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A B S T R A C T 
 

Some recently developed nonparametric specification tests for regression 
models are described in a unified way. The common characteristic of these tests is that 
they are consistent against any alternative hypothesis. The performance of the test 
statistics is compared by means of Monte Carlo simulations, analysing how 
heteroskedasticity, number of regressors and bandwidth selection influence the results. 
The statistics which do not use a bandwidth perform slightly better if the regression 
model has only one regressor; otherwise, some of the statistics which use a bandwidth 
behave better if the bandwidth is chosen adequately. These statistics are applied to test 
the specification of three commonly used Mincer-type wage equations with Uruguayan 
and Spanish data; all of them are rejected. 
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1 INTRODUCTION

The usual approach for examining a relation among economic variables is to
specify a functional form depending on unknown parameters that are then
estimated and tested using a data set. This approach, however, is problematic
since economic theory often does not suggest such functional forms. At best
it results in a list of potential explanatory variables. Further, if the chosen
functional form does not properly capture the nature of the data, there is a
danger of arriving at incorrect conclusions. Moreover, most empirical studies
do not test the assumed parametric specification properly through the use of
a general alternative hypothesis.

The first concern of this paper is to present newly developed, appropriate non-
parametric specification tests and to compare their performance with moder-
ate sample sizes by means of simulations. Specifically, we are interested in
analysing how bandwidth selection may affect the behaviour of the statistics,
how sensitive they are to the homoskedasticity assumption, and to what ex-
tent the performance of the statistics improves when bootstrap critical values
are used instead of asymptotic ones.

The second concern of this paper is to apply these procedures to study the
appropriateness of certain wage equations. Characterizing wage profiles is a
long-standing issue, given its key role in understanding poverty, internal mi-
grations, wage inequality, the performance of earnings-based pension plans,
the consequences of implementing universal educational programmes and so
on (see Manski 2000). The Mincer-type wage equation, which specifies the
logarithm of wage as a linear combination of years of schooling, experience,
squared experience and other individual characteristics, is the functional form
that has been most commonly used to estimate expected earnings profiles. As
Willis (1986) states, as an empirical tool ”the Mincer earnings function has
been one of the great success stories of modern labour economics”. In this
paper we analyse the validity of various Mincer-type wage equations using
Uruguayan and Spanish data.

The remainder of the paper is structured as follows. Section 2 describes the
test-statistics considered here. Section 3 presents the results of three Monte
Carlo experiments. Section 4 describes Mincer-type wage equations, the data
sets and the empirical results. Finally, in Section 5, the conclusions are pre-
sented.
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2 NONPARAMETRIC TESTS FOR SPECIFICATION OF RE-
GRESSION MODELS

In this section, we present the basic ideas behind the non-parametric statistics
recently developed to test the specification of a regression model. Let (X,Y )
denote a Rd × R random vector and assume that Y is integrable so that
the regression function m(x) = E(Y | X = x), x ∈ Rd, is well defined.
Parametric modelling assumes that m (·) belongs to a given family M =
{m(·, θ) : θ ∈ Θ ⊂ Rp} , i.e. m(x) = m(x, θ0) for some “true” parameter value
θ0. Therefore, statistical inference based onM should be accompanied by a
test for H0 : m (·) ∈M versus the non-parametric alternative H1 : m (·) /∈M.

The procedures proposed in the literature for performing tests of this type can
be classified into two groups: those that use a smoothing value (”smoothing
tests”) and those that do not (”non-smoothing tests”). All of these procedures
require the use of a parametric estimator of m(x) under H0; the natural one
is m(x, θ), where θ is any root-n-consistent estimator of θ0, e.g. the nonlinear
least squares estimator under certain assumptions. The smoothing tests also
require the use of a nonparametric estimator of m(x); the most popular one is
the Nadaraya-Watson estimator: mh(x) =

n
i=1K[(x−Xi)/h]Yi/ n

i=1K[(x−
Xi)/h], where {(Xi, Yi)}ni=1 are the observations, h is a smoothing value (or
bandwidth) and K(·) : Rd → R is a symmetric kernel function (hereafter, 0/0
is arbitrarily defined to be 0). The main advantage of the smoothing tests over
the non-smoothing ones is that their null asymptotic distribution is known;
their main disadvantage is that their performance (size and power) depends,
crucially, on the choice of the smoothing value. We now briefly describe the
test-statistics that will be considered here. In each case, we discuss how critical
values can be obtained, assuming that certain technical conditions, which we
do not specify, are satisfied. The wild bootstrap procedure which is sometimes
required to obtain critical values is described at the end of this section. Under
H1, all of these statistics diverge to +∞, hence, the critical region is always
one-sided.

The statistic proposed by Gozalo (1993) is based on the squared difference be-
tween the parametric estimator and the Bierens-Nadaraya-Watson nonpara-
metric estimator at L points {xl}Ll=1 in the support of X :

T (G)n = nhd
L

l=1

[m(xl, θ)−mh,δ(xl)]
2

vh(xl)
,

where mh,δ(x) = [mh(x)− (hs )rms(x)]/[1− (hs )r], ms(x) is defined as mh(x) re-
placing h by s = hn(1−δ)/(2r+d), δ is any value in (0, 1), r is the order of the ker-
nel function, vh(x) = cKV (x)/{ 1

nhd
n
i=1K[(x−Xi)/h]}, cK = K(u)2du and

V (x) is a consistent estimator of V ar(Y | X = x). If this conditional variance
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is assumed to be constant, it is possible to use V (x) = n−1 n
i=1[Yi−mh(Xi)]

2;
but if no parametric form is assumed for it, a sensible choice would be V (x) =
n
i=1K[(x−Xi)/h][Yi −mh(Xi)]

2/ n
i=1K[(x −Xi)/h]. The asymptotic null

distribution of T (G)n is χ2L. This test-statistic is only consistent if the regression
function specified under H0 and the true regression function are different at
xl for some l ∈ {1, ..., L}.

Härdle and Mammen (1993) base their statistic on the weighted squared dif-
ference between the Nadaraya-Watson estimator and a kernel-smoothed para-
metric estimator:

T (HM)n = nhd/2 [mh(x)−mh,θ
(x)]2π(x)dx,

wherem
h,θ
(x) = n

i=1K[(x−Xi)/h]m(Xi, θ)/ n
i=1K[(x−Xi)/h], π(·) : Rd →

R is a weight function, the range of integration is the support of X and the
integral can be numerically approximated. The asymptotic null distribution of
T (HM)n is normal, but the authors recommend computing critical values using
a boostrap procedure described below. This test-statistic is consistent against
any alternative hypothesis.

The statistic proposed by Zheng (1996) can be viewed as a conditional moment
test-statistic based on the following moment condition, which holds under the
null hypothesis: E[UE(U | X)p(X)] = 0, where U = Y −m(X, θ0) and p (·) is
the density function of X. This moment condition suggests basing the statistic
on n−1 n

i=1 ÛiÊ(Ui | Xi), where Ûi and Ê(Ui | Xi) are suitable estimates of Ui
and E(Ui | Xi). Specifically, using kernel smoothers and parametric residuals
ei = Yi −m(Xi, θ), the statistic they derive is:

T (Z)n =
n
i=1 ei

n
j=1,j=iK[(Xi −Xj)/h]ej

2 n
i=1

n
j=1,j=i{K[(Xi −Xj)/h)]eiej}2

1/2
.

The asymptotic null distribution of T (Z)n is standard normal, and it is also
consistent against any alternative. Li and Wang (1998) have proven that the
performance of T (Z)n could be improved if critical values are obtained using a
bootstrap procedure.

The idea behind the statistic proposed by Ellison and Ellison (2000) is the
same as the one in Zheng (1996), but the sample analogue is constructed using
normalized weights whose sum is one for each observation and, additionally, a
finite-sample correction term is included. When kernel weights are used, the
statistic they propose becomes:

T (EE)n =
n
i=1 ei

n
j=1,j=iKh,ijej

2 n
i=1

n
j=1,j=iK

2
h,ije

2
i e
2
j

1/2
+

1 + d

2 n
i=1

n
j=1,j=iK

2
h,ij

1/2
,
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whereKh,ij =
1
2
K[(Xi−Xj)/h]({ n

l=1,l=iK[(Xi−Xl)/h]}−1+{ n
l=1,l=jK[(Xj−

Xl)/h]}−1). The asymptotic null distribution of T (EE)n is standard normal; it
is also consistent against any alternative hypothesis.

Horowitz and Härdle (1994) consider a slightly different context from ours,
but their statistic can also be used to test our null and alternative hypotheses;
here, we adapt their motivation and statistic to our context. Their statistic
can be viewed as a conditional-moment test-statistic, based on the moment
condition E{UE[U | m(X, θ0)]w[m(X, θ0)]} = 0, which holds under H0 for
any non-negative weight function w(·) : R→ R. This moment condition sug-
gests basing the statistic on n−1 n

i=1 Ûi[Yi −m(Xi, θ)], where Ûi and Yi are
suitable estimates of Ui and E[Yi | m(Xi, θ0)]. Using kernels, and after certain
normalizations, the statistic derived is:

T (HH)n =
n
j=1 ei[Yh,δ,j −m(Xj, θ)]w[m(Xj, θ)]
{2cK
nh

n
j=1 V

2
j w[m(Xj, θ)]

2/ph,j}1/2
,

where Yh,δ,j = [Yh,j−(hs )rYs,j]/[1−(hs )r], Yh,j = (nhph,j)−1 n
i=1,i=jK{[m(Xj, θ)−

m(Xi, θ)]/h}Yi, ph,j = (nh)−1 n
i=1,i=jK{[m(Xj, θ) − m(Xi, θ)]/h}, Ys,j, ps,j

are defined as Yh,j, ph,j replacing h by s = hn(1−δ)/(2r+d), and Vj is a con-
sistent estimator of V ar[Yj | m(Xj,θ)]. If this conditional variance is as-
sumed to be constant, it is possible to use Vj = n−1 n

i=1(Yi − Yh,δ,i)2; but
if no parametric form is assumed for it, a sensible choice would be Vj =
(nhph,j)

−1 n
i=1,i=jK{[m(Xj, θ)−m(Xi, θ)]/h}(Yi−Yh,δ,i)2. Under H0, T (HH)n

converges to a standard normal distribution. The main advantage of T (HH)n

over the other smoothing tests is that the nonparametric estimation that is
made has only one explanatory variable; hence, the “curse of dimensional-
ity” of nonparametric estimators is avoided and the statistic is expected to
perform well, even with moderate sample sizes. The disadvantage of T (HH)n

is that, unlike all the other statistics described here, it is not consistent
against all alternatives, but only against those for which E({E[Y | m(X, θ1)]−
m(X, θ1)}2w[m(X, θ1)]) > 0, where θ1 is the probability limit of θ.

The non-smoothing tests base their statistics on empirical processes defined
in such a way that any deviation from the null hypothesis is detected. Bierens
(1990) and Bierens and Ploberger (1997) suggest considering the empirical
process Zn(t) = n−1/2 n

i=1 eiω(t,Xi), for t ∈ Ξ ⊆ Rd and a smooth func-
tion ω(·) : Ξ × Rd → R, and then using a functional of this process as the
test-statistic. If ω(·) is chosen adequately, statistics constructed in this way
can be viewed as conditional-moment test-statistics based on an infinite set
of moment conditions; hence, they are consistent against all possible alterna-
tives. Here, we consider the Bierens statistic Zn(t)

2dF (t), where F (·) is the
product of d standard normal distribution functions, ω(t,X) = exp[t Φ(X)]
for a suitable function Φ(·) : Rd → Rd, and the range of integration is Rd. The
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statistic thus obtained is:

T (B)n = n−1
n

i=1

n

j=1

eiej exp[
1

2

d

l=1

(Zil + Zjl)
2],

where Zil is the lth component of Zi = Φ(Xi). Note that our choice of F (·)
does not satisfy the requirement of compact support contained in Bierens and
Ploberger (1997), but we follow the suggestion of Fan and Li (2000), who
study this version of the Bierens statistic and show that the asymptotic null
distribution of T (B)n can be approximated by a bootstrap procedure.

Stute (1997) observes that H0 holds if and only if E[UI(X ≤ t)] = 0 for all
t ∈ Rd, where I(·) is the indicator function. Hence, he proposes considering
the empirical process Rn(t) = n−1/2 n

i=1 eiI(Xi ≤ t), and using a functional
of this process as the test-statistic. Here, we consider the Cramér-von Mises
statistic

T (S)n = n−1
n

j=1

Rn(Xj)
2 = n−2

n

j=1

[
n

i=1

eiI(Xi ≤ Xj)]2,

whose asymptotic distribution, studied in detail in Stute (1997), can also be
approximated by bootstrap.

The bootstrap procedure which allows us to obtain critical values when using
T (B)n and T (S)n is usually referred to as ”wild bootstrap” and works as follows:
i) generate independent {e∗i }ni=1, where the distribution of e∗i is discrete with
Pr{e∗i = 1+

√
5

2
ei} = 5−√5

10
and Pr{e∗i = 1−√5

2
ei} = 5+

√
5

10
; ii) compute the boot-

strap data {(X∗
i , Y

∗
i )}ni=1, where X∗

i = Xi and Y
∗
i = m(Xi, θ) + e

∗
i and, with

these data, the corresponding bootstrap statistic T ∗n ; iii) repeat the process
B times to obtain {T ∗n,j}Bj=1, and reject H0 if Tn > T ∗n,(1−α), where T ∗n,(1−α) is
the (1 − α) quantile of {T ∗n,j}Bj=1 and α is the significance level. This ”wild
bootstrap” procedure also allows us to obtain critical values when using the
statistic proposed by Härdle and Mammen (1993), but in this case, in the
first step ei must be replaced by eh,i = Yi −mh(Xi). The validity of the wild
bootstrap procedure in this context has been studied in Härdle and Mammen
(1993), Li and Wang (1998), Stute et al. (1998) and Fan and Li (2000), among
others.
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3 SIZE AND POWER OF SPECIFICATION TESTS: SIMULA-
TION RESULTS

We examine the behaviour of the specification tests discussed above with a
moderate sample size by means of some Monte Carlo experiments. We first
generate n = 100 independent observations as follows: Xi ∼ N(0, 1), Ui ∼
N(0, 1), Xi and Ui independent, and Yi = m(Xi) + Ui, where

m(x) = x+ c(x2 − 1)

and the value of c varies; henceforth, we will refer to this experiment as Model
1. To analyse if the statistics are sensitive to the assumption of homoscedas-
ticity, we also perform another experiment with the same characteristics as
Model 1, but defining Yi = m(Xi) + (1 +X2

i /2)
1/2Ui; this experiment will be

referred to as Model 2. In both models, the null hypothesis we test is that
the regression funcion is linear, i.e. E(Y | X = x) = θ01 + θ02x for some
θ0 = (θ01, θ02) in R2. Hence H0 is true if and only if c = 0. To examine
the performance of the tests when the number of regressors is greater than
one, we also perform an experiment with n = 100 independent observations
as follows: Xi = (X1i,X2i) ∼bivariate normal distribution with mean (0, 0),
var(X1i) = var(X2i) = 1, cov(X1i,X2i) = 0, Ui ∼ N(0, 1), Xi and Ui indepen-
dent, and Yi = m(X1i,X2i) + Ui, where

m(x1, x2) = x1 + x2 + c(x
2
1 − 1)(x22 − 1)

and the value of c varies; this experiment will be referred to as Model 3. As
before, we also test the null hypothesis that the regression function is linear,
i.e. E(Y | X1 = x1, X2 = x2) = θ01+ θ02x1+ θ03x2 for some θ0 = (θ01, θ02, θ03)
in R3, and again H0 is true if and only if c = 0.

Parameter θ0 is always estimated by least squares. In all univariate kernel
estimations we use the quartic kernel K(u) = 15

16
(1−u2)2I(|u| ≤ 1), so cK = 5

7

and r = 2. In the multivariate estimations we use the product of quartic
kernels. As regards the bandwidth, in the univariate estimations we use h =
λSXn

−1/5, where SX is the sample standard deviation of the regressor. In the
multivariate estimations, each regressor is previously divided by its sample
standard deviation and we then use h = λn−1/(d+4). Suitable choices for λ
were selected from plots obtained with some samples, but in all of the cases
we report the results for various λ in order to see how this choice affects the
performance of the statistics.

The statistic T (G)n is computed in Models 1 and 2 using L = 3 points: −1, 0,
1; in Model 3, L = 5 points are considered: (−1,−1), (−1, 1), (0, 0), (1,−1),
(1, 1); in all cases, T (G)n is computed with δ = 0.5 and without assuming any
parametric form for V ar(Y | X = x). The statistic T (HM)n is computed with

7



π(x) = I(x ∈ [−1.96, 1.96]) in Models 1 and 2, and π(x) = I(x ∈ [−1.8, 1.8]×
[−1.8, 1.8]) in Model 3; in all cases, the integral in T (HM)n is approximated
numerically. The statistic T (HH)n is computed with δ = 0.5, w(·) = π(·) and
without assuming any parametric form for V ar[Yi | m(Xi, θ)]. As suggested
in Bierens (1990), T (B)n is computed with Φ(·) = (Φ(·)1, ...,Φ(·)d), where for
j = 1, ..., d, we denote Φ(u)j ≡ arctan[(u − Xj)/SXj], and Xj and SXj are
the sample mean and standard deviation of {Xji}ni=1; in this case, additional
experiments suggest that the choice of ω(·) and F (.) does not play a crucial
role in the results. Finally, whenever a bootstrap procedure is required we use
B = 500 bootstrap replications. All the results we report are based on 2000
replications of the data-generating process, and have been carried out using
GAUSS programmes, which are available from the authors on request.

We first discuss the results obtained when there is only one regressor. In
Tables 1 and 2, we report the proportion of rejections of H0 in Models 1 and
2, respectively, when nominal significance level is α = 0.05.
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TABLE 1: Proportion of Rejections of H0 in Model 1 (α = 0.05)

Gozalo Härdle and Mammen Zheng

c λ=3.0 λ=3.5 λ=4.0 λ=3.0 λ=3.5 λ=4.0 λ=.20 λ=.40 λ=.60

−0.5
−0.4
−0.3
−0.2
−0.1
0

0.1

0.2

0.3

0.4

0.5

0.909 0.930 0.935

0.723 0.754 0.768

0.455 0.485 0.525

0.202 0.228 0.290

0.082 0.093 0.144

0.052 0.059 0.099

0.094 0.099 0.149

0.213 0.231 0.286

0.464 0.494 0.536

0.746 0.782 0.797

0.902 0.918 0.924

0.991 0.991 0.993

0.955 0.960 0.956

0.799 0.812 0.809

0.480 0.488 0.486

0.178 0.171 0.159

0.064 0.057 0.050

0.173 0.164 0.165

0.475 0.483 0.481

0.814 0.818 0.821

0.937 0.946 0.947

0.991 0.993 0.996

0.522 0.707 0.797

0.313 0.447 0.548

0.176 0.261 0.312

0.091 0.105 0.105

0.053 0.045 0.044

0.034 0.037 0.027

0.052 0.050 0.048

0.094 0.113 0.127

0.190 0.256 0.303

0.319 0.451 0.543

0.516 0.697 0.795

Ellison and Ellison Horowitz and Härdle Bierens Stute

c λ=3.0 λ=3.5 λ=4.0 λ=3.0 λ=3.5 λ=4.0

−0.5
−0.4
−0.3
−0.2
−0.1
0

0.1

0.2

0.3

0.4

0.5

0.995 0.993 0.993

0.972 0.969 0.964

0.835 0.827 0.816

0.494 0.472 0.458

0.164 0.132 0.109

0.082 0.052 0.031

0.175 0.144 0.119

0.502 0.474 0.446

0.838 0.830 0.810

0.976 0.972 0.968

0.994 0.994 0.993

0.977 0.974 0.969

0.919 0.918 0.910

0.726 0.726 0.714

0.379 0.370 0.350

0.118 0.089 0.076

0.077 0.048 0.027

0.134 0.110 0.076

0.372 0.354 0.340

0.740 0.735 0.706

0.927 0.925 0.919

0.972 0.967 0.966

0.997

0.988

0.902

0.624

0.216

0.048

0.215

0.626

0.901

0.988

0.999

0.987

0.934

0.763

0.444

0.150

0.050

0.160

0.441

0.777

0.941

0.988
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TABLE 2: Proportion of Rejections of H0 in Model 2 (α = 0.05)

Gozalo Härdle and Mammen Zheng

c λ=3.0 λ=3.5 λ=4.0 λ=3.0 λ=3.5 λ=4.0 λ=.20 λ=.40 λ=.60

−0.5
−0.4
−0.3
−0.2
−0.1
0

0.1

0.2

0.3

0.4

0.5

0.862 0.873 0.874

0.671 0.689 0.703

0.450 0.457 0.478

0.241 0.250 0.283

0.117 0.127 0.170

0.090 0.097 0.124

0.133 0.142 0.173

0.247 0.254 0.294

0.440 0.468 0.492

0.704 0.726 0.724

0.856 0.863 0.860

0.939 0.941 0.942

0.821 0.821 0.816

0.608 0.611 0.606

0.356 0.349 0.340

0.175 0.165 0.153

0.091 0.086 0.079

0.166 0.165 0.148

0.351 0.347 0.330

0.620 0.629 0.618

0.807 0.808 0.804

0.930 0.939 0.936

0.402 0.566 0.652

0.242 0.350 0.418

0.146 0.217 0.263

0.084 0.088 0.094

0.060 0.049 0.053

0.041 0.039 0.034

0.060 0.059 0.053

0.090 0.107 0.120

0.161 0.212 0.248

0.253 0.348 0.419

0.393 0.557 0.646

Ellison and Ellison Horowitz and Härdle Bierens Stute

c λ=3.0 λ=3.5 λ=4.0 λ=3.0 λ=3.5 λ=4.0

−0.5
−0.4
−0.3
−0.2
−0.1
0

0.1

0.2

0.3

0.4

0.5

0.937 0.932 0.932

0.826 0.821 0.810

0.611 0.604 0.589

0.343 0.324 0.300

0.168 0.136 0.115

0.122 0.091 0.066

0.184 0.148 0.123

0.340 0.319 0.292

0.607 0.586 0.569

0.832 0.828 0.821

0.927 0.923 0.922

0.884 0.874 0.861

0.737 0.733 0.716

0.505 0.484 0.463

0.269 0.246 0.222

0.137 0.103 0.079

0.102 0.069 0.044

0.150 0.116 0.095

0.260 0.227 0.209

0.507 0.483 0.465

0.758 0.744 0.726

0.866 0.865 0.854

0.950

0.848

0.622

0.317

0.107

0.041

0.115

0.314

0.613

0.856

0.946

0.931

0.805

0.576

0.291

0.121

0.055

0.120

0.296

0.567

0.816

0.920
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The first thing we observe in Table 1 is that the empirical size of the tests
is correct in most cases: only T (Z)n has an empirical size that is slightly be-
low its nominal size. Regarding the smoothing tests, the first conclusion to
be drawn is that bandwidth does not seem to play a crucial role, as long
as it is selected within a reasonable range. This is probably not so surpris-
ing considering that a particular version of the Bierens test corresponds to a
kernel-regression based test with a fixed bandwidth, as Fan and Li (2000) have
shown. In Model 1, assuming that the bandwidth has been correctly chosen,
we observe that T (HM)n and T (EE)n are the smoothing tests that perform bet-
ter and that they both perform quite similarly. It is also possible to rank the
other smoothing statistics (from better to worse) as follows: T (HH)n , T (G)n , T (Z)n .
Regarding the non-smoothing tests, according to their power functions, T (B)n

performs better than T (S)n ; in fact, T (B)n performs even better than any other
smoothing test, whereas T (S)n performs similarly to T (HM)n and T (EE)n . In the
results of Model 2 we observe that heteroskedasticity causes more sensitivity
to bandwidth choice in smoothing tests, some distortions in the size of the
statistics (especially T (G)n ) and, in all of the cases, a decrease in power. The
statistics, however, continue to perform well, in the sense that any departure
from the null is detected and the empirical size is approximately correct. The
conclusions drawn about the comparative performance of the statistics from
the results of Model 1 still hold.

In Table 3, we report the proportion of rejections of H0 in Model 3, which has
two regressors, when the nominal significance level is α = 0.05.
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TABLE 3: Proportion of Rejections of H0 in Model 3 (α = 0.05)

Gozalo Härdle and Mammen Zheng

c λ=2.5 λ=3.0 λ=3.5 λ=3.0 λ=3.5 λ=4.0 λ=.25 λ=.50 λ=.75

−0.5
−0.4
−0.3
−0.2
−0.1
0

0.1

0.2

0.3

0.4

0.5

0.661 0.692 0.709

0.553 0.559 0.600

0.389 0.384 0.444

0.288 0.295 0.359

0.221 0.204 0.274

0.180 0.176 0.245

0.213 0.207 0.273

0.277 0.273 0.334

0.389 0.401 0.468

0.539 0.555 0.587

0.663 0.692 0.708

0.786 0.644 0.476

0.616 0.475 0.363

0.412 0.286 0.197

0.251 0.182 0.134

0.131 0.091 0.058

0.098 0.059 0.034

0.116 0.088 0.051

0.247 0.194 0.133

0.417 0.301 0.218

0.608 0.460 0.354

0.790 0.640 0.478

0.095 0.221 0.340

0.064 0.120 0.186

0.057 0.093 0.116

0.046 0.058 0.069

0.035 0.039 0.035

0.038 0.049 0.043

0.043 0.049 0.044

0.042 0.060 0.066

0.064 0.091 0.116

0.076 0.146 0.193

0.095 0.206 0.334

Ellison and Ellison Horowitz and Härdle Bierens Stute

c λ=3.5 λ=4.0 λ=4.5 λ=4.0 λ=4.5 λ=5.0

−0.5
−0.4
−0.3
−0.2
−0.1
0

0.1

0.2

0.3

0.4

0.5

0.759 0.705 0.617

0.658 0.591 0.503

0.472 0.418 0.354

0.268 0.217 0.180

0.128 0.094 0.067

0.079 0.044 0.033

0.116 0.081 0.057

0.278 0.237 0.196

0.468 0.391 0.325

0.652 0.592 0.518

0.766 0.709 0.625

0.455 0.426 0.389

0.371 0.341 0.310

0.260 0.230 0.201

0.188 0.156 0.130

0.111 0.081 0.064

0.083 0.053 0.038

0.114 0.089 0.063

0.177 0.147 0.127

0.258 0.225 0.201

0.396 0.374 0.333

0.467 0.439 0.406

0.094

0.080

0.061

0.042

0.041

0.043

0.034

0.050

0.058

0.072

0.097

0.158

0.113

0.085

0.080

0.051

0.043

0.066

0.070

0.100

0.118

0.149
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In this table, we first observe that the performance of all the tests is worse here
than when there is only one regressor. The empirical size of the test is correct
in all cases, except for Gozalo’s statistic. In this case, we carried out additional
experiments to verify that the sample size required to obtain the correct size is
much greater. With regard to the other four smoothing statistics, the one that
seems less sensitive to bandwidth choice is Zheng’s statistic, which, however, is
the one with the worst power properties. In fact, among smoothing statistics
with the correct size, the ranking that is obtained according to the power
functions is similar as in Model 1, although T (EE)n now performs somewhat
better than T (HM)n . The performance of the non-smoothing tests in Model 3
is dramatically worse than in Models 1 and 2; they both have approximately
correct size, but their power is clearly below that of the smoothing-tests. With
additional experiments, we verified that the value of c required to obtain an
empirical power above 0.5 with T (B)n and T (S)n in Model 3 is approximately ±1.

To sum up, in the models with one regressor, the statistic T (B)n proposed by
Bierens (1990) is preferable, although the statistics T (S)n proposed by Stute
(1997), T (EE)n proposed by Ellison and Ellison (2000) and T (HM)n proposed
by Härdle and Mammen (1993) have similar properties; T (B)n and T (S)n have
the advantage of not requiring the use of any smoothing value, although a
bootstrap procedure is required to compute critical values. In the model with
two regressors, however, some of the smoothing statistics perform better than
the non-smoothing ones; specifically, T (EE)n is the one that yields the best
results, and it has the additional advantage of being able to be implemented
with critical values from the standard normal distribution.
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4 TESTING MINCER-TYPE WAGE EQUATIONS

In this section, we apply the statistics we analysed in the previous sections
to test three Mincer-type wage equation specifications, using Uruguayan and
Spanish data. The first specification we test is the traditional Mincer-type
model, in which the logarithm of real hourly wages wi is regressed on a con-
stant, years of schooling edi, years of potential work experience exi and its
square:

wi = β1 + β2edi + β3exi + β4ex
2
i + ui.

This model is used in many papers on applied labour, including Buchinsky
(1994) or Di Nardo et al. (1996). The second specification adds cubic and
quartic terms on years of potential work experience:

wi = β1 + β2edi + β3exi + β4ex
2
i + β5ex

3
i + β6ex

4
i + ui.

Murphy and Welch (1992) indicate that this specification provides a better fit
than the traditional model, which only includes exi and its square. Finally, we
examine a third specification which is quite similar to the first one but which
incorporates an interaction between education and potential work experience:

wi = β1 + β2edi + β3exi + β4ex
2
i + β5ediexi + ui.

The data on Uruguay was obtained from the Uruguayan Household Survey,
from 1986 through 1997 (Encuesta de Hogares, Instituto Nacional de Estadís-
tica, Uruguay). The frame of the survey is the Urugayan civilian population
that lives in housing units, and is sub-divided into two separate surveys: one for
the metropolitan area of Montevideo and another for the rest of the country.
We use the first of these surveys exclusively, since almost half of the Uruguayan
population lives in Montevideo and two-thirds of its economic activity takes
place there. The sample is composed of males older than 13, which this is the
legal working age in Uruguay. We only included individuals who had a posi-
tive salary in the month preceding the interview, and who had worked during
the week before the interview, in either the private or the public sector. How-
ever, self-employed individuals, workers without salaries, entrepreneurs and
those who had never worked were excluded (see Bucheli et al., 2000, for a
detailed description of the survey). The Spanish data was obtained from the
Encuesta de Estructura Salarial (1995). This survey gives detailed informa-
tion on individuals, their earnings, their characteristics (age, education, etc)
as well as their employers’ characteristics (firm size, economic activity, type of
wage-bargaining, etc). For a description of the sample, see Cantó et al. (2001).
Here, we use the subsample of full-time male workers.

The variable of interest is the real hourly wage. For the Uruguayan data,
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it was defined as the salary in the month before the interview, divided by
four times the hours worked during the week before the interview. Thus, we
assume that the number of hours worked for each individual week during the
previous month is equal to the number of hours worked during the week before
the interview. For the Spanish data, this was defined as the monthly salary
divided by total hours worked in the month (see Di Nardo et al. 1996 for a
justification of the use of real hourly wages).

Before testing the wage specifications, we perform another Monte Carlo ex-
periment to see how the test statistics behave with data that is similar to
what will be used in the application. We generate n = 500 independent ob-
servations, as follows: Xi = (X1i,X2i) ∼bivariate normal distribution with
mean (8.44, 25.52), var(X1i) = 14.44, var(X2i) = 149.8, cov(X1i, X2i) = 11.17,
Ui ∼ N(0, 0.197), Xi and Ui independent, and Yi = m(X1i,X2i) + Ui, where

m(x1, x2) = 5.66 + 0.814x1 + 0.043x2 − 0.000465x22 + c(x21 − 1)(x22 − 1)

and the value of c varies. This experiment will be referred to as Model 4. All
of the parameters in this model have been obtained from the estimation of
the first specification for the Mincer-type model with Spanish data. We test
the null hypothesis E(Y | X1 = x1,X2 = x2) = θ01 + θ02x1 + θ03x2 + θ04x

2
2

for some θ0 = (θ01, θ02, θ03, θ04) in R4. All estimations are performed with the
same characteristics as in Model 3, except that in the Gozalo test the L = 5
points we consider are (8.44, 25.52) and (8.44 ± 14.141/2, 25.52 ± 149.81/2).
In Table 4, we report the proportion of rejections of H0 in this model when
the nominal significance level is α = 0.05. These results are based on 2000
replications of the data. When a bootstrap procedure is required B = 200
bootstrap replications are used. In this table we observe that all of the statistics
have approximately the correct size, except for T (G)n , which will therefore be
excluded from the application. All of the statistics detect departures from the
null, although the power function obtained differs greatly among statistics,
what might have been expected considering the results obtained for Model 3.
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TABLE 4: Proportion of Rejections of H0 in Model 4 (α = 0.05)

Gozalo Härdle and Mammen Zheng

c λ=1.0 λ=1.5 λ=2.0 λ=1.6 λ=1.8 λ=2.0 λ=.20 λ=.40 λ=.60

−.005
−.004
−.003
−.002
−.001
0

.001

.002

.003

.004

.005

0.752 0.831 0.913

0.691 0.751 0.822

0.615 0.649 0.738

0.569 0.567 0.641

0.547 0.508 0.598

0.545 0.520 0.604

0.548 0.556 0.641

0.610 0.608 0.735

0.654 0.702 0.797

0.717 0.778 0.852

0.775 0.850 0.923

0.886 0.945 0.989

0.852 0.916 0.957

0.760 0.803 0.806

0.523 0.470 0.411

0.258 0.154 0.096

0.143 0.068 0.025

0.222 0.140 0.081

0.513 0.471 0.409

0.761 0.807 0.799

0.833 0.921 0.967

0.851 0.941 0.988

0.131 0.312 0.486

0.103 0.188 0.289

0.067 0.096 0.130

0.056 0.054 0.067

0.054 0.052 0.053

0.042 0.046 0.036

0.049 0.051 0.051

0.064 0.068 0.076

0.064 0.103 0.143

0.103 0.177 0.284

0.134 0.291 0.510

Ellison and Ellison Horowitz and Härdle Bierens Stute

c λ=4.0 λ=4.5 λ=5.0 λ=20 λ=25 λ=30

−.005
−.004
−.003
−.002
−.001
0

.001

.002

.003

.004

.005

1 1 1

0.999 1 1

0.983 0.985 0.986

0.743 0.757 0.766

0.239 0.220 0.224

0.088 0.058 0.047

0.231 0.216 0.217

0.729 0.749 0.764

0.983 0.986 0.990

1 1 1

1 1 1

0.188 0.129 0.084

0.181 0.110 0.067

0.167 0.102 0.061

0.129 0.079 0.047

0.093 0.058 0.032

0.069 0.047 0.029

0.100 0.059 0.032

0.180 0.102 0.049

0.328 0.193 0.098

0.547 0.358 0.195

0.732 0.517 0.321

0.731

0.610

0.382

0.206

0.078

0.029

0.063

0.154

0.298

0.416

0.765

1

1

0.983

0.754

0.214

0.033

0.227

0.798

0.990

1

1
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Finally, in Table 5 we report the p-value we obtain when we test each of the
three wage specifications. We use Uruguayan data for 1986, 1989, 1993 and
1997, and Spanish data for 1995. The number of Uruguayan observations in
each year is n = 4509 for 1986, n = 5064 for 1989, n = 4920 for 1993 and
n = 4847 for 1997. For the estimation with the Spanish data, we randomly
selected a subsample of n = 5982 observations (5% of the total sample). The
estimations are performed with the same characteristics as those in Table
4, although, in this case, we use B = 1000 bootstrap replications whenever
required.

TABLE 5: Testing Mincer-Type Wage Equations: P-Values

T (HM)n T (Z)n T (EE)n T (HH)n T (B)n T (S)n

Specif. 1

1986-URU

1989-URU

1993-URU

1997-URU

1995-SPA

h P-v

.648 .000

.639 .000

.643 .000

.686 .000

.512 .000

h P-v

.615 .000

.603 .000

.606 .000

.608 .000

.473 .000

h P-v

.738 .000

.724 .000

.727 .000

1.46 .000

.709 .000

h P-v

.558 .011

.545 .000

1.10 .034

.550 .000

.531 .000

P-v.

.023

.005

.004

.004

.000

P-v.

.008

.010

.006

.000

.000

Specif. 2

1986-URU

1989-URU

1993-URU

1997-URU

1995-SPA

h P-v

.648 .000

.639 .000

.643 .000

.686 .000

.512 .000

h P-v

.615 .000

.603 .000

.606 .000

.608 .001

.473 .000

h P-v

.738 .000

.724 .000

.727 .001

1.46 .000

.709 .000

h P-v

.558 .001

.545 .010

1.10 .097

.550 .001

.531 .000

P-v.

.021

.011

.008

.002

.009

P-v.

.003

.000

.000

.000

.000

Specif. 3

1986-URU

1989-URU

1993-URU

1997-URU

1995-SPA

h P-v

.648 .000

.639 .000

.643 .000

.686 .000

.512 .000

h P-v

.615 .000

.603 .000

.606 .000

.608 .000

.473 .000

h P-v

.738 .000

.724 .000

.727 .000

1.46 .000

.709 .000

h P-v

.558 .031

.545 .000

1.10 .001

.550 .000

.531 .000

P-v.

.020

.016

.012

.004

.003

P-v.

.018

.016

.006

.006

.002
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We observe in Table 5 that almost all of the specifications are rejected for
all of the data sets with the usual significance levels. Note that this result is
relatively robust, as we verified that the statistics have the correct size in this
context even with much smaller sample sizes. Additionally, the heteroskedas-
ticity problem that could arise from the heterogeneity of the sample would
cause a loss of power in the test, as seen in the previous section, and there-
fore, does not affect our conclusions. These results are of particular interest
for applied work, as they imply that any conclusion drawn about the earning
profiles based on the estimation of Mincer-type wage equations, like the ones
analyzed here, could be misleading. In the words of Manski (2000), ”empirical
findings are only as credible as the identifying assumptions imposed”.
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5 CONCLUDING REMARKS

The main objective of this study was to present, in a unified way, the various
non-parametric specification tests for regression models that have recently
appeared in the literature, and to compare their performances in a common
framework. Our results show that when there is only one regressor, the non-
smoothing tests perform slightly better than the smoothing ones, especially
the implementation we consider for the Bierens statistic. Moreover, they have
the obvious advantage that no bandwidth selection is required, though their
implementation requires the use of a bootstrap procedure. When the number
of regressors is greater than one, some of the smoothing tests we consider
here perform better. Specifically, the statistic proposed in Ellison and Ellison
(2000) exhibits good properties in all of the models we have simulated, and
it has the additional advantage of being able to be implemented with critical
values from the standard normal distribution.

The second objective of this study was to emphasize the importance of testing
parametric assumptions in applied work. Specifically, we have shown that the
well-known Mincer-type wage equation is clearly rejected with Uruguayan and
Spanish data, even considering several generalizations that have appeared in
the literature. This negative result casts doubts on the conclusions that have
been derived from this type of wage equation in recent applied work.
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