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THE TAL-FAMILY OF RULES FOR BANKRUPTCY
PROBLEMS

Juan D. Moreno-Ternero and Antonio Villar

ABSTRACT

This paper analyzes a family of solutions to bankruptcy problems that
generalizes the Talmud rule (T) and encompasses both the constrained equal-
awards rule (A) and the constrained equal-losses rule (L). The family is de-
fined by means of a parameter § € |0, 1] that can be interpreted as a measure
of the distributive power of the rule. We study the structural properties of
this family of rules and provide a characterization result.

KEYWORDS: Bankruptcy Problems; TAL-Family; Characterization Re-
sult.



1 Introduction

A bankruptcy problem describes a situation in which an arbitrator has to
allocate a given amount £ > 0 of a perfectly divisible commodity, referred to
as the estate, among a group NN of agents, when the available amount is not
enough to satisfy all their claims (c;);en. That is, E < )7, ¢;. A solution to
a bankruptcy problem is a procedure or “rule” that exhibits some desirable
properties and determines an allocation, for each specific problem, satisfying
two elementary restrictions: (i) No agent gets more than she claims nor less
than zero; and (ii) The entire estate is distributed. Note that most rationing
problems can be given this form. Since this is a well known problem and
examples of these situations abound, we shall not dwell on its relevance. The
reader is referred to the works of Young (1994, ch. 4), Thomson (1995) and
Moulin (2001) for a review of this literature.

There are four classical solutions to the bankruptcy problem: the pro-
portional solution, usually associated with Aristotle, the constrained equal-
awards rule and the constrained equal-losses rule, which can be traced back
to Maimonides, and the Talmud rule, which extends the ancient “contested
garment principle” [see Herrero & Villar (2001) for a comparative analy-
sis of these solutions]. The first three of these rules implement the idea of
equal division, with different reference variables (ratios, awards and losses,
respectively). The Talmud rule is an alternative procedure that combines the
principles that identify the former three rules. It can be interpreted as imple-
menting a protective criterion that ensures that all agents suffer a rationing
that is “of the same sort” as that experienced by the whole society. The dis-
tribution procedure depends on whether the estate E' is higher or lower than
half of the aggregate claim ) ., ¢;. It can be justified on the psychological
principle of “more than half is like the whole, whereas less than a half is
like nothing”. Thus, this rule considers the size of the awards when they are
below half of the aggregate claim (E < 3. \ ¢;) and the size of the losses
above that amount (E > 1>, ).

The TAL-family generalizes this idea by applying exactly the same prin-
ciple to all possible shares of the estate in the aggregate claim.! That is, for
any given value of the parameter § € [0, 1], a rule F? in this family consid-
ers whether F is higher or lower than 6, . ¢;, and distributes the estate
accordingly. The rule associated with 0 = % is precisely the Talmud rule,
as expected, and the extreme values § = 1 and # = 0 correspond to the
constrained equal awards rule and the constrained equal losses rule, respec-
tively. The proportional solution, however, is not part of this family. The

!See Hokari & Thomson (2000) for a different extension of the Talmud rule.



parameter # can be interpreted as an index of the distributive power of the
rule. Higher values of # imply that F gives more satisfaction to those agents
with lower claims, whereas lower values of € imply that the rule favours those
agents with larger claims. In particular, as 6 increases the share of the estate
proposed by the rule F? for the smallest claimant increases and the share
corresponding to the largest claimant decreases.

The paper is organized as follows. Section 2 contains the model and
the preliminary definitions. The structural properties of the TAL-family are
discussed in Section 3. First we show that these rules exhibit a precise duality
relationship: the dual of the rule associated with the parameter 6 is that rule
associated with the parameter (1 —6). Then we analyze how the TAL-family
fares with respect to some standard properties that are satisfied by the T,
A and L rules. We shall see that there are properties that are satisfied by
all members of the family whereas some others are only satisfied by part of
them. The characterization of the TAL-family is taken up in Section 4. We
show that the TAL-family is made exactly of those rules which are consistent
and satisfy equal treatment of equals and weaker versions of four known
properties: independence of claims truncation, composition from minimal
rights, exclusion and exemption. We also show that the characterization
result is tight. A final comment in Section 5 concludes. Most of the proofs
have been relegated to an Appendix.

2 The model

Let N represent the set of all potential agents (a set with an infinite number
of members) and let A/ be the family of all finite subsets of N. An element
N € N describes a finite set of agents N = {1,2,...,n}, where we take
|IN| = n. A bankruptcy problem [O’Neill (1982)] is a triple (N, E,¢),
where N is the set of agents, £ € R, represents the estate (the amount
to be divided), and ¢ € R" is a vector of claims whose ith component is
¢;. The very notion of bankruptcy problem requires ), v ¢; > E > 0. The
family of all those bankruptcy problems is B. To simplify notation we write,
for any given problem (N, E,c) € B, C =),y ¢;. We assume, without loss
of generality, that agents are labelled so that ¢; < ¢ < ... < ¢p,.

Definition 1 A rule is a mapping F' that associates with every (N, E,c) € B
a unique point F(N, E,c) € R such that:

(1) 0 < F(N,E.c) <c.

(1) ¥ pn AN, B,¢) = E.



The point F'(N, E, ¢) represents a desirable way of dividing £ among the
agents in N. Requirement (i) is that each agent receives an award that is
non-negative and bounded above by her claim. Requirement (ii) is that the
entire estate be allocated. These two requirements imply that F'(N, E, c) = ¢
whenever £ = ).\ c;.

We now consider three different rules. The constrained equal-awards rule
distributes the estate equally among the agents, provided no agent ends up
with more than she claims. The constrained equal-losses rule selects the
point in the budget set that is closest (according to the Euclidean distance)
to the claims vector. The outcome imposes equal losses for all the agents
with one proviso: no one obtains a negative amount. Finally, the Talmud
rule behaves like the constrained equal-awards or the constrained equal losses
rule, depending on whether the estate exceeds or falls short of half of the
aggregate claims.

Formally:

Definition 2 The constrained equal-awards (A) is the rule that, for all
(N,E,c) € B, and all i € N, yields:

A;(N, E,c) = min{c;, A}
where A > 0 is chosen so that ).\ min{c;, \} = E.

Definition 3 The constrained equal-losses (L) is the rule that, for all
(N,E,c) € B, and all i € N, yields:

Li(N,E,c) =max{0,¢; — A\}
where A > 0 is chosen so that ", , max{0,c; — A\} = E.

Definition 4 The Talmud (T) is the rule that, for all (N, E, c) € B, and
all 1 € N, yields:

min{$c;, A} if B <

TN E )= { ey 6

DO DO [
QQ

where A and pi are chosen so that Y .. T;(N,E,c) = E.

Let us introduce a family of rules that generalizes the Talmud rule (7") and
encompasses the constrained equal awards rule (A) and the constrained equal
losses rule (L). The analysis of this family provides further insights into the
relationship between these distributive criteria.
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The Talmud rule is an allocation method that considers the size of the
estate with respect to the aggregate claim. Nobody gets more than half of
her claim if the estate is less than half of the aggregate claim and nobody gets
less than half of her claim if the amount to be distributed exceeds half of the
total demand. The TAL-family generalizes this idea by applying the same
principle to all the rules that solve the bankruptcy problem depending on the
relation between E and 0C, for all values 6 in the interval [0, 1]. Formally:

Definition 5 The TA L-famaly consists of all rules with the following form:
For some 0 € [0,1], for all (N, E,c) € B, and alli € N,

, [ min{fc;, A\} if &< 0C
Fz’ (N7E’C)_{ max{ecz',cz'—,u} ZfEZQC

where C' =Y.y ¢ and X\, p are chosen so that Y,y FY (N, E,c) = E.

A rule F? in the TAL-family resolves bankruptcy problems according to
the following principle: Nobody gets more than a fraction 6 of her claim if
the estate is less than 6 times the aggregate claim and nobody gets less than
a fraction 6 of her claim if the amount to be distributed exceeds 6 times
the aggregate claim. Note that the constrained equal-losses rule corresponds
to the case § = 0 (F° = L), whereas the constrained equal-awards rule
corresponds to the other extreme value, § = 1 (F' = A). Obviously the
Talmud rule is obtained for 6 = 1 (F'/2 = T). Also observe that, for a given
bankruptcy problem (N, E,c) € B, § = % yields a solution FZ/¢(N, E, c)
that coincides with the allocation provided by the proportional rule to this
bankruptcy problem. Yet, there is no § for which F? is the proportional rule
(i.e. the proportional rule is not a member of the TAL-family).

The value of the parameter # can be interpreted as a measure of the
distributive power of the rule, in the following sense. Higher values of 6 imply
higher protection for those agents with lower claims (more redistribution),
whereas lower values of 6 entail higher shares for those with larger claims
(less redistribution). Therefore, choosing # means given a degree of priority
in the distribution to those agents with lower claims and a degree of priority
(1 — 0) to those with higher demands. From this perspective, the Talmud
rule is a balanced compromise among the different claimants.

Remark 1 It can be shown that, fo any given a bankruptcy problem, F°
proposes a distribution that gives the smallest claimant a share of the estate
that increases with 6, and gives the largest claimant a share that decreases
with 0 [see Moreno-Ternero (2001) for further details].



3 Structural properties of the TAL-family

This section provides a detailed analysis of the properties that are satisfied
by the TAL-family, among those which are common in the literature. Since
most of these properties are well known, we shall restrict their motivation
and interpretation to the minimum.

3.1 Duality

Following Aumann & Maschler (1985) we can define the dual rule of F),
denoted F*, as follows: For all (N, E,c) € B, F*(N,E,c) = c—F(N,C—FE,c).
Note that F* is also a rule defined on B, which satisfies (F*)* = F. When a
rule and its dual produce the same outcomes is called self-dual. That is, a
rule F is self-dual if, for all (N, E,c) € B, F(N,E,c) = F*(N, E,c).

The notion of duality can also be applied to the properties a solution
satisfies. That is, P* is the dual property of P if for every rule F' it is
true that F' satisfies P if and only if its dual rule F™* satisfies P*. It is easy
to verify that if a rule F' is characterized by a set of properties then the dual
rule F™ is characterized by the corresponding set of dual properties.

Our first result shows that there exists a precise duality relationship be-
tween the members of the TAL-family. Namely, (F%)* = F'=¢.

Proposition 1 Let F? be a rule in the TAL-family {Fe}ae[o it Then, the
dual rule of F® is F'~9.

Proof.

Let 6 € [0,1] be given and let (N, E, ¢) be a bankruptcy problem. First,
suppose that E < (1 — 0)C, or equivalently C' — E > 6C. Let i € N,
be a particular claimant. Then, (FY)" (N, E,c) = ¢; — F! (N,C — E,c) =
¢; —max {0c;, ¢; — p} = min {(1 — 0)c;, u} = F° (N, E, c).?

Now, suppose that £ > (1 — 0)C, or equivalently C' — E < C. In this
case, for each i € N, we have (FY)" (N,E,c) = ¢; — F/ (N,C — E,c) =
¢; —min {fc;, \} = max {(1 — 0)c;,c; — A} =F (N, E,¢)? =

The following results are immediate consequences:

*Note that p is such that Y, ymax{fc;c;—p} = C — E. Thus,
Yienmin{(1—=0)c;,uy = > .y (ci—max{fc;,c;—pu}) = E, and therefore,
(FY)" (N, E,c) = F}=° (N, E,¢).

*Note that A is such that >, ymin{fc;,A\} = C — E. Thus,
Yienymax{(l—0)ci,c; — A} = > y(c;—min{fc;,\}) = E, and therefore,

(FY)" (N, E,c) = F}=% (N, E,¢).



Corollary 1 L and A are dual rules.

Corollary 2 T is a self-dual rule. In fact, there is no other self-dual rule in
the TAL-family.

3.2 Basic properties

Let us consider five basic properties that are satisfied by most bankruptcy
rules. “Equal treatment of equals” refers to the impartiality of the rule with
regard to those agents with the same characteristics (claims in our model).!
A stronger requirement is that of “reasonableness” [Herrero (2001)], which
states that agents with higher claims receive higher awards and face higher
losses. “Scale invariance”, implies that the units in which the estate and
the claims are measured have no influence on the outcome. “Consistency”,
requires that if we apply a rule F' to a given problem (N, E,c) or do so
to any of the associated reduced problems, all incumbent agents get the
same outcome. Finally, “continuity” establishes that small changes in the
parameters of the problem induce small changes in the corresponding solution
function.
Formally:

Definition 6 A rule satisfies equal treatment of equals if, for all (N, E, c) €
B, ¢; = ¢; implies Fi(N,E,c) = F;(N, E, c).

Definition 7 A rule is reasonable, if for all (N,E,c) € B, all i,j € N,
¢; > ¢; implies that F;(N,E,c) > F;j(N,E,c) and ¢; — ¢; > Fi(N,E,c) —
Fj(N, E,C).

Definition 8 A rule F' satisfies scale tnvariance if, for all (N, E,c) € B
and all o > 0, we have F(N,aFE,ac) = aF (N, E,c).

Definition 9 A rule F' is consistent if, for all (N, E,c) € B, all Q C N,
and alli € Q, we have Fi(N, E, c) = Fi(Q, Eg, cg), where Eg = Zz’eQ F;(N,E,c¢)
and cg = (¢;)icq-

Definition 10 A rule is continuous, if for all (N, E,c) € B, all (N, E,, ¢,) €
B such that lim, ., E, = E, and lim,_,, ¢, = ¢, we have lim, ., F(N, E,,¢,) =
F(N,E,c).

All rules in the TAL-family satisfy these five properties. Formally:

4See Moulin (2000) for the analysis of asymmetric rules.



Proposition 2 Let F° be a rule in the TAL-family {Fe}ee[o it Then F°

satisfies equal treatment of equals and scale invariance, and is a reasonable,
consistent and continuous rule.

(The proof is given in the Appendix)

Remark 2 >From these results it follows that the TAL-family is a subset
of the “parametric rules”, identified by Young (1987) as those rules which
satisfy equal treatment of equals, continuity and consistency [see Moreno-
Ternero (2001) for a parametric representation of the TAL-family].

3.3 Independence of claims truncation and composi-
tion from minimal rights

Dagan (1996) introduces the property of “independence of claims truncation”
in order to characterize the constrained equal awards rule. This property
establishes that one cannot claim more than there is. Hence, all claims that
exceed the estate are truncated. Formally:

Definition 11 A rule F' satisfies independence of claims truncation if,
for all (N,E,c) € B, F(N,E,c) = F(N,E,c"), where ¢/ = min{FE,c;} for
alli € N.

Aumann & Maschler (1985) propose the notion of “composition from
minimal rights” to deal with the characterization of the Talmud rule. This
property ensures each agent a minimal amount m;(N, E, ¢) = max{0, E —
> JeN—{i} cj}, which is the portion of the estate that is left to the ith agent
when the claims of all other agents are fully honored, provided this amount
is nonnegative.

Definition 12 A rule F' satisfies composition from minimal rights if,
for all (N,E,c) € B,

F(N,E,¢c)=m(N,E,¢c)+ F |N, E — Zmi(N,E,c), c—m(N, E, )
i€N
where m(N, E, c) = [m;(N, E, c)],c -

Independence of claims truncation and composition from minimal rights
are dual properties [Herrero & Villar (2001, Claim 5)]. As the following
proposition shows, § = % is the precise value of the parameter that separates
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those rules in the family that satisfy independence of claims truncation from
those that satisfy composition from minimal rights. A direct consequence of
this result is that there is only one rule in the family that satisfies these two
properties simultaneously: the Talmud rule, T = F''/2. Formally:

Proposition 3 Let FY be a rule in the TAL-family {Fe}ee[o i Then:

(i) F? satisfies independence of claims truncation if and only if 0 € [%, 1} .
1

(i) F9 satisfies composition from minimal rights if and only if 0 € [0, 5].

(The proof is given in the Appendix)

Corollary 3 There is one and only one rule in the TAL-family that satis-
fies simultaneously independence of claims truncation and composition from
manimal rights. It is the Talmud rule, T = F'/2.

This proposition shows that none of these two properties can be satisfied
by all members of the family. One can informally say that independence of
claims truncation “cuts too much” the rights of the agents with large claims
whereas composition from minimal rights induces “excessive concessions” in
favour of these agents. Therefore, to extend those principles in order to
encompass all members of the TAL-family we have to relax the associated
restrictions and so avoid both excessive and insufficient redistribution. That
can be done by linking the extent of “cuts and concessions” to the smallest
claim rather than to the agents’ actual demands.

The notions of #—independence and f#—composition formalize this ap-
proach and relate the strength of the principles of independence and com-
position to the distributive power of the rule (the parameter #) and the size
of the smallest claim (recall that § € [0,1], and ¢; < ¢; for all ¢ € N, by
assumption).

Axiom 1 (f/—independence) For all (N,E,c) € B such that % < ey,
F(N,E,c) = F(N, E, ), where ¢ = 0cy for alli € N.

This condition shares the spirit of independence from claims truncation.
It establishes that when the estate is so small that equal division does not
even cover a fraction 6 of the smallest claim, then the solution to the problem
coincides with that in which actual claims are truncated by fc;. Note that
for low values of 6 this property imposes no restriction. In particular, every
rule satisfies 0—independence vacuously.

10



Axiom 2 (§—composition) For all (N,E,c) € B such that &£ < (1 —
0)ci, F(N,E,c) =m’(c)+ F(N,E -, ymi(c),c—m’(c)), where m!(c) =
¢ — (1 —0)cy for alli e N.

The axiom of #—composition states that those problems in which the
average loss is smaller than a fraction (1 — #) of the smallest claim, are
to be solved according to the following two-step procedure. First, concede
each agent an amount which corresponds to her original claim reduced by
a fraction (1 — 0) of the smallest claim. Then distribute the remainder es-
tate according to the outstanding claims. Notice that every rule satisfies
1—composition, vacuously.’

The next result establishes a precise duality relationship between both
concepts and shows the fulfillment of these properties within the TAL-family.

Proposition 4 The following two statements hold:
(i) For all 8 € |0, 1), 0—composition is the dual rule of (1—60)—independence.
(ii) Let F? be a rule in the TAL-family {Fe}ee[o e Then F? satisfies

f0—independence and 0— composition.

(The proof is given in the Appendix)

3.4 Exemption and exclusion

The principles of “exemption” and “exclusion” are introduced in Herrero
& Villar (2001) in order to characterize the constrained equal awards rule
and the constrained equal losses rule, respectively. They are dual properties
which impose restrictions on the behavior of a rule when claims are very
unequal.

Definition 13 A rule F satisfies exemption if, for all (N, E,c) € B, ¢; <
L —= F,(N,E,c) =q.

This property can be interpreted as an extreme form of protection of those
agents with very small claims: Those claims that are below equal division of
the estate should be fully honored.

Definition 14 A rule F satisfies exclusion if, for all (N,E,c) € B, if
¢ < EE = Fy(N,E,c) = 0.

When 0 = %, we shall talk about mid-independence and mid-composition.
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The principle of exclusion, on the contrary, aims at protecting those
agents with very large deficits: Those agents whose claims are smaller than
the average loss are to be disregarded. The constrained equal-awards rule
and the constrained equal-losses rule represent well these two principles.

The Talmud rule provides a protective criterion of a different nature: all
agents suffer a rationing that is “of the same sort” of that experienced by the
whole society. Therefore, the rights of those agents with small claims and
the rights of those agents with large deficits are only partially protected by
T.

The following result is straightforward:

Proposition 5 The only rule in the TAL-family that satisfies exclusion is
F° = L. The only rule in the TAL-family that satisfies exemption is F' = A.

This result suggests the idea of introducing the concepts of f—exemption
and f#—exclusion as extensions of the original notions that can encompass
other rules, including the Talmud. Let us present these notions and see how
these new concepts apply to the analysis of the TAL-family.

“f—exemption” shares with the original notion of exemption the idea that
when the resources to be divided are large enough, relative to the agents’
claims, those individuals with larger claims are to be rationed more inten-
sively. More precisely, #—exemption establishes that when a fraction 6 of
an agent’s claim is smaller than equal division of the estate, the rule should
grant her at least a share 6 of her claim.

Formally:

Axiom 3 (§—exemption) For all (N, E,c) € B such that c; < £ we have
Fi(N,E,c) > fc;.

The property of exemption corresponds to the extreme case § = 1. Note
that & = 0 imposes no restriction on a rule, as it simply says that awards
cannot be negative.

The following property, §—exclusion, conveys the opposite message: If a
fraction (1 — 0) of an agent’s claim is below the average loss, this agent will
get at most a share 6 of her claim. Formally:

Axiom 4 (#—exclusion) For all (N, FE,c) € B such that (1 — 0)¢; < C;E
we have F;(N, E, c) < f¢;.

The property of exclusion corresponds to the extreme case § = 0. In this
case the value § = 1 imposes no restriction on a rule, as it amounts to saying
that no agent can receive more than she claims. When 6 = %, we shall talk
about mid-exemption and mid-exclusion, respectively.

The next result tells us about the bite of these properties.

12



Proposition 6 The following two statements hold:
(1) For all 0 € (0, 1], 0—exemption is the dual property of (1—6)— exclusion.
(i) Let F° be a rule in the TAL-family {Fe}ee[o e Then F° satisfies

00— exemption and 0— exclusion.

(The proof is given in the Appendix)

4 Characterization results

We provide in this section a number of characterization results based on the
four §—axioms presented above. We show first that the only rules that sat-
isfy #—independence, #—composition, §—exemption, #—exclusion and con-
sistency, for 8 € (0,1), are precisely those rules in the TAL-family with
parameter 6. Since we have already demonstrated that all the rules in the
TAL-family satisfy those five properties, the characterization follows.

Interestingly enough we do not have to assume equal treatment of equals
to characterize the TAL-family. For two-person bankruptcy problems, how-
ever, this property can be deduced from §—independence, #—composition and
6—exemption, provided 6 € (0,1) (resp. #—independence, §—composition
and #—exclusion). This is the content of Lemma 1 below.

Next we address the characterization of the L rule and the A rule, that
correspond to the extreme values § = 0 and 6 = 1, respectively. The charac-
terization of these two rules must be taken up separately because, as already
noticed, the #—axioms loose their bite for the extreme values # = 0 and
0 = 1. As a consequence, equal treatment of equals cannot be inferred from
these properties. In other words, Lemma 1 does not hold for § = 0 and 8 = 1.

Finally, we provide a specific characterization of the Talmud rule making
use of self-duality.

It is worth mentioning that all characterization results are tight. That is,
if we drop one of the axioms then they are no longer true.

The following preliminary result plays a relevant role in the proof of our
first characterization theorem.

Lemma 1 For two-agent bankruptcy problems, 8—independence, 80— composition
and 0—ezemption, imply equal treatment of equals, for each 6 € (0,1) (resp.
0—independence, 0—composition and 0— exclusion, imply equal treatment of

equals, for each 6 € (0,1)).

(The proof is given in the Appendix)

Lemma 1 fails for the extreme values # = 0 and 6 = 1 as the following
example shows.
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Example 1 Let B denote the subset of two-agent bankruptcy problems B =
{({1,2}, E, (1,E)): E > 1} and consider the following rule:

L(N,E,c) if (N,E,c)¢ B
(LE-1Y i (NEeB -

ER 3

f(N,E,c) :{

The rule f is well defined and satisfies consistency, exclusion and 0—composition
(see the Appendiz for the details). To see that this rule does not satisfy equal
treatment of equals it suffices to take the problem (N, E,c) = ({1,2},1,(1,1)),
whose solution according to the rule f is given by: f(N,E,c) = (3,2). This
shows that equal treatment of equals fails for 8 = 0 under the assumptions
of the Lemma. To see that the result does not hold for 0 = 1 it is enough to
consider the rule f* (the dual rule of f).

We now present our main result in this section:

Theorem 1 A rule satisfies consistency, 0—independence, 86— composition,
0—exemption and 0— exclusion, for 6 € (0,1), if and only if it is the member
of the TAL-family with parameter 6.

Proof.

Propositions 4 and 6 show that, for all § € (0, 1), F? satisfies —independence,
f—composition, f—exclusion and #—exemption. Furthermore, they also sat-
isfy consistency (Proposition 2).

Now let us see the converse.

Let 6 € (0,1) be fixed. Let f be a rule that satisfies consistency, §—independence,
f—composition, #—exclusion and #—exemption. By consistency it is enough
to prove the result for the two-agent case. In this case Lemma 1 ensures
that f also satisfies equal treatment of equals. Without loss of generality let
(N, E, c) be a bankruptcy problem with N = {1,2}, and ¢; < ¢y. In these
circumstances, it is straightforward to show that F° can be expressed as:

(£,5) if £ < 20c,
FO(N,E,c) =% (fc1,E — fcy) if 20c; < E<cy+ (20— 1)y

(Cl — CEE,CQ — 05E> if Co + (29— 1) C1 S E

There are several cases to be discussed.

Case 1.- 20c; < E <o+ (20 — 1) ¢1.

It is straightforward to see that in this case, fc¢; < %, and (1—0)c; < %
The first upper bound and §—exemption imply that fi(N, E,c) > 6c;. The
second upper bound and f—exclusion imply that fi(N,E,c) < 0c;. As a
result, f (N, E,c) = (0cy, E — fc;) = F° (N, E, c).

14



Case 2.- I/ < 260c;.

It follows from f—independence that f(N,E,c) = f(N,E,(0ci,0c)).
Then, equal treatment of equals implies f (N, E, (0ci,0c1)) = (%,%) =
F? (N, E,c).

Case 3.- o+ (20— 1)y < E.

First note that the restriction that defines this case can be rewritten
as: 552 < (1 — 6)cy. Then, §—composition says that f(N, E,c) = m’(c) +
f(N,2(1—8)c; — (C—E),c—mP(c)), where m?(c) = (fc1, co— (1—0)c;). By
equal treatment of equals we know that f(N,2(1—0)c;—(C—E),c—m®(c)) =
(1 =0)cr — SE, (1 = )y — SE). Therefore, fi(N,E,c) = ¢; — SE =
F’(N,E,c),fori=1,2. &

Let us show that all the properties in Theorem 1 are independent, with
some examples. In each case, we mention the property that is not satisfied.
The reader may consult the Appendix to verify that in every case the pro-
posed rule satisfies all the properties in the theorem except the one that is
explicitly mentioned.

e O—ezemption: Suppose [N| = 2. Let ¢(N, E,c) = (4, 2)if (N, E,c) =
({1,2},20,(3,2)), and F? (N, E, ¢) otherwise.

60— exclusion: Suppose |N]| 2. Let ¢°(N,E,c) = (%,% + 20) if

(N,E,c) = ({1,2},20+1,(3,32)), and F’ (N, E, ¢) otherwise.

6—independence: Suppose |N| = 2. Let ¢(N, E,c) = (0,1)if (N, E,c) =
({1,2},1,(3,2)), and F? (N, E, ¢) otherwise.

6— composition: Suppose |[N| = 2. Let ¢°(N, E, c) = (0,2) if (N, E,c) =
({1,2},2+6,(1,2)), and F? (N, E, ) otherwise.

and FY (N, E, c¢) otherwise.

Let us now consider the rules L = F° and A = F!. To characterize these
rules one has to assume that equal treatment of equals holds (see Example
1 above). The following results are obtained:

Theorem 2 The constrained equal losses rule (F°) is the only rule satisfying
consistency, equal treatment of equals, 0— composition and exclusion.

Theorem 3 The constrained equal awards rule (F*') is the only rule satisfy-
ing consistency, equal treatment of equals, 1—independence and exemption.
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(Proofs are omitted since they are easily adapted from that in Theorem
1).

As a direct consequence of Theorems 1, 2 and 3, and Lemma 1, we can
provide a characterization result for the entire family, as follows:

Corollary 4 A rule f satisfies consistency, equal treatment of equals, 0— composition,
0—independence, 0—exemption and 0— exclusion, if and only if it is the mem-

ber of the TAL-family F°.

We conclude with some considerations about the Talmud rule, one of the
most special members of the TAL-family. Since F/? = T is the unique self-
dual rule within the TAL-family [c.f. Corollary 2], we can state some similar
characterization results to Theorem 1, for this rule, upon replacing some of
the partial conditions by self-duality.

Theorem 4 A rule satisfies consistency, self-duality, mid-ezclusion (or mid-
exemption) and mid-composition (or mid-independence), if and only if it is
the Talmud rule.

Note that self-duality is an essential property in Theorem 4, and also
that the axioms stated in this Theorem are independent from those stated
in Theorem 1, as shown in the Appendix.

5 Final Remarks

We have presented in this paper a family of bankruptcy rules, the TAL-
family, that generalizes the Talmud rule and encompasses the constrained
equal awards rule and the constrained equal losses rule. This family depends
on a parameter # € [0, 1] that refers to the relative magnitude of the estate
with respect to the aggregate claim and can be interpreted in terms of an
index of the distributive power of the rule. When the ratio between both
magnitudes is below the parameter 6, nobody gets more than a share 6 of
her claim. When that ratio exceeds the value of the parameter § nobody gets
less than a share 6 of her claim. The rule associated with the parameter § = %
is precisely the Talmud rule, as expected, and the extreme values # = 1 and
0 = 0 correspond to the constrained equal awards rule and the constrained
equal losses rule, respectively.

We have analyzed the behavior of the rules in the TAL-family with respect
to some standard properties and have also provided some characterization
results. In particular, we have shown that the TAL-family is made exactly
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of those rules which are consistent and satisfy equal treatment of equals,
f—exemption, f—exclusion, §—independence and #—composition. The last
four properties are weaker versions of four known principles which turn out
to be too sharp to cover all rules within the TAL-family.

Let us conclude by summarizing our main findings in the following table,
which shows the properties satisfied by the members of the TAL family. An
asterisk indicates that those properties characterize the entire family.

Properties

Rules that satisfy the properties

(%) Consistency

F? for all € [0, 1]

(%) Equal treatment of equals

FY for all € [0,1

0, 1]
Reasonableness F? for all § € [0, 1]
Continuity F? for all § € [0, 1]
Scale Invariance F? for all 6 € [0,1]
Self-duality F'2 =T

Independence of claims truncation

F? for all § € [2,1]

Composition from minimal rights

F7 for all § € [0, 7]

Exemption

Fl=A

FExclusion

FY=1L

(%) 8—independence

F? for all § €

x) 0—composition

F? for all § €

(*)
(%) 8—exemption
(%) 6—exclusion

[0, 1]
F? for all 6 € [0, 1]
[0, 1]
[0, 1]

F? for all § €

Y
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6 Appendix 1: Proofs

Proposition 2 Let F? be a rule in the TAL-family {Fe}ee[o I Then F°
satisfies equal treatment of equals and scale invariance, and is a reasonable,

consistent and continuous rule.

Proof.

Since equal treatment of equals and continuity are trivial, we only discuss
explicitly reasonableness, scale invariance and consistency.

(i) F? satisfies scale invariance.

Case 1.- Let 6 € [0,1] and (N, E,c) € B with E < C. Since aF < afC
for all & > 0, it follows that FY (N, E, ¢) = min {f¢;, A}, and F? (N, aE, ac) =
min {fac;, X'}, for alli € N, where X and X are such that Y, F (N, E, ¢) =
E and Y, .y F! (N,aE,ac) = aF, respectively. Now, there exists A >0,
such that A" = aX. Thus, min {fac;, \'} = amin {fc;, A}. Assume, without
loss of generality, that ¢, = max;en{c;}. Then it is straightforward to see
that the function HY : [0,6c,] — Ry such that H°(X) = >, min{fc;, A}
is a piecewise linear and strictly increasing function. Therefore, for all
E € [0,0C) there exists a unique A\ such that H?(\¢) = E. This implies
A=\ = \g, and therefore, F! (N,aFE, ac) = aF? (N, E,c), for all i € N.

Case 2.- Let § € [0,1] and (N, E,c) € B with E > 0C. As aF > afC
for all a > 0, we have FY (N, E, ¢) = max {0c;,¢; — pu}, and F? (N, aE, ac) =
max {fac;, ac; — '}, foralli € N, where pand ' are such that -, v FY (N, E, ¢) =
E and Y, v F! (N,aE, ac) = aF, respectively. Now, there exists 7 > 0,
such that p/ = a. Thus, max {fac;, ac; — '} = amax{fc;,¢; —u}. Take
again ¢, = max;en{c;}. It is immediate to check that the function GY :
[0, (1 — ) ¢,] — Ry such that G%(p) = >,y max {fc;,c; — p} is a piecewise
linear and strictly increasing function. Therefore, for all E € (6C, C| there
exists a unique y, such that GY(y,) = E. This implies p = T = p, and
therefore, FY (N, aFE,ac) = aF? (N, E,c), for all i € N.

Case 3.-Let 0 € [0,1] and (N, E, c¢) € Bwith E = 0C. Then F? (N, E,c) =
Oc;, for each i € N, and therefore, scale invariance is trivially satisfied.

(ii) F? is a reasonable rule.

Case 1.-Let 0 € [0,1] and (N, E, ¢) € Bwith £ < §C. Thus, F/ (N, E,c) =
min {fc;, A}, for all i € N. Let i,5 € N, such that ¢; > ¢;. It is straight-
forward that FY (N, E,c) > Fjg (N, E,c). Now, suppose that A < fc¢; < fc;.
In this case, ¢; — FY (N, E,¢c) =¢; — A > ¢; — A =¢; — F/ (N, E,c). On the
other hand, if c; > X > fc; then ¢; — F/ (N,E,c) =c; — A > (1 —0)e; >
(1—-0)c; =c¢; — F]‘-9 (N,E,c). Finally, if A\ > fc; then ¢; — F! (N, E,c) =
¢ —blc; >c;—0c; =cj— Ff (N, E,c).
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Case 2.-Let 0 € [0,1] and (N, E, ¢) € Bwith E > 0C. Thus, F? (N, E,c) =
max {fc;,c; — pu}, foralli € N. Let ¢, € N, such that ¢; > ¢;. It is straight-
forward that FY (N, E,c) > FJ‘-9 (N, E,c). Now, suppose that p < (1 — 6)c;.
In this case, ¢; — FY (N,E,c) = = ¢; — F/ (N, E,c). On the other hand,
it (1—6)c; > p > (1—0)c then ¢; — F/(N,E,c) = p > ¢; — 0c; =
¢; — FJ (N, E,c). Finally, if p > (1 —0)¢; then ¢; — FY (N, E,¢) = ¢; — 0c; >
¢; —b0c; = c;— F (N, E,c).

(iii) F? is a consistent rule.

Consider a problem (N, E,c) and let FY(N, E, ¢) stand for the solution
given by rule F’. Let Q C N and define a new problem (Q, Fg, cg), where
Eg =3 o F?(N,E,c), cq = (¢)icq, and has a solution F(Q, Eg, cg). First
observe that if £ < 0C, then Eg < 0Cg =0 ZZ.GQ ¢;. Therefore, in this case,
for all i € Q, we have F?(N, E,c) = min {fc;, \} , with Y ien min{fc;, A} =
E, and F/(Q, Eg,cq) = min{fc;, \g} , with > icqmin{fc;, Ao} = Eq. Sev-
eral cases are to be considered:

Case 1.- A = \g. In this case, F/(N, E,c) = F/(Q, Eg, cg) for all i € Q,
and consistency follows.

Case 2.- When \ < A\, F/(N, E,c) < F/(Q, Eg, cg) for all i € Q. Now,
suppose that there exists some ig € @ such that FZ-% (N,E,c) < FZ-‘Z (Q, Eg,cq)-
Thus, we would have Eg = Y. o F/(N, E,c) < Y. F/(Q, Eq, cq) = Eg,
which is a contradiction. Therefore, F/(N, E,c) = F/(Q, Eg,cg) for all
1€ Q.

Case 3.- Let now A > A\g. Then, F/(N, E,c) > F?(Q, Eg, cg) for all i €
(). Suppose, for the sake of contradiction, that there exists iy € @) such that
F!(N,E,c) > F?(Q, Eg,cg). As in the previous case, we would have Eg =
Yico FYI(N,E,c) > ¥..0 F(Q, Eg,cq) = Egq, which is a contradiction.
Therefore, F/(N, E,c) = F(Q, Eq, cqg) for all i € Q.

A similar argument can be applied to the case in which £ > #C'. Under
this new framework, Fg > 0Cg. Thus, for all i € Q, we have F/(N, E,c) =
max {fc;,¢; — p}, with >, ymax{fc;,¢; — p} = E, and F(Q, Eg,cq) =
max {Hci, ci — ,UJQ} , with ZZ.GQ max {Hci, ci — ,UJQ} = Eg. As before, we have
several cases to be considered:

Case 1.- 1 = pig. In this case, FJ(N,E,c) = F/(Q, Eg, cg) for alli € Q.

Case 2.- j1 > . Now, FY(N,E,c) < F{(Q, Eq, cq) for all i € Q. Now,
suppose that there exists some iy € @ such that F} (N, E, ¢) < F? (Q, Eq, cq).
Thus, we would have Eg = Y. o F/(N, E,c) < Y. FY(Q, Eq, cq) = Eg,
which is a contradiction. Therefore, F/(N, E,c) = F/(Q, Eg,cg) for all
1€ Q.

Case 3.- 1 < pg. Thus, F/(N,E,c) > F{(Q,Eq,cq) for all i €
(). Now, for the sake of contradiction, suppose that there exists some
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1o € @ such that E%(N, E,c) > ﬂ%(Q,EQ,cQ). Then, we would have
Eq = Yo F/(N,E,c) > Yo FY(Q, Eq,cq) = Eg, which is a contra-
diction. Therefore, F/(N, E,c) = F{(Q, Eg, cg) for all i € Q.

The proof is in this way complete. W

Proposition 3 Let FY be a rule in the TAL-family {Fe}ae[o,u . Then:

(i) FY satisfies independence of claims truncation if and only if 0 € %, 1.

(i) FY satisfies composition from minimal rights if and only if 6 € |0, %J .
Proof.

(ia) Independence of claims truncation implies 6 € [3,1].

For # = 0 we have F° = L which does not satisfy this property [e.g.
Dagan (1996, Prop. 1)]. Take now 6 in the open interval (O, %) and con-
sider the following two-person bankruptcy problem: [{1, 24 E, (E, %)] It
is straightforward to check that FY ({1,2}, E,c) = (0FE, (1 — §) E). The as-
sociated bankruptcy problem in which claims are truncated by the estate
is [{1,2}, E, (E, E)], whose solution is F{ ({1,2},E,c") = £, for i = 1,2.
Therefore, F? ({1,2}, E,c) # F° ({1, 2}, E,CT). As a consequence, F does
not satisfy independence of claims truncation for 6 € [0, %)

(ib) 6 € [3,1] implies independence of claims truncation.

Let now 6 € [%, 1}, and let (N, E,c) € B be given. We will prove this
part by induction in the cardinality of N.

Suppose first |[N| = 2, i.e. the two-claimant case. Without loss of gener-
ality let us suppose that N = {1,2}, and ¢; < ¢5. As we mentioned above,
in these circumstances the rule F° can be expressed as:

(£,L) if £ < 20c,
F'(N,E,c) =< (fci, E —0cy) if 20c; < E<cy+(20—1)c; .

(Cl - CEE,CQ - CEE) if Co + (28— 1) C1 S E

There are several cases to be discussed.

Case 1.- EF < ¢;. Since 0 > %, it follows that E < 20c¢;. Thus,
F°(N,E,c) = (%,%) Moreover, in this case, ¢! = (F,FE). Now, every
rule in the TAL-family satisfies equal treatment of equals, which implies
FO(N.E.eT) = (£,£).

Case 2.- ¢; < E < ¢y. In this case, ¢! = (¢1, F). Now, if E < 20c;, then
F’(N,E,c) = (£,2)=F°(N,E,c"). If, on the other hand, E > 20c;, and
since 6 > %, we would have £ < ¢+ (20 — 1) ¢, which implies F? (N, E, c) =
(Ocy, E — fcy). Similarly, since 6 > %, it follows that F < E+ (20 — 1) ¢; =
3 + (20 — 1) ¢1, and therefore F? (N, E, c') = (6c1, E — fcy).

Case 3.- £ > ¢,. This would imply ¢! = ¢, and therefore independence
of claims truncation would hold trivially.
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As a consequence, for every two-claimant bankruptcy problem, F satis-
fies independence of claims truncation, when 6 € [%, 1]. Let us now assume
that it is also true when |[N| = k > 2, and we will prove it for the case
IN| = k + 1. Without loss of generality, assume that N = {1,2,....k + 1}
and ¢; <o < .o < gy

Let us show first that F{ (N, E,c) = F{ (N, E,c"). It is straightforward
to see that

== if £ < (k+1)fc,
F/(N,E,c) =< if(k+1)0c;<E<C—(k+1)(1-0)c;
a—-E fC—(k+1)(1-0)c <E

Suppose that ¢; < E,i.e. ¢ =¢].% Asaresult,¢; < ¢f, forallj =2,.. k+1.
We can also assume that ¢z > E, ie. cf,, =E.7

If E < (k+1)fcy, then FY (N, E,c) = k%l = FY (N, E, CT). Now, assume
that E > (k + 1)fc;. Let us show that CT — (k+1)(1 —0)¢; > E, where
CT =%,y cl. This would imply F{ (N, E,cT) = fc;. To see this, note the
following chain of inequalities, where it has been used that § > 1

_ T
2 1 =0,
Chy1=Fand ¢y <cj, forall j=2,..,k+ 1.

C'—(k+1)(1-0)c; = E+> cf +[1—(k+1)(1—0)c

\Y
&
+
o

Sy
!

=
!

=
|

\%
=
_l’_
ing
£,
ol
E
NO%

=2 =2
1 k
E E T E
= + 5 v C’i >

Consequently, it is also true that C' — (k+1)(1 —0) ¢y > E, and we have
FY(N,E,c) =0c; = F{ (N,E,c").

Once it is shown that F{ (N, E,c) = F} (N, E, cT), we conclude the proof,
making use of consistency. Among the set of claimants N, consider the fol-
lowing subset S = {2,...,k + 1}, which implies |S| = k. Denote Eg =

®Otherwise, ¢!’ = (E, E, ..., E). In such a case, equal treatment of equals would imply

FY (N,E,c!) = (%,%,,%) Moreover, if § > 1, then ¢; < (k + 1)fc;, and

therefore F? (N, E,c) = (k;iﬂ? %, - 1%1)
T

7"Otherwise we would have ¢ = ¢
would hold trivially.

, and therefore independence of claims truncation
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>ies Y (N, E.c), s = (ci)ies, B§ =5 FY (N, E,c"), and ¢f = (c] )ies.
Now, since all rules within the TAL-family are consistent [Proposition 2],
FY(N,E,c) = F! (S, Es,c,), for all i € S. For the sake of induction hypoth-
esis, FY (S, Es, ¢;) = F{ (S, Es, cl). Notice that Es = E—F{ (N, E,c) = E—
F} (N,E,c") = EL. Thus, F{ (S,Es,cl') = F{ (S,Ef,cl) = F! (N,E, "),
where the last equality holds, again, thanks to consistency. In other words,
for all i € S, or what is equivalent, for all i = 2,....k + 1, F/ (N, E,c) =
F? (N B, cT), which concludes the proof.

(ii) Independence of claims truncation and composition from minimal
rights are dual properties [Herrero & Villar (2001, Claim 5)]. Thus, as F?
satisfies independence of claims truncation if and only if 6 € [%, 1] , and F1¢
is the dual rule of FY (Proposition 1), FY must satisfy composition from
minimal rights if and only if 6 € [0, %] [

Proposition 4 The following two statements hold:
(1) For all 6 € [0, 1), 6—composition is the dual rule of (1—80)—independence.
(ii) Let FY be a rule in the TAL-family {Fe}ae[o - Then F? satisfies

O0—independence and 0— composition.

Proof.

(i) Fix some # € [0,1), and let F' be a rule satisfying the axiom §—composition,
and let (N, E, c) € B such that % < (1 —0)c,. By definition, F*(N, E,c) =
c—F(N,C—E,c). Now, since F satisfies §—composition, and W < (1-
0)ci, we have F(N,C—FE,c) =m?(c)+ F(N,C—E—-%",_, m!(c),c—m’(c)).

As a result, and taking into account that ¢ — mf(c) = ¢'=%, F*(N, E,c) =
0 — F(N,n(1 —0)c; — E,ct?) = F*(N,E,c'"?), which means that F*
satisfies (1 — §)—independence.

Conversely, suppose that F* satisfies (1—6)—independence, and let (N, E, ¢) €
B such that £ < (1 — 60)c;. Then, F(N,E,c) = ¢ — F*(N,C — E,c) =
c—F*(N,C—E,"%) =c— ("= F(N,n(1—0)c; —C+ E,c*?). As a
result, and taking into account that ¢ — m%(c) = ¢'=?, we have F(N, E,c) =
mf(c) + F(N,E — Y,y mY(c),c — m?(c)), which means that F satisfies
f—composition.

(ii) Let # € [0,1] and (N, E,c) € B.® Let us see first that F? satisfies

f—independence. If # = 0, then it is vacuously satisfied. Assume that
6 € (0,1]. In order to prove this result, suppose that £ < nfc;. In such
a case, it is straightforward to show that FY (N, FE,c) = % Now, since

8Recall that, without loss of generality, we suppose ¢; < ¢z < ... < ¢,, where n is the
cardinality of V.
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E < nfc;, we have E < 0C. This would imply, FY (N, E,c) = min {fc;, \},
where ) is chosen so that Y, F? (N, E, c) = E. Therefore, F} (N, E,c) =
A= % < fc; < fc; for all i € N. As a consequence, F! (N, E,c) = \ = %,
for all i € N. Finally, since F? satisfies equal treatment of equals, it is also
true that F? (N B, cg) = %, for all i € N, which shows that F satisfies
f#—independence.

According to (i) above, §—composition and (1—#)—independence are dual
properties. Since F''~Y satisfies (1 — §)—independence and the dual rule of

F%is F'=% according to Proposition 1, F? also satisfies #—composition. N

Proposition 6 The following two statements hold:
(i) For all 6 € (0, 1], 6—exemption is the dual property of (1—0)— exclusion.
(ii) Let FY be a rule in the TAL-family {Fe}ae[o - Then F? satisfies

00— exemption and 60— exclusion.

Proof.

(i) Let & € (0,1) be given. Let us suppose that a rule F' satisfies
f—exemption. Now, consider some bankruptcy problem (N, E,c¢) € B, and
suppose that fc; < %, for some ¢ € N. By hypothesis, F' satisfies
f—exemption and, because (N,C — E, ¢) € B, we have F;(N,C — E, ¢) > fc;.
Now, this is equivalent to F*(N, E,c) < (1 — 0)¢;, which shows that F™*, the
dual rule of F, satisfies (1 — §)—exclusion.

Conversely, suppose that F™* satisfies (1—6)—exclusion. Let (N, E, c) € B,
and suppose that Oc; < %, for some i € N. By hypothesis, F™* satisfies
(1 — #)—exclusion and, since (N,C — E,c) € B, we have F*(N,C — E,c) <
(1 — 0)c;. Now, this is equivalent to F;(N, E, c¢) > 0c;, which shows that F
satisfies #—exemption.

Herrero & Villar (2001) show that exemption and exclusion are dual prop-
erties [Claim 3]. This proves the proposition in the case in which 6 = 1.

(ii) F* = A (resp. F° = L) satisfies exemption (exclusion) [Herrero
& Villar (2001)], which proves the result in the extreme cases. Now, let
0 € (0,1) and (N, E,c) € B. Let us see first that F? satisfies #—exemption.
To do this, let ¢ € N be such that f¢; < % Two cases are to be considered:

Case 1.- E > 0C. In this case, FY(N, E,c) = max{fc;,c; — u} > Oc;,
which shows that F? satisfies §—exemption.

Case 2.- E < 0C. In this case, F/(N, E,c) = min{fc;, \}. For the
sake of contradiction, let us suppose that F/(N,E,c) = A < fc;. Thus,
A< % Now, ¢ > ¢; for all k£ > ¢, which implies that 6c, > X, and therefore
FJ(N,E,c)=X<Z.
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As a consequence, E = >, F!(N,E,c) = TV EY(N B o)+ A <
v FO(N,E c) + (n — i+ 1)Z. Thus, S, FY(N,E,c) > =LE. Since
FY(N,E,c) > 0, for all k, then there exists some k; < i — 1 such that
F,fO(N, E c) > % > )\ = FY(N, E,c), which is a contradiction, since F? is a
reasonable rule [Proposition 2]. Therefore, F satisfies §—exemption.
Part (i) above shows that #—exemption and (1 — §)—exclusion are dual
properties. Furthermore, the dual rule of F? is F'~% [Proposition 1]. As a

result, F also satisfies —exclusion. M

Lemma 1 For two-agent bankruptcy problems, 0—independence, 8 — composition
and 0—ezemption, imply equal treatment of equals, for each 6 € (0,1) (resp.
0—independence, 60— composition and 60— exclusion, imply equal treatment of

equals, for each 6 € (0,1)).

Proof.

Consider (N, E, (¢1, ¢s)) a two-claimant bankruptcy problem, whose claims
are equal, i.e. ¢; = co = c¢. Let 6 € (0,1) be fixed and let f be a rule sat-
isfying §—independence, 6—composition and §—exemption. Let us see that
fi(N, E, (c1,¢2)) = 5, for i = 1,2. Several cases are to be considered.

Case 1.- E = 20c. In this case, ¢ = ¢ = QE—Q. Since f satisfies
0—exemption, f;(N, E, (c1,¢2)) > 0¢; = £, fori = 1,2. Now, f1(N, E, (c1, ¢2))+
fo(N, E,(c1,c2)) = E, implies that f;(N, E, (¢1,¢3)) = %, fori =1,2."

Case 2.- F < 20c. Let us denote by n; the minimum positive integer for
which 20" ¢ < E.1° Now, let us denote by m; the minimum positive integer
for which E < 20™*'c. Z;":lar "(1—6). Since f satisfies #—independence and
6—composition, f(N,FE,(c,c)) = (ai,a1) + f(N, E1, (dy,dy)), where a1 =
gt e Y (1= 0), By = E—20" e 3 (1 - 0)7, and dy = 0™ - (1 —
g)™+L.c. Since 6 € (0,1), 1 < min{ny,m; + 1}. Thus, d; < (1 — 0)c <
ic. Notice that now, F; < 20d;, and we can apply the same argument.

After a finite number of iterations, say K, we would have f(N, E,(c,c)) =
(Zle a, Zle ag) + f(N, Ex, (dk,dk)), where di < (%)K -c. As a result,

fi(N,Ek, (di,dr)) < (i)K ¢, for i = 1,2. If we take limits, when K — oo,

then f(N,E,(c,c)) = (leil Qs leil ag). Now, since fi(N,E,(c1,¢2)) +

fo(N,E,(c1,¢2)) = E, we have Y o> ap = fi(N, E,(c,c)) = %, fori=1,2.
Case 3.- £ > 20c. Let us denote by r; the minimum positive integer

for which 26c Z;fol(l — 6)! > E. Now, let us denote by s; the minimum

positive integer for which £ > 20 (1 —@)"*1.c+20c > io(1—0)7. Since

9t is also true that ¢; = ¢ = %. Thus, if f satisfies §—exclusion (instead
of f—exemption), f;(N, E,(¢c1,¢2)) < O¢; = %, for i = 1,2. Now, f1(N,E, (c1,¢2)) +
fa(N,E,(c1,¢2)) = E, would also imply that f;(N, E, (c1,c2)) = %, fori=1,2.

10As a result, 20™ e < E < 20™¢.
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f satisfies #—independence and #—composition, f(N, E, (c,c)) = (by,b1) +
f(N, El, (61, 61)), where bl =fc- 251:0(1 - 8)]’7 E1 =F—20c- 251:0(1 - Q)j,
and e; = 6% - (1 —60)" ™ . c. Since 6 € (0,1), 1 < min{r; + 1,s1}. Thus,
er < 60(1 —0) < ic. Notice that now, E; > 2fe;, and we can apply
the same argument. After a finite number of iterations, say K, we would

have .f(N7Ea (C> C)) = (Zf:l b, Zf:l bk) + f(N’ Ek, (eKaeK))v where ey <
(i)K -c. As aresult, f;(N, Ek, (ex,ex)) < (i)K ¢, for i = 1,2. If we take
limits, when K — oo, then f(N, E, (c,c)) = O p 1 bk, D1y bk). Now, since
fi(N,E, (c,c))+ f2(N, E, (c,c)) = E, wehave > 1o by = fi(N, E, (c,c)) = £

2
for i = 1,2, and the proof is in this way completed. B

7 Appendix 2: On the tightness of the char-
acterization results

7.1 Essential properties in Theorem 1

Let us fix some 6 € (0,1). We give examples of rules outside the TAL-family
satisfying all but one of the properties mentioned in Theorem 1. We mention
in each case the property that is not fulfilled.

f—exemption. Let us consider the  set of two-claimant bankruptcy prob-
lems, i.e. |N| = 2, and denote by B the particular bankruptcy problem

B = ({1,2},26,(1,2)). Now, take the following bankruptcy rule g’:

F9(N,E,c) if (N,E,c)# B
0 _ s y =
f50 = | (4% i (NEo-TF

It is straightforward to see that ¢’ is well defined. Since ¢’ is only defined
for two-claimant bankruptcy problems, consistency is vacuously satisfied.
Obviously, if (N, E, c) # B, the remaining properties are also satisfied. Let
us now turn to B. Since 20c; < E < ¢y + (20 — 1)c1, §—composition and
f—independence, are trivially satisfied. Moreover, it is clear that ¢?(B) < fc;,
for ¢+ = 1,2, which implies that #—exclusion is satisfied. However, since
fcy < £, and ¢{(B) < 0c;, 0—exemption is not satisfied.

f—exclusion. Let us consider the set of two-claimant bankruptcy prob-
lems, i.e. IN| = 2, and denote by B the particular bankruptcy problem
B = (N,20+1,(%,2)). Now, take the following bankruptcy rule ¢

2032
FO(N,E,c) if (N,E,c)# B
(1,420 if (NE,c)=B

2772

9" (N,E,c) :{
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It is straightforward to see that ¢’ is well defined. Since ¢’ is only defined
for two-claimant bankruptcy problems, consistency is vacuously satisfied.
Obviously, if (N, E, ¢) # B, the remaining properties are satisfied, due to the
fact that ¢¥ coincides with the member of the TAL-family F. Let us now turn
to B. Since 20c; < E < ¢+ (20 —1)c;, §—composition and §—independence,
are trivially satisfied. Moreover, it is clear that ¢?(B) > fc;, for i = 1,2,
which implies that §—exemption is satisfied. However, since (1—60)c¢; < %,
and ¢{(B) > fc;, §—exclusion is not satisfied.

f—independence. Let us consider the set of two-claimant bankruptcy
problems, i.e. \N | =2, and denote by B the particular bankruptcy problem
B=(N,1 ( )) Novv take the following bankruptcy rule ¢:

_ [ FO(N,E,c) if (N,E,c)# B
O RN e §

It is straightforward to see that ¢¥ is well defined. Since ¢’ is only defined
for two-claimant bankruptcy problems, consistency is vacuously satisfied.
Obviously, if (N, E, c) # B, the remaining properties are satisfied, due to the
fact that ¢’ coincides with the member of the TAL-family F?. Let us now
turn to B. Since E < ¢y + (20 — 1)c;, f—composition is trivially satisfied. Tt
is also clear that ¢¢(B) < fc;, for i = 1,2, which implies that #—exclusion
is satisfied. Moreover, Oc; > %, for 1 = 1,2, and therefore f—exemption is
vacuously satisfied. However, if ¢’ would satisfy #—independence, then we
would have ¢’(B) = ¢’ (N, 1,(1,1)) = (3,3) # (0,1).

f—composition. Let us consider the set of two-claimant bankruptcy prob-
lems, i.e. |IN| = 2, and denote by B the particular bankruptcy problem
B = (N,2+0,(1,2)). Now, take the following bankruptcy rule g°:

[ F°(N,E,c) if (N,E,c)# B
QG(N’E’(:)_{ 6,2) it (NE,c)=F -

It is straightforward to see that ¢’ is well defined. Since ¢’ is only defined
for two-claimant bankruptcy problems, consistency is vacuously satisfied.
Obviously, if (N, E,c) # B, the remaining properties are satisfied, due to
the fact that ¢’ coincides with the member of the TAL-family F?. Let us
now turn to B. Since E > 20c;, §—independence is trivially satisfied. It is
also clear that ¢?(B) > fc;, for i = 1,2, which implies that #—exemption is
satisfied. Moreover, (1 — 0)c; > C_TE, for i = 1,2, and therefore §—exclusion
is vacuously satisfied. However, if g’ would satisfy #—composition, then we

would have ¢(B) = (0,1+0) + (152, 2) # (6, 2).
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Consistency. Let us consider the particular bankruptcy problem B =
({1,2,3},46,(1,2,3)). Now, we define the following bankruptcy rule ¢

F°(N,E,c) if (N,E,c)# B
0 — 7 T B
g (N=E’C>_{ (0,0,20)  if (N,E,c)=B "’

where F? is the corresponding rule in the TAL-family. It is straightforward
to see that ¢° is well defined. Obviously, if (N, E,c) # B, the §—axioms
are satisfied. Let us now turn to B. Since 30c; < E < C — 3(1 — 6)ey,
f—independence and #—composition, are trivially satisfied. It is also clear
that ¢?(B) < fc;, for i = 1,2,3, which implies that #—exclusion is satis-
fied. Moreover, ¢Y(B) = fc;, and Oc; > %, for ¢ = 2,3, which shows that
0 —exemption is satisfied. Finally, ¢ is not a consistent rule. Otherwise, we
would have ¢’ (B) = F? (B) = (0, %,22), which is not the case.

172072

7.2 Essential properties in Theorems 2 and 3

Now we focus in the case # = 0. We give examples of rules, different from
the L rule, satistying all of the properties mentioned in Theorem 2, except
one. We mention in each case the property that is not fulfilled.

Remark 3 Concerning Theorem 3 it is enough to consider the dual rules of
the ones mentioned here.

Equal treatment of equals. Let us consider the set of two-claimant bank-
ruptcy problems, i.e. |N| = 2, and denote by B the subset of such problems
B={(FE,(1,E)): E > 1}. Now, consider the following bankruptcy rule f.

L(N,E,c) if (N,E,c)¢ B
(5,E—13) if (NE,c)eB "~

3 3

rz0 -

Notice that f is well defined. Since f is only defined when |N| = 2, then
obviously satisfies consistency. Moreover, since L satisfies exclusion and
0—composition, then so does f, for all bankruptcy problems out of B. Let us
now consider some (N, F,c) € B. Observe that in this case ¢; > %, and
therefore, f vacuously satisfies exclusion. About 0—composition, m°(c) =
(0,c0 — c1). Let E' = E —mQ¥(c) —m5(c) = 1. Then, f (N,E c—m’c)) =
f(N,1,(1,1)) = (3,2). Moreover, f(N,E,c) = (3, E—3) = (0,E—1)+
(3,2) = m°(c) + f (N, E',c — m°(c)), which concludes the proof. However,
as we mentioned above, f fails to satisfy equal treatment of equals. Take the

bankruptcy problem (N, 1, (1,1)), and observe that f (N, 1,(1,1)) = (3, 2).
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Exclusion. Let us consider the set of two-claimant bankruptcy problems,
ie. |N| = 2, and denote by B the particular bankruptcy problem B =

(N, 1, (%, g)) Now, take the following bankruptcy rule g:

_ [ L(N,E,c) if (N,E,c)#B
MME@—{@@ if (N,E,c)=B "’

It is straightforward to see that ¢ is well defined. Since g is only defined
for two-claimant bankruptcy problems, consistency is vacuously satisfied.
Obviously, if (N, E, ¢) # B, g coincides with L and the remaining properties
are satisfied. Let us now turn to B. Since E < ¢y — ¢;, 0—composition is
vacuously satisfied. However, since ¢; < C;ZE, and g,(B) = % > (), exclusion
is not satisfied.

0—Composition. Let N = {1,2}, be the set of claimants, and (N, F,c) a
bankruptcy problem, where without loss of generality, assume that ¢; < cs.
Now, consider the following bankruptcy rule f2.

fQ(NE'c):{ (%’%> if ¢; = ¢

T (E—MQ(N,E,C),MQ(N,E,C)) ifCl #CQ ’

where My(N, E,c) = max{cs, E'}. Notice that 0 < E — My(N, E,c) < ¢,
which ensures that f? is well defined. Since f? is only defined when |N| = 2,
then obviously satisfies consistency. By definition, it satisfies equal treat-
ment of equals. Let us see that it also satisfies exclusion. Suppose that
g < C;2E Thus, co > ¢1. If co < E, then C = ¢; + ¢ < E—l—%,
which implies C' — E < %, a contradiction. Hence, ¢ > F, and therefore
f?(N,E,c) = (0, E), which proves that f? satisfies exclusion. Finally, it
does not satisfy partial 0—composition. To see this, it suffices to take the
bankruptcy problem (N, E, c) = ({1,2},2,(1,2)). Then, m®(c) = (0,1). Let
E' = E—mi(c) —mi(c) = 1. Thus, m®(c) + f2 (N, E',c —m°(c)) = (3, 2) #
(0,2) = f2(N,E,c).

Consistency. Let us consider the particular bankruptcy problem B =
({1,2,3},4,(1,3,5)). Now, we define the following bankruptcy rule g:

[ L(N,E,c) if (N,E,c)# B
“Mﬂ@_{@zm if (N,E,c)=8 "

It is straightforward to see that g is well defined and satisfies equal treat-
ment of equals. It also satisfies exclusion and 0—composition. Obviously, if
(N, E,c) # B, g coincides with L and the remaining properties are satisfied.
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Let us now turn to B. Since E < C'—3c¢;, 0—composition is trivially satisfied.
It is easily observed that ¢; > C—gE, for i = 2,3, and g;(B) = 0, which shows
that exemption is satisfied. Finally, ¢ is not a consistent rule. Otherwise, we
would have g (E) =1L (E) = (0,1, 3), which is not the case.

7.3 Essential properties in Theorem 4

Since mid-exclusion and mid-exemption are dual properties, if a self-dual rule
satisfy one of them, then it satisfies both properties. The converse is not true.
To show this, it suffices to take, the rule which coincides with the Talmud
rule in each bankruptcy problem, except on ({1,2},1,(2,4)), for which the
proposed allocation is (0, 1).

A similar argument can be used for the properties of mid-composition
and mid-independence. Let us consider, for instance, the rule which coincides
with the Talmud rule in each bankruptcy problem, except on ({1, 2}, 1, (%, %)),
for which the proposed allocation is (%, %) That is a rule which satisfies mid-
composition and mid-independence, but it is not a self-dual rule.

Let us see now that Theorem 4 is tight. To do so, we give examples of
rules, different from the Talmud rule, satisfying all of the properties men-

tioned in Theorem 4, except one. We mention in each case the property that
is not fulfilled.

Mid-exclusion (or mid-exemption). Consider the universe of two-creditor
bankruptcy problems, and take, for instance, the rule which coincides with

the Talmud rule in such problems, except on ({1,2},2,(2,4)), and ({1, 2},4,(2,4)).
In the first case, the proposed allocation is (0,2), and in the second case
(2,2). Such a rule, is self-dual, satisfies mid-composition (and therefore,
mid-independence), and (vacuously) consistency, but neither mid-exclusion

nor mid-exemption.

Mid-composition (or mid-independence). Consider the universe of
two-creditor bankruptcy problems, and take, for instance, the rule which
coincides with the Talmud rule in such problems, except on ({1,2},1, (2,4)),
and ({1,2},5,(2,4)). In the first case, the proposed allocation is (0,1), and
in the second case (2,3). Such a rule, is a self-dual rule which satisfies mid-
exclusion (and therefore, mid-exemption) and (vacuously) consistency, but
neither mid-composition nor mid-independence.

Consistency. Let us consider two particular bankruptcy problems B, =
({1,2,3},2,(1,2,3)), and By = ({1,2,3},4,(1,2,3)). Now, we define the
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following bankruptcy rule g:

T(N,E,c) if (N,E,c)# Bi, By
if (N,E,c)=B;

g(N,E,C): ) 21
) if (N,E,c)=B,

[\]

It is straightforward to see that g is well defined. Obviously, if (N, E,c) # By,

Bs, the remaining properties are also satis@d, as T satisfies them. Let us now

turn to Bj, for j = 1,2. Since g(B1) + g(B2) = (1,2, 3), it is straightforward
E

to see that g is a self dual rule. Moreover, since 4 < %, in both cases,

mid-independence is trivially satisfied. It is also clear that g;(B;) < g, for

i = 1,2,3. Moreover, in the case of By, g1(Bs) = %, and § > (CEE), for
i = 2,3. All together says that mid-exemption is satisfied. Finally, g is not a
consistent rule. Otherwise we would have g (B;) =T (B;) = (3,2,3), which

) 1 214714
is not the case.

Self-duality. Each of the examples mentioned at the beginning of the sec-
tion are valid, if they are only defined for two-claimant bankruptcy problems,
which would ensure that they vacuously satisfy consistency. Both of them
are not self-dual rules but they satisfy either mid-exclusion or mid-exemption
and either mid-composition or mid-independence.

Since g is a self-dual rule, satisfying mid-independence and mid-exemption, then it
also satisfies mid-composition and mid-exclusion.
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