X, y) = X. The after-tax income vector
is given by y − F (N,X, y).
We are interested in assessing the distributive impact of different tax

rules, focussing on the notion of progressivity. A tax rule is called progressive
when agents with larger incomes should contribute relatively more. Most of
the actual tax schedules exhibit this property, which can be rationalized
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in a number of ways. The most direct justification refers to the fact that
progressive taxation produces a reduction in the after-tax income inequality,
something considered desirable when we interpret this feature as a sort of
compensation for differences in agents’ opportunities [e.g. Roemer (1998)]. A
second line of defence comes from the application of John Stuart Mill’s “equal
sacrifice” criterion. An equitable tax rule is one that distributes equally the
welfare loss induced by the tax burden. Therefore, if utilities are concave, the
equal sacrifice principle implies that taxes are increasing with income, which
in most cases implies progressive taxation (but not always). A step beyond
in this direction came from Edgeworth, who suggested that taxes should be
distributed so as to minimize the aggregate sacrifice. This principle yields a
rather extreme progressive tax rule (the leveling tax). The reader is referred
to Young (1994, ch. 6) and Thomson (1995) for a discussion.
Besides determining whether a tax rule is progressive or not, one can

also be interested in comparing the relative progressivity of different rules in
terms of their outcomes. A tax rule F will be declared “more progressive”
than another tax rule G if, for any given taxation problem (N,X, y), F yields
an after-tax income distribution that Lorenz dominates that generated by G.
The assessment of the distributive properties of bankruptcy rules by means
of the classical Lorenz dominance criterion can be found in Moulin (1988, ch.
6) and, more recently, in Hougaard & Thorlund-Petersen (2001).
There are in the literature four classical solutions to the bankruptcy prob-

lem, that are applicable to the taxation problem: the proportional rule, the
constrained equal awards rule (that here corresponds to the head tax), the
constrained equal losses rule (here the leveling tax), and the Talmud rule
[see Herrero & Villar (2001) for a comparative analysis]. The first three
rules implement the idea of equal division, with different reference variables
(ratios, contributions, and after-tax incomes, respectively). The last three
rules can be regarded as part of a parametric family of rules introduced in
Moreno-Ternero & Villar (2002) under the name of the TAL-family. For each
θ ∈ [0, 1] the rule F θ in this family implements the following protective cri-
terion: no agent will pay more (resp. less) than a fraction θ of her income
if the tax burden X is below (resp. above) θ times the aggregate income

i∈N yi. The rule associated with θ = 1
2
is the Talmud rule whereas the

extreme values θ = 1 and θ = 0 correspond to the head tax and the leveling
tax, respectively. The proportional solution is not part of this family.
We analyze in this paper the progressivity of all these rules, both in

absolute and relative terms. The domain of problems on which these rules
are progressive is considered first. Clearly the proportional solution is not
progressive (even though it satisfies a weak form of this property). We show
that a rule F θ in the TAL-family exhibits progressivity on the domain of tax
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problems (N,X, y) in which θ < X
Y
, and only on this domain. Indeed, the

only rule that satisfies progressivity on an unrestricted domain is the leveling
tax.
The analysis of the relative progressivity of these rules comes next. The

proportional rule and the Talmud rule are more progressive than the head tax
and less progressive than the leveling tax, as expected. More interestingly,
we show that all the members of the TAL-family can be ordered in terms of
relative progressivity, according to the value of the parameter θ. In particular,
if θ1, θ2 ∈ [0, 1] are such that θ1 ≤ θ2, then F θ1 is more progressive than F θ2.
Therefore, the parameter θ that generates the rules in the TAL-family can
be given a very precise interpretation as an index of progressivity.
The rest of the paper is organized as follows. Section 2 contains the

model. The behaviour of the rules with respect to the progressivity criteria
is discussed in Section 3. The proof of the main theorem is relegated to an
Appendix.

2 THE MODEL

Let N represent the set of all potential agents (a set with an infinite number
of members) and let N be the family of all finite subsets of N. An element
N ∈ N describes a finite set of agents N = {1, 2, ..., n}, where we take |N | =
n. A taxation problem is a triple (N,X, y), where N is the set of agents,
X ∈ R+ represents the tax burden (the amount of taxes to be collected),
and y ∈ Rn+ is the agents’ gross income vector whose ith component is yi. It
will be assumed throughout the paper that i∈N yi > X > 0. The family of
all those taxation problems is X. To simplify notation we write, for any given
problem (N,X, y) ∈ X, Y = i∈N yi. We assume, without loss of generality,
that agents are labelled so that y1 ≤ y2 ≤ ... ≤ yn.

Definition 1 A rule is a mapping F that associates with every (N,X, y) ∈
X a unique point F (N,X, y) ∈ Rn such that:
(i) 0 ≤ F (N,X, y) ≤ y.
(ii) i∈N Fi(N,X, y) = X.

The point F (N,X, y) represents a fair way of allocating the tax burdenX
among the agents in N. Requirement (i) is that each agent pays an amount
that is non-negative and bounded above by her income. Requirement (ii)
is that the total tax burden is to be covered. The set Ω(N,X, y) = {x ∈
Rn+ :

n
i=1 xi = X, with xi ≤ yi, for all i = 1, ..., n} is the set of feasible

allocations. The after-tax income vector is given by y−F (N,X, y) ∈ Rn+.
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Given a rule F we define its dual F ∗ as follows [Cf. Aumann & Maschler
(1985)]: For all (N,X, y) ∈ X, F ∗(N,X, y) = y − F (N,Y −X, y). When a
rule and its dual produce the same outcomes is called self-dual. The notion
of duality is extended to the properties a rule satisfies in an obvious way
(namely, P∗ is the dual property of P if for every rule F it is true that F
satisfies P if and only if its dual rule F ∗ satisfies P∗).

We now consider four classical tax rules: the proportional rule, the head
tax, the leveling tax, and the Talmud rule. The first three rules apply an
egalitarian criterion and differ in the variables they equalize. The propor-
tional rule solves the problem dividing the tax burden so that each agent pays
an equal share of her income. The head tax is basically a flat tax that dis-
tributes the tax burden uniformly, provided no agent ends up paying above
her income. The leveling tax rule aims at equalizing after-tax income across
the agents, with one proviso: all contributions are non-negative. Finally,
the Talmud rule behaves like the head tax or the leveling tax, depending on
whether the tax burden exceeds or falls short of half the total income. In
particular, nobody pays more than half of her income if the tax burden is
less than half of the aggregate income and nobody pays less than half of her
income if the tax burden exceeds half of the total income.
Formally:

Definition 2 The proportional tax (P ) is the rule that, for all (N,X, y) ∈
X, and all i ∈ N, yields:

Pi(N,X, y) = λ · yi
where λ > 0 is chosen so that i∈N λ · yi = X.

Definition 3 The head tax (A) is the rule that, for all (N,X, y) ∈ X, and
all i ∈ N, yields:

Ai(N,X, y) = min{yi,λ}
where λ > 0 is chosen so that i∈N min{yi,λ} = X.

Definition 4 The leveling tax (L) is the rule that, for all (N,X, y) ∈ X,
and all i ∈ N, yields:

Li(N,X, y) = max{0, yi − λ}

where λ > 0 is chosen so that i∈N max{0, yi − λ} = X.
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Definition 5 The Talmud (T ) is the rule that, for all (N,X, y) ∈ X, and
all i ∈ N, yields:

Ti(N,X, y) =
min{1

2
yi,λ} if X ≤ 1

2
Y

max{1
2
yi, yi − µ} if X ≥ 1

2
Y

where λ and µ are chosen so that i∈N Ti(N,X, y) = X.

Moreno-Ternero & Villar (2002) introduce a family of rules, called the
TAL-family, that generalizes the Talmud rule and encompasses both the head
tax and the leveling tax rules. This family is generated by applying the
principle underlying the Talmud rule to all the rules that solve the taxation
problem depending on the relation betweenX and θY, for θ ∈ [0, 1]. Formally:
Definition 6 The TAL-family consists of all rules with the following form:
For some θ ∈ [0, 1], for all (N,X, y) ∈ X, and all i ∈ N ,

F θ
i (N,X, y) =

min {θyi,λ} if X ≤ θY
max {θyi, yi − µ} if X ≥ θY

where λ and µ are chosen so that i∈N F
θ
i (N,X, y) = X.

A rule F θ in the TAL-family resolves taxation problems according to the
following principle: Nobody pays more than a fraction θ of her income if the
tax burden is less than θ times the gross national income and nobody pays less
than a fraction θ of her income if the amount of taxes to be collected exceeds
θ times the aggregate income. Note that the leveling tax rule corresponds
to the case θ = 0 (F 0 = L), whereas the head tax corresponds to the other
extreme value, θ = 1 (F 1 = A). Obviously the Talmud rule is obtained for
θ = 1

2
(F 1/2 = T ). The parameter θ can be interpreted as a measure of the

distributive power of the rule. The next section conveys a precise meaning
to this interpretation of θ.
Note that the proportional tax schedule is not a member of the TAL-

family. In other words, there is no θ for which F θ is the proportional rule.
Yet, for any given taxation problem (N,X, y) ∈ X, the value θ = X

Y
yields a

solution F
X
Y (N,X, y) that coincides with the allocation provided by the pro-

portional tax schedule to this taxation problem. This fact will be important
in the ensuing discussion.

Remark 1 A rule in the TAL-family can also be expressed as a function of
the head tax and the leveling tax rules, as follows: F θ (N,X, y) = A(N,X, θy)
if θY ≥ X and F θ (N,X, y) = θy + L(N,X − θY, (1− θ)y) otherwise.
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3 PROGRESSIVITY ANALYSIS

The notions of progressivity and regressivity refer to the behaviour of the
tax shares Fi(.)/yi with respect to the income level yi. Progressivity (resp.
regressivity) requires larger incomes to contribute proportionally more (resp.
less) to the collection of an amount X of taxes.
The formal definition of these properties is as follows:

Definition 7 (Progressivity / Regressivity) A rule F is progressive
(resp. regressive) on D ⊂ X if, for all (N,X, y) ∈ D and for all i, j ∈ N ,
yi > yj implies

Fi(N,X,y)
yi

≥ Fj(N,X,y)

yj
(resp. Fi(N,X,y)

yi
≤ Fj(N,X,y)

yj
), with at least

one strict inequality.

It is easy to see that the head tax satisfies regressivity on X whereas the
leveling tax satisfies progressivity on X. The Talmud rule satisfies neither
progressivity nor regressivity on this unrestricted domain. The proportional
rule cannot satisfy any of these properties (even though it is the rule that
satisfies simultaneously a weaker version of both).1

More generally, it is worth noting that progressivity and regressivity are
dual properties (that is, a rule F exhibits regressivity if and only if its dual
rule F ∗ exhibits progressivity). Moreno-Ternero & Villar (2002, Prop. 1)
show that F 1−θ is the dual rule of F θ, for all θ ∈ [0, 1], so that when applying
these properties to the TAL-family we already know that F θ exhibits pro-
gressivity if and only if F 1−θ exhibits regressivity. Moreover, as progressivity
and regressivity are mutually exclusive concepts, there is no self-dual rule
satisfying any of these properties on the unrestricted domain X of taxation
problems.

Let τ(N,X, y) = X
Y
stand for the share of the tax burden in the aggregate

income, and define

Dδ = {(N,X, y) ∈ X : τ (N,X, y) = δ}
for each δ ∈ (0, 1). In other words, Dδ is the set of taxation problems
whose tax share is δ. The following result shows a rule in the TAL-family is
progressive on Dδ if and only if θ < δ. Formally:

Theorem 1 Let {F θ}θ∈[0,1] denote the TAL-family, and let δ ∈ (0, 1) be
given. Then:
(i) If θ < δ then F θ exhibits progressivity on Dδ.
(ii) If θ > δ then F θ exhibits regressivity on Dδ.
(iii) If θ = δ then F θ exhibits neither progressivity nor regressivity on Dδ.
1By a weaker version we mean that yi > yj implies Fi(.)/yi ≥ Fj(.)/yj (resp. ≤),

without requiring any strict inequality.
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Proof.
Let δ ∈ (0, 1) be given and consider its corresponding domain of taxation

problems Dδ. Let (N,X, y) ∈ Dδ and consider i, j ∈ N such that yi > yj.
Let also θ ∈ [0, 1].
(i) If θ < δ, it follows from the definition, that F θ

i (N,X, y) = max{θyi, yi−
λ}, for all i ∈ N . Suppose first that λ ≤ (1 − θ)yj. In such a case
F θ
i (N,X, y) = yi − λ, and F θ

j (N,X, y) = yj − λ, which implies Fi(N,X,y)
yi

>
Fj(N,X,y)

yj
. On the other hand, if (1 − θ)yj < λ < (1 − θ)yi, then

Fi(N,X,y)
yi

=

1 − λ
yi
> θ =

Fj(N,X,y)

yj
. Finally, suppose that λ ≥ (1 − θ)yi. Then,

Fi(N,X,y)
yi

= θ =
Fj(N,X,y)

yj
.

To conclude this case, let us see that there exists at least a pair of agents
i, j ∈ N such that yi > yj and

Fi(N,X,y)
yi

>
Fj(N,X,y)

yj
. Otherwise, the above

reasoning would imply λ ≥ (1 − θ)yi for all i ∈ N . This ensures that
F θ
i (N,X, y) = θyi for all i ∈ N , and therefore X = θY , which is a contradic-
tion, since θ < δ. The proof of case (i) is in this way completed. Moreover,
it follows that F 0 = L exhibits progressivity on ∪δ∈(0,1)Dδ = X.
(ii) If θ > δ (i.e. X < θY ) then, F θ

i (N,X, y) = min{θyi,λ}, for all
i ∈ N . Suppose first that λ ≤ θyj. In such a case F θ

i (N,X, y) = λ =

F θ
j (N,X, y), which implies

Fi(N,X,y)
yi

<
Fj(N,X,y)

yj
. Secondly, if θyj < λ < θyi,

then Fi(N,X,y)
yi

= λ
yi
< θ =

Fj(N,X,y)

yj
. Finally, suppose that λ ≥ θyi. Then,

Fi(N,X,y)
yi

= θ =
Fj(N,X,y)

yj
.

To conclude this case, let us see that there exists at least a pair of agents
i, j ∈ N such that yi > yj and

Fi(N,X,y)
yi

<
Fj(N,X,y)

yj
. Otherwise, the above

reasoning would imply λ ≥ θyi for all i ∈ N . This ensures that F θ
i (N,X, y) =

θyi for all i ∈ N , and therefore X = θY , which is a contradiction, since
θ > δ. The proof of case (ii) is in this way completed. Moreover, it follows
that F 1 = A exhibits regressivity on ∪δ∈(0,1)Dδ = X.
(iii) Finally, it is straightforward to see that if θ = δ, then F θ

i (N,X, y) =

θyi for all i ∈ N , which implies Fi(N,X,y)yi
= θ for all i ∈ N .

Remark 2 The income tax burden in real economies is usually well below 20
% of the national income. Therefore, the Talmud rule is typically a regressive
tax schedule.

The following is an immediate consequence of Theorem 1:

Corollary 1 Let {F θ}θ∈[0,1] denote the TAL-family. Then:
(i) F θ exhibits progressivity on X if and only if θ = 0.
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(ii) F θ exhibits regressivity on X if and only if θ = 1.

Redressing inequality is one of the basic goals of progressive taxation. A
progressive tax schedule yields an after-tax income which is more egalitarian
than the original income distribution. It is then natural to consider that a
tax schedule F is more progressive than a tax schedule G if it generates a
more egalitarian after-tax income distribution. Fortunately, it is well estab-
lished in the literature on economic inequality that one can speak safely of
income distribution x being “more egalitarian” than income distribution x ,
when the Lorenz curve associated with x lies everywhere above that associ-
ated with x . The Lorenz dominance criterion can be regarded as the most
fundamental principle for the evaluation of income inequality, even though
it is only a partial ordering. It is therefore sensible to apply this principle to
the evaluation of the relative progressivity of tax schedules.2

Consider now the following definition:

Definition 8 Let x, z ∈ Rn be two given vectors whose components are in-
creasingly ordered, i.e. x1 ≤ x2 ≤ ... ≤ xn and z1 ≤ z2 ≤ ... ≤ zn, and
such that n

i=1 xi =
n
i=1 zi. We say that vector x Lorenz dominates vec-

tor z, which is written as x L z, if and only if
k
i=1 xi ≥ k

i=1 zi, for all
k = 1, ..., n− 1.
The Lorenz dominance criterion induces a partial ordering on the alloca-

tions which reflects their relative spread. The expression x L z means that
the distribution x is unambiguously “more egalitarian” than the distribution
z. It is well known that this property is equivalent to saying that z can be
obtained from x by means of a finite collection of transfers “from the richer to
the poorer”, and that I(z) > I(x) for any sensible inequality index I(·) [see
Atkinson (1970), Dasgupta, Sen & Starret (1973), and Rostchild & Stiglitz
(1973)].
Concerning taxation note that, for any two rules F, G and a problem

(N,X, y) ∈ X, F (N,X, y) L G(N,X, y) if and only if y − G(N,X, y) L

y − F (N,X, y). That is to say, if the vector of contributions with a tax rule
F Lorenz dominates that with a tax rule G, then the after-tax income vector
generated by G Lorenz dominates that generated by F. This motivates the
following:

Definition 9 (Relative progressivity) A rule F is said more progres-
sive than a rule G on a domain D ⊂ X, which we write F ∗

D G, when for

2Some of the best known contributions to the theory of economic inequality are Lorenz
(1905), Dalton (1920), Sen (1973), and Atkinson (1975).
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all taxation problems (N,X, y) ∈ D, y − F (N,X, y) L y −G(N,X, y). If F
is more progressive than G on the whole domain X of taxation problems, we
simply say that F is more progressive than G, and write F ∗ G.

The content of this notion is clear. A tax rule F is more progressive than
a tax rule G on a domain D ⊂ X when F yields an after-tax income vector
that is more egalitarian than that generated by G, for each admissible prob-
lem. Alternatively, F is more progressive than G if, for any given problem
(N,X, y) ∈ D ⊂ X, the after-tax income distribution y − F (N,X, y) can be
obtained from the after-tax income distribution y−G(N,X, y), by a sequence
of income transfers from the richer to the poorer.
Let (N,X, y) ∈ X be a taxation problem and let z be an arbitrary point

in the feasible set Ω(N,X, y). It is easy to see that A(N,X, y) L z and
y−L(N,X, y) L y− z. This simply follows from the fact that L(N,X, y) is
the closest point to y in the feasible set Ω(N,X, y) whereas A(N,X, y) is the
closest point to equal division in that set [see for instance Moulin (1988, ch.
6)]. As a consequence, we immediately deduce that L ∗ P ∗ A, and also
that L ∗ T ∗ A. That is, the leveling tax is more progressive than either
the proportional or the Talmud rule, which in turn are more progressive than
the head tax.
The main result of the paper, which is presented next, extends these

relations. In particular, it shows that all the rules in the TAL-family can be
ranked according to the relative progressivity principle on the unrestricted
domain X, so that θ1 ≤ θ2 implies that F θ1 is more progressive than F θ2.
Formally:

Theorem 2 Let F θ1, F θ2 be two rules in the TAL-family, with θ1, θ2 ∈ [0, 1].
Then, F θ1 ∗ F θ2 when θ1 ≤ θ2.

(The proof is given in the Appendix)

Theorem 2 conveys a very precise content to the interpretation of the
parameter θ as an index of the distributive power of the rule F θ. For any given
taxation problem (N,X, y) ∈ X, the allocation proposed by the F θ yields
an after-tax income vector that becomes more egalitarian as θ decreases.
Therefore, the rules in the TAL-Family are fully ranked according to the
progressivity principle, depending monotonically on the parameter θ.
>From this result we can also provide a clear assessment on the relative

progressivity of the proportional rule with respect to other rules within the
TAL-family, recurring once more to the Dδ sets.3

3This corollary generalizes Theorem 1 (b) in Hougaard & Thorlund-Petersen (2001).
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Corollary 2 Let {F θ}θ∈[0,1] denote the TAL-family, and let δ ∈ (0, 1) be
given. Then:
(i) If θ < δ then F θ ∗

Dδ P.
(ii) If θ > δ then P ∗

Dδ F
θ.

(iii) If θ = δ then F θ coincides with P on Dδ.

In other words, Corollary 2 says the following. Given a taxation problem
(N,X, y) ∈ X, y − P (N,X, y) L y − F θ (N,X, y) for all θ ∈ (τ(N,X, y), 1]
and y − F θ (N,X, y) L y − P (N,X, y) for all θ ∈ [0, τ(N,X, y)). Finally, if
θ = τ(N,X, y) then P (N,X, y) = F θ (N,X, y). In particular P is more (resp.
less) progressive than the Talmud rule T = F 1/2 when τ(N,X, y) < 1

2
(resp.

> 1
2
). According to the remark above, this implies that the Proportional rule

is typically more progressive than the Talmud rule.
The following corollary provides some additional information on the dis-

tributive consequences of these rules. In particular, it identifies the preferred
rules in the TAL-family for the poorest and the richest agent in N. Formally:

Corollary 3 Let (N,X, y) ∈ X, and θ1, θ2 ∈ [0, 1], where θ1 ≤ θ2. Then
F θ1
1 (N,X, y) ≤ F θ2

1 (N,X, y) and F
θ1
n (N,X, y) ≥ F θ2

n (N,X, y).

Proof.
Let (N,X, y) ∈ X and θ1, θ2 ∈ [0, 1], where θ1 ≤ θ2. Theorem 1 says

F θ2 (N,X, y) L F
θ1 (N,X, y). In particular, F θ1

1 (N,X, y) ≤ F θ2
1 (N,X, y)

and n−1
i=1 F

θ1
i (N,X, y) ≤ n−1

i=1 F
θ2
i (N,X, y).

Now, since n
i=1 F

θ1
i (N,X, y) = X = n

i=1 F
θ2
i (N,X, y), it follows that

X−F θ1
n (N,X, y) ≤ X−F θ2

n (N,X, y), or what is equivalent, F
θ1
n (N,X, y) ≥

F θ2
n (N,X, y).

Corollary 3 says the following. Let (N,X, y) ∈ X be given and consider
the rules in the TAL-family F θ, for θ varying in [0, 1]. Higher values of θ yield
an allocation with larger (smaller) shares of the tax burden for the poorest
(resp. richest) agent. Therefore, the most preferred rules by the poorest and
the richest agents are the leveling tax and the head tax, respectively. And
vice versa. These outcomes are of some import for the non-cooperative game
theoretic approach to these type of problems [e.g. Chun (1989), Dagan,
Serrano & Volij (1997), Herrero (2001), Herrero, Moreno-Ternero & Ponti
(2001)].
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4 Appendix: Proof of Theorem 2

To prove this result we have to introduce some additional notation and invoke
the results by Hougaard & Thorlund-Petersen (2001).
For each taxation problem (N,X, y) ∈ X we define the following sets:

• Ω0(N,X, y) = {x ∈ Rn : n
i=1 xi = X, and xi ≤ yi, for all i = 1, ..., n}.

• Ω0(N,X, y) = {x ∈ Rn : n
i=1 xi = X, and xi ≥ 0, for all i = 1, ..., n}.

Ω0(N,X, y) is the portion of the hyperplane x1 = X which is bounded
above by the gross income vector y (where x ∈ Rn, 1 = (1, 1, ..., 1), and x1 is
the inner product in Rn). Similarly, Ω0(N,X, y) corresponds to the portion
of the same hyperplane which intersects the non-negative orthant. Note that
Ω0(N,X, y) ∩ Ω0(N,X, y) = Ω(N,X, y) (the set of feasible allocations).
The following lemma summarizes some of the findings in Hougaard &

Thorlund-Petersen (2001).

Lemma 1 Let (N,X, y) ∈ X a taxation problem. The following statements
hold:
(a) A(N,X, y) L x for all x ∈ Ω0(N,X, y).
(b) y − L(N,X, y) L y − x for all x ∈ Ω0(N,X, y).

We now can prove our theorem:

Theorem 2 Let F θ1, F θ2 be two rules in the TAL-family, with θ1, θ2 ∈ [0, 1].
Then, F θ1 ∗ F θ2 when θ1 ≤ θ2.

Proof.
Let θ1, θ2 ∈ [0, 1], where θ1 ≤ θ2, and fix a particular taxation problem

(N,X, y) ∈ X. We need to show that y−F θ1 (N,X, y) L y−F θ2 (N,X, y),
or equivalently, F θ2 (N,X, y) L F

θ1 (N,X, y). Several cases are to be con-
sidered.
Case 1.- X ≤ θ1Y . In this case, by the definition of the TAL-family,

F θ1
i (N,X, y) ≤ θ1yi ≤ θ2yi, for all i ∈ N . Therefore, F θ1 (N,X, y) ∈

Ω0 (N,X, θ2y). Now, Lemma 1 (a) implies A (N,X, θ2y) L F
θ1 (N,X, y).

Furthermore, since X ≤ θ2Y , we have A (N,X, θ2y) = F θ2 (N,X, y). All
together says that F θ2 (N,X, y) L F

θ1 (N,X, y), as desired.
Case 2.-X ≥ θ2Y . Now, by the definition of the TAL-family, F

θ2
i (N,X, y) ≥

θ2yi ≥ θ1yi, for all i ∈ N . Equivalently, yi − F θ2
i (N,X, y) ≤ (1 − θ2)yi ≤

(1−θ1)yi, and therefore, F θ2 (N,X, y)−θ1y ∈ Ω0 (N,X − θ1Y, (1− θ1)y). As
a consequence, Lemma 1 (b) implies (1−θ1)y−L (N,X − θ1Y, (1− θ1)y) L
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(1− θ1)y − (F θ2 (N,X, y)− θ1y) = y − F θ2 (N,X, y). Now, since X ≥ θ1Y ,
we know that θ1y1 +L (N,X − θ1Y, (1− θ1)y) = F

θ1 (N,X, y), which shows
that y − F θ1 (N,X, y) L y − F θ2 (N,X, y), as desired.
Case 3.- θ1Y < X < θ2Y . In this case the above arguments are no

longer valid.4 Let r1 be the minimum non-negative integer in {0, ..., n − 1}
such that X ≥ θ1Y + (1− θ1)((

n
i=r1+1

yi)− (n − r1)yr1+1).5 Furthermore,
let r2 be the minimum non-negative integer in {0, ..., n− 1} such that X ≤
θ2((

r2
i=1 yi) + (n− r2)yr2+1). As a consequence,

F θ1 (N,X, y) = (θ1y1, ..., θ1yr1, yr1+1 − µ, ..., yn − µ),
and

F θ2 (N,X, y) = (θ2y1, ..., θ2yr2,λ, ...,λ),

where λ and µ are determined to achieve feasibility.6 Several cases need to
be discussed.
Case 3.1.- r1 > r2.
(i) If k ∈ {1, ..., r2}, then k

i=1 F
θ1
i (N,X, y) = θ1(

k
i=1 yi) ≤ θ2(

k
i=1 yi) =

k
i=1 F

θ2
i (N,X, y).

(ii) Let k ∈ {r2 + 1, ..., r1}. In this case,
k

i=1

F θ1
i (N,X, y) = θ1(

k

i=1

yi),

and

k

i=1

F θ2
i (N,X, y) = θ2(

r2

i=1

yi) + (k − r2) · (X − θ2(
r2
i=1 yi)

n− r2 ).

As a result, k
i=1 F

θ1
i (N,X, y) ≤ k

i=1 F
θ2
i (N,X, y) if and only if

(k − r2)X ≥ (n− r2)θ1(
k

i=1

yi)− (n− k)θ2(
r2

i=1

yi)

4Consider the taxation problem (N,X, y) = ({1, 2}, 11, (10, 15)). It is straightforward
to see that F

1
2 (N,X, y) = (5, 6) and F

1
4 (N,X, y) = (3, 8). Then, θ2 = 1

2 <
1
4 = θ1,

but F
1
4
2 (N,X, y) >

1
2 · 15, which shows that F θ1 (N,X, y) /∈ Ω0 (N,X, θ2y). Similarly,

consider the taxation problem (N,X, y) = ({1, 2}, 2.2, (3, 5)). It is straightforward to see
that F

1
2 (N,X, y) = (1.1, 1.1). Then, θ2 = 1

2 <
1
4 = θ1, but F

1
2
2 (N,X, y) <

1
4 · 5, which

shows that F θ2 (N,X, y)− θ1y /∈ Ω0 (N,X − θ1y, (1− θ1)y)
5For the sake of completeness, assume y0 = 0.
6More precisely, µ =

θ1( r1
i=1 yi)+(

n
i=r1+1

yi)−X
n−r , and λ =

X−θ2( r2
i=1 yi)

n−r2 .
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Now, since X ≥ θ1Y + (1 − θ1)((
n
i=r1+1

yi) − (n − r1)yr1+1), it suffices to
show that (k − r2) · [θ1Y + (1 − θ1)((

n
i=r1+1

yi) − (n − r1)yr1+1)] ≥ (n −
r2)θ1(

k
i=1 yi)− (n− k)θ2( r2

i=1 yi), or equivalently,

(n− k) (θ2 − θ1) (
r2

i=1

yi) + (k − r2)((
n

i=r1+1

yi)− (n− r1)yr1+1)

≥ (n− k)(
k

i=r2+1

yi)− (k − r2)[(
r1

i=k+1

yi) + (n− r1)yr1+1].

Now, the right hand side of the last inequality is bounded above by (n −
k)(( k

i=r2+1
yi) − (k − r2)yk+1) ≤ 0. Since θ2 ≥ θ1, and k − r2, the desired

inequality holds.
(iii) Let k ∈ {r1 + 1, ..., n− 1}. Under such a case,

k

i=1

F θ1
i (N,X, y) = θ1(

r1

i=1

yi)+(
k

i=r1+1

yi)−(k−r)(
θ1(

r1
i=1 yi) + (

n
i=r1+1

yi)−X
n− r ),

and
k

i=1

F θ2
i (N,X, y) = θ2(

r2

i=1

yi) + (k − r2) · (X − θ2(
r2
i=1 yi)

n− r2 ).

As a result, k
i=1 F

θ1
i (N,X, y) ≤ k

i=1 F
θ2
i (N,X, y) if and only if

(n− k)(r1 − r2)X ≥ (n− k)(n− r2)[θ1(
r1

i=1

yi) + (
k

i=r1+1

yi)]

−(n− r2)(k − r1)(
n

i=k+1

yi)− (n− r1)(n− k)θ2(
r2

i=1

yi)

As mentioned above, X ≥ θ1Y + (1 − θ1)((
n
i=r1+1

yi) − (n − r1)yr1+1).
Then, it suffices to show that (n− k)(r1 − r2)[θ1Y + (1− θ1)((

n
i=r1+1

yi)−
(n− r1)yr1+1)] is an upper bound for the right term in the above inequality.
Or, equivalently, (n − r1)(n − k)θ2( r2

i=1 yi) ≥ (n − r1)θ1(( r1
i=1 yi) − (r1 −

r2)yr1+1) + f(n, k, r1, r2, y), where

f(n, k, r1, r2, y) = (r1 − r2)(n− k)[(n− r1)yr1+1 − (
n

i=r1+1

yi)]

+(n− r2)(n− k)(
k

i=r1+1

yi)− (n− r2)(k − r1)(
n

i=k+1

yi).
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Since k
i=r1+1

yi ≤ (k − r1)yk, we know that f(n, k, r1, r2, y) ≤ 0. Finally,
( r1

i=1 yi)− (r1− r2)yr1+1 ≤ r2
i=1 yi and θ2 ≥ θ1, implies the desired inequal-

ity.
As a result, we have shown that k

i=1 F
θ1
i (N,X, y) ≤ k

i=1 F
θ2
i (N,X, y)

for all k ∈ {1, ..., n− 1}, which concludes the proof of Case 3.1.
Case 3.2.- r1 < r2.
(i) If k ∈ {1, ..., r1}, then k

i=1 F
θ1
i (N,X, y) = θ1(

k
i=1 yi) ≤ θ2(

k
i=1 yi) =

k
i=1 F

θ2
i (N,X, y).

(ii) Let k ∈ {r1 + 1, ..., r2}. In this case,
k

i=1

F θ1
i (N,X, y) = θ1(

r1

i=1

yi)+(
k

i=r1+1

yi)−(k−r1)(
θ1(

r1
i=1 yi) + (

n
i=r1+1

yi)−X
n− r1 ),

and k
i=1 F

θ2
i (N,X, y) = θ2(

k
i=1 yi). As a result,

k
i=1 F

θ1
i (N,X, y) ≤

k
i=1 F

θ2
i (N,X, y) if and only if

(k−r1)X ≤ (n−r1)θ2(
k

i=1

yi)−(n−k)[θ1(
r1

i=1

yi)+
k

i=r1+1

yi]+(k−r1)(
n

i=k+1

yi)

Now, X ≤ θ2((
r2
i=1 yi) − (n − r2)yr2+1). Thus, as before, it is enough to

show that (k − r1) · [θ2(( r2
i=1 yi)− (n− r2)yr2+1)] ≤ (n − r1)θ2( k

i=1 yi) −
(n− k)[θ1( r1

i=1 yi) +
k
i=r1+1

yi] + (k − r1)( n
i=k+1 yi), or equivalently,

(n− k) (θ2 − θ1) (
r1

i=1

yi)

≥ (n− k) (1− θ2) (
k

i=r1+1

yi)− (k − r1)[(
n

i=k+1

yi)− θ2((n− r2)yr2+1 +
r2

i=k+1

yi)]

Now, the second term in the above inequality is bounded above by (n −
k) (1− θ2) (k − r1)(yk − yk+1), which is a negative amount. Since θ2 ≥ θ1,
the result follows.
(iii) Let k ∈ {r2 + 1, ..., n− 1}. Under such a case,

k

i=1

F θ1
i (N,X, y) = θ1(

r1

i=1

yi)+(
k

i=r1+1

yi)−(k−r1)(
θ1(

r1
i=1 yi) + (

n
i=r1+1

yi)−X
n− r1 ),

and

k

i=1

F θ2
i (N,X, y) = θ2(

r2

i=1

yi) + (k − r2) · (X − θ2(
r2
i=1 yi)

n− r2 ).
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As a result, k
i=1 F

θ1
i (N,X, y) ≤ k

i=1 F
θ2
i (N,X, y) if and only if

(n− k)(r2 − r1)X ≤ (n− r2)(k − r1)(
n

i=k+1

yi) + (n− r1)(n− k)θ2(
r2

i=1

yi)

−(n− k)(n− r2)[θ1(
r1

i=1

yi) + (
k

i=r1+1

yi)]

As before, sinceX ≤ θ2((
r2
i=1 yi)−(n−r2)yr2+1), it suffices to show that (n−

k)(r1− r2) [θ2(( r2
i=1 yi)− (n− r2)yr2+1)] is a lower bound for the right term

in the above inequality. Or, equivalently, (n−r2)(n−k)(θ2−θ1) (
r2
i=1 yi) ≥

(n− r2) · g(n, k, r1, r2, y), where

g(n, k, r1, r2, y) = (n− k)[(r2 − r1)yr2+1 + (1− θ2)(
r1+1

i=k

yi)]

−θ2(n− k)(
r2

i=k+1

yi)− (k − r1)(
n

i=k+1

yi).

Since (r2 − r1)yr2+1 + (1− θ2)(
r1+1
i=k yi) ≤ [(k − r1) + θ2(r2 − k)] yk, it is

straightforward to see that g(n, k, r1, r2, y) ≤ 0, which concludes the proof.
As a result, we have shown that k

i=1 F
θ1
i (N,X, y) ≤ k

i=1 F
θ2
i (N,X, y)

for all k ∈ {1, ..., n− 1}, which concludes the proof of Case 3.2.
Case 3.3.- r1 = r2.
(i) If k ∈ {1, ..., r1}, then k

i=1 F
θ1
i (N,X, y) = θ1

k
i=1 yi ≤ θ2

k
i=1 yi =

k
i=1 F

θ2
i (N,X, y).

(ii) Let k ∈ {r1 + 1, ..., n− 1}. In this case,
k

i=1

F θ1
i (N,X, y) = θ1(

r1

i=1

yi)+(
k

i=r1+1

yi)−(k−r1)(
θ1(

r1
i=1 yi) + (

n
i=r1+1

yi)−X
n− r1 ),

and

k

i=1

F θ2
i (N,X, y) = θ2(

r2

i=1

yi) + (k − r2) · (X − θ2(
r2
i=1 yi)

n− r2 ).

As a result, and since r1 = r2,
k
i=1 F

θ1
i (N,X, y) ≤ k

i=1 F
θ2
i (N,X, y) if

and only if

0 ≥ (n− k)[θ1(
r1

i=1

yi) +
k

i=r1+1

yi]− (k − r1)(
n

i=k+1

yi)− (n− k)θ2(
r1

i=1

yi).
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Or equivalently, if and only if

(k − r1)(
n

i=k+1

yi) ≥ (n− k)[(θ1 − θ2)(
r1

i=1

yi) + (
k

i=r1+1

yi)].

Now, n
i=k+1 yi ≥ (n − k)yk+1 ≥ (n − k)( k

i=r1+1
yi), which gives the

desired inequality.
The proof is in this way completed.
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