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PSEUDORANDOM PROCESSES: ENTROPY AND AUTOMATA
Pen§lope Hern§ndez and Amparo Urbano

ABSTRACT

This paper studies implementation of cooperative payo®s in nitely repeated games when
players implement their strategies by nite automata of big sizes. Speci cally, we analyze how
much we have to depart from fully rational behavior to achieve the Folk Theorem payo@s, i.e.,
which are the maximum bounds on automata complexity which yield cooperative behavior in
long but not in nite interactions. To this end we present a new approach to the implementation
of the mixed strategy equilibrium paths leading to cooperation. The novelty is to o®er a new
construction of the set of the pure strategies which belong to the mixed strategy equilibrium.
Thus, we consider the subset of strategies which is characterized by both the complexity of
the nite automata and the entropy associated to the underlying coordination process. The
equilibrium play consists of both a communication phase and the play of a cycle which depends
on the chosen message. The communication set is designed by tools of Information Theory.
Moreover, the characterization of this set is given by the complexity of the weaker player that
implements the equilibrium play. We o®er a domain of de nition of the smallest automaton
which includes previous domains in the literature.

KEYWORDS: Complexity; Cooperation; Entropy; Automata; Repeated Games.



1 INTRODUCTION

The message of the Folk Theorem and several other results (Aumann,1960, 1981; Rubinstein,
1979, 1980) is that cooperative behavior may emerge in non-cooperative situations when the
nature of interactions is long term. However, in the nite repetition of most of these situations,
all equilibria lead to the non-cooperative outcome of each stage. This is in clear contrast,
for instance, with common observations in the experiments involving nite repetitions of the
prisoner's dilemma, where participants achieve some mode of cooperation. On the other hand,
if players are restricted to choose automata that are too small to count the number of stages
of the repeated game then both players choosing "a cooperating automata" is a Nash equilib-
rium. One may therefore think of "bounded rationality” or bounded ability to handle strategic
complexities, as a way to solve the prisoners's dilemma paradox. It is surprising that even if
the players can choose large automata, then they can get arbitrarily close to the cooperative
payo®s provided that they are allowed to randomize in their choices of automata (Neyman,
1985).

A great deal of attention has been paid recently to repeated games with bounded complexity.
Speci cally, there are several papers in the repeated games literature, which study the conditions
under which the set of feasible and rational payo®s are equilibrium outcomes, when there are
bounds (possibly very large) to the number of strategies that players may use. In the context
of strategies implemented by nite automata, these bounds are given by the complexity of
the players's automata which implement the equilibrium ( see Rubinstein, 1986; Abreu and
Rubinstein, 1988; Neyman, 1998; Papadimitriou and Yannakakis, 1994; Neyman and Okada,
1997, among others).

The present paper studies implementation of cooperative payo®s in nitely repeated games
when players implement their strategies by nite automata whose sizes are exogenously given;
the motivation being to justify the empirical regularity of such a cooperative behavior (Axelrod,
1980). Speci cally, we analyze how much we have to depart from fully rational behavior to
achieve the Folk Theorem payo®s, i.e., which are the maximum bounds on automata complexity
which yield cooperative behavior in long but not in nite interactions.

Building on the work of Neyman (1998), we improve existing results in the literature (Ney-
man, 1998; Neyman and Okada, 1997, Zemel, 1989 and Papadimitriou and Yannakakis, 1994)
by taking a di®erent approach and focusing on the complexity of mixed strategy equilibrium
paths leading to the Folk Theorem payo®s. Given that in our setting players not only choose



large automata but also randomize among them, the equilibrium is a mixture of such choices.
Each player's pure strategy determines a possible play and the set of pure strategies which
belong to the support of the mixed strategy determines the set of possible plays. Thus, the
~rst problem to solve is to choose the subset of a player's pure strategies which generates the
mixed strategy and, in turn, the set of possible plays. There are many of these subsets since
the number of nite automata is an exponential number of a player's complexity. Then, the
second problem is to select a right subset such that the selection of the speci c¢ equilibrium play
satis es good properties of complexity and ezciency. This implementation of a speci ¢ mixed
strategy equilibrium is through a coordination process which yields a payo® close enough to
any of the ones belonging to the set of feasible and rational payo®s. Thus, the complexity of
such a process determines that of the equilibrium path and we look for processes with satisfy
both the equilibrium complexity bounds and maximal exciency (closer to the targeted payo®).

We characterize the above properties of a coordination scheme by its informational features.
Speci cally, the complexity of the process is related with the associated entropy, which captures,
from an Information Theory viewpoint, the cardinality of the sequences belonging to a particular
set with some good properties (Typical Set). The number of equilibrium plays depends on the
cardinality of the selected sequences and thus on its associated complexity. Processes with low
entropy translates to small cardinalities and hence to small number of plays while processes with
the maximal entropy imply a large number of sequences and then a large number of equilibrium
plays. On the other hand, exciency of the process is translated to optimal codi cation schemes
which produces "'short™ coordination processes.

Speci cally, to construct an equilibrium play the coordination process consists of both a
communication phase and the play of a cycle, whose last part, the veri cation play, depends
on the speci ¢ chosen message. Since equilibrium plays are in a one-to-one relationship with
the set of communication messages, the design of this set (with respect to the cycle’s play) is
crucial for the construction. Then our equilibrium conditions are determined by the inter-play
communication scheme. We consider the subset of pure strategies which is characterized by
both the complexity of the nite automata and the entropy associated to the communication
and the veri cation phenomena.

The nowelty of the paper is to present a new approach to construct mixed strategy equilibria
with nite automata. This new viewpoint allows us to characterize the set of pure strategies
which belong to the support of the equilibrium mixed strategies. Moreover since we o®er
the less restrictive equilibrium conditions this set cannot be improved upon. The previous



literature (Neyman, 1998; Neyman and Okada, 1997) give restrictions on the whole set of pure
strategies. In our approach the restrictions are given on each pure strategy and thus we are able
to characterize each equilibrium automaton. To impose such constraints we make use of the
notion of entropy as a measure of the messages’ uncertainty of our communication scheme and
also as a way to measure their associated complexity. This construction also allows us to relate
our communication scheme under strategic complexity ( nite automata) with those in repeated
games with communication and unbounded rationality (Lehrer, 1996; Lehrer and Sorin, 1997,
Forges, 1990; Gossner, 1998; Gossner and Viellie, 1999 and Ben-Porath, 1998 among others).

A related line of research addresses the same question under speci ¢ restrictions of the
players' set of strategies by an exogenous bound: one of the player's strategies are restricted
to those that have strategic entropy less than a prespeci ed bound; where a player's strategic
entropy refers to the uncertainty of his mixed strategy relative to the other player's strategy
(see, Neyman and Okada, 1999 and 2000).

Since punishments in the nitely repeated game are in pure strategies, the main result
of the paper is given in terms of the weaker player's complexity. The domain of de nition
of this player's complexity includes all the others bounds already o®ered in the literature.
This improvement is achieved by the approach that we follow: to understand the problem of
constructing the set of pure strategies as a codi cation problem where what is being codi ed
is the complexity of the player with the smallest automaton (the “weaker player™).

Although we use the concept of entropy as a technical tool, it also gives us a much deeper
understanding of the connection between communication and codi cation issues. The com-
plexity costs associated to the veri cation play are measured in terms of the weaker player's
complexity, since his automaton's capacity determines the number of plays. Moreover, since,
this player's complexity bounds are related to the "-approximation to the targeted equilibrium,
there are also exciency costs associated to the veri cation play. However, the communication
costs are just measured in terms of the players' payo®s (in the "-approximation to the targeted
equilibrium) since in our construction the weaker player's automaton need not additional states
to process the information. In this framework, the entropy notion is useful to characterize both
the complexity and the ezciency costs associated to the veri cation play and the communica-
tion phase. On one hand, the entropy of sequences of i.i.d. random variables give us a good
measure of the complexity of such sequences. On the other, the optimal (shortest) codi cation
of the veri cation sequences produces the shortest communication phase, which, in turn, is
bounded by the entropy of the random variable associated to the veri cation sequences. Thus,



the entropy measures both the complexity and the ezciency costs associated to the equilibrium
play.

The paper is organized as follows. Section 2 sets up the one-shot game, the nitely repeated
game and the nite automata framework and some known results in play complexity are stated.
Section 3 o®ers the main result, while section 4 presents the scheme of the play. The analysis of
sequences and codi cation schemes is undertaken in section 5, where some tools of Information
Theory are presented and a rst result of our construction, stated in section 3, is proven.
Section 6 is devoted to prove the main result. To this end, the constructions of (a) the set of
messages, (b) the equilibrium play, and (c) the players' automata, are o®ered and it is checked
that they satisfy the equilibrium conditions. Concluding remarks close the paper.

2 PRELIMINARIES

2.1 The one-shot game

Let G=(f1;29; (ADizf1.24; (r)izf1:29) be a game where f1; 2g is the set of player. Al isa nite
set of actions for player i (or pure strategies of player i) and r' : A= A £A? jI R is the
payo® function of player i.

We denote by u;(G) the individual rational payo® of player i in pure strategies, i.e., uj(G) =
min max r'(a'; ai') where the max ranges over all pure strategies of player i, and the min ranges
over all pure strategies of player 3 ji. For any nite set B we denote we denote by ¢(B) the set of
all probability distributions on B. An equilibrium of G is a pair % = (%1;%2) 2 ¢(Al) £ ¢(A?)
such that for every i and any strategy of player i, o' 2 Al; ri(¢h: %1 r'(%% %2); where
r(%) = Ey( r(a';ai")) If % is an equilibrium, the vector payo® r(%) is called an equilibrium
payo®.

We denote by E(G) the set of all equilibrium payo®s of G.

2.2 The nitely repeated game G'

>From G we de ne a new game in strategic form G which models a sequence of T plays of
G, called stages. By choosing actions at stage t, players are informed of actions chosen in
previous stages of the game. Formally, let Hg;t = 1;:::; T, be the Cartesian product of A by
itself t § 1 times, i.e.: Hy = Atil, with the common set theoretic identi cation A° = ®, and let
H = [t_oH:. A pure strategy %' for player i in G" is a mapping from H to A';%' : H ¥ Al



Obviously, H is a disjoint union of He; t = 1;:::; T and %:H; ¥ A as the restriction of %'
to H;. We denote the set of all pure strategies of player i in G' by §'(T). Any 2-tuple
% = (%%, %) 2 £8'(T) of pure strategies induces a play (%) = (1,(%);::;1+(%)) with
1.(%) = (V1(%); V2(%)) de ned by 1, (%) = (%1(®); %2(®)) = %(®) and by the induction relation
%) = %' (o) s Vg a () = % (L) i Ve (A)):

Let ry(%) = LalD>2rCrO)) pe the average vector payo® during the “rst T stages induced

by the strategy pro le %

Two strategies %' and ¢! of player i in GT are called equivalent if for every 3 j fig tuple of
pure strategies %it; V(%5 % i) = 1, (¢1;%i7) forevery 1 t T.
An equivalence class of pure strategies is called a reduced strategy.

2.3 Finitely repeated games played by nite automata

A Tnite automaton for player i that implements the strategy pro le % in G' is a tuple M' =<
Q' ab; F'; ' >, where:

2 Qi is the set of states
2 gl is the initial state
2 i js the action function, f': Q' ¥ Al

2 gi js the transition function from state to state g' : Q' £ Aii ¥ Qi

The size of a nite automaton is the number of its states, jQj.

We de ne a new game in strategic form G'(m1; m2) which denotes the T stage repeated
version of G, with the average payo® as evaluation criterion and with all the nite automata
of size m; as the pure strategies of player i, i = 1;2. Let §'(T;m;) be the set of pure strategies
in GT(my; my) that are induced by an automaton of size m;:

A nite automaton for player i can be viewed as a prescription for this player to choose his
action in each stage of the repeated game. If at state q the other player chooses the action
tuple ai', then the automaton’s next state is g'(q;ai’) and the action to be taken at stage 1 is
fi(q'). The action in stage 2 is Fi(g'(q%; ai')) where a ' is the action taken by the other players
in stage 1. More generally, de ne inductively,



9'(q; by; 5 be) = g'(9'(q; ba; 25 b 1); b),

where ajii 2 Al the action prescribed by the automaton for player i at stage j is
i(g'(@haf % adh)).

For every automaton M for player i, de ne a strategy %\, in G™ by

I (ar:ae1) = F1(0'(0 s af ;s adly)): A strategy %' for player i in G is implementable by

the automaton M if %! is equivalent to %, i.e.: for every ¢ 2 82(T); V(%' ¢) = V(% ;¢ ):

2.4 Notation

Let G = (f1;2g;A; r) be the two-player game in strategic form de ned in section 1.1. Denote
by K twice the largest absolute value of a payo® in the game G: Thus, r'(a) j r'(p) K for
everya;h2 Aandi=1;2:

Given the set X, co(X) means the convex hull of X:

Recall that u;(G) is the individual rational payo® of player i in pure strategies and denote
by F(G) the set of feasible and rational payo®s of G i.e., the set of payo® pro les x such that
x 2 co(r(A)) and x' > u'(G)

Denote by [x] the integer part of a real number x.

The number of elements of a set X is denoted by jXj:

Let T be a real function then:

f grows polynomially is denoted by f = O(p) for some polynomial p i:e: : f = nOW:

f grows subexponentially is denoted by f = o(2");i:e: : 84> 0 2% < % for all suxciently
large n:

2.5 Play complexity

The main results in play complexity are those given by Kalai and Stanford (1988) and Neyman
(1998). We present here the de nitions of the complexity of a strategy in Gt and then the
de nitions in G.

First, a ~nite sequence of actions (ay;:::; a;) is compatible with a pure strategy %' if for every
1 st ¥%(a;; as51) = al: Let A"(%') be the set of all sequences of actions of length n
that are compatible with %: Consider for any sequence of actions (as; :::; a;) and a pure strategy
%' the new strategy (%' j a;;::;a) in G1 given by



(%' jag; i as)(be; i be) = %' (ag; i as; by 1 by

The number of di®erent reduced strategies that are induced by a given pure strategy %
of player i in GT(m;;m,) and all %'-compatible sequences of actions of length n, for all n,
provides with a ~rst measure of the complexity of %, comp; (%"): This de nition has a natural
extension to the “nitely repeated game, G'. Let (¥){—, where % 2 8!(T) and de ne comp,(%) =
min fcomp,(¢) ¢ 2 8and 8t;1 t  T;¥% = ¢Q:

Second, de ne comp, (%) as the size of smallest automaton that implements %':

The two above de” nitions turn out to be equivalent (Neyman, 1998, proposition 2), comps(%') =
compz(%'):

We shall often need bounds on the complexity of strategies that induce a given play. Hence,
for aplay 1, de ne player i's complexity of T, comp'(1); as the smallest complexity of a strategy
%' of player i which is compatible with I:

comp' (1) = inf foomp' (%) : % 2 &' is compatible with 1g:

Let Q be a set of plays. A pure strategy %! of player i is conformable to Q if it is compatible
with any 1 2 Q: The complexity of player i of a set of plays Q is de ned as the smallest
complexity of a strategy %' of player i that is comformable to Q.

comp'(Q) = inf fcomp' (%) : % 2 &' is comformable to Qg

The following lemmata, proved in Neyman (1998), provide bounds of the complexity of some
particular plays which will be used in the proof of the main result. The rst result provides
with an upper bound of the complexity of a sequence of actions of length t:

Lemma 1 Let a = (ay;:;;a;) 2 At: Then comp'(a) t:

Leta = (a;::;ar) 2 Atand b = (by;:::;bs) 2 AS; and denote by a+b = (ag; 22 a¢; by i bs) 2
A'™S the concatenation of two histories. The second lemma states the complexity bound of such
a concatenation.

Lemma 2 Let a= (as;::;;ay) 2 Atand b = (b bs) 2 AS: Then comp' (a+b) _ max(comp'(a); corr

For a= (a;;::;a;) 2 At and a positive integer d, de ne doa by inductionond:l1ra=a:
and (d+1)sa=droa+a:
The complexity of a sequence of actions that changes in the last stage is stated next.

Lemma 3 Leta = (ai;:;ar) 2 A'withay = a; = = a;1 and af,;, & al: Then comp'(a) = t:
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Let a= (ay;:;ar) 2 Atand b = (by; 5 bs) 2 AS; and s with min(t;s) _ s i 1 then de ne
a=¢hifa, =b, foreveryr <s:

Consider two nite sequences of actions a and b such that the st action for player i in a
and b is di®erent.: a! & bl: The next lemma presents a lower bound for the complexity of a
play that consists of a cycle (tra+ D) repeated d times and there is a deviation of player i after
the toa action pairs on. This result is useful to measure the complexity needed to deviate from
a given cycle play.

Lemma 4 Let a = (ar;::;ak) 2 A< and b = (by;:by) 2 A" with a} & bi;t _ Oandd _ 1:
Assume that ¥ = (¥4;::5; 1) 2 A% with (d j D(tk+n)+tk+1<s (d+1)(tk+n) and
do(tea+b)=s ! and ((d+ 1) a(toa+h). &1 Then comp'(l) . d(t+ 1):

Let f: Al ¥ AZpeal-1 function and let a = (ay;::;an) 2 A" be a play with a? = f(a}) for
everyl t n, then ais called a coordinated play. In case of a coordinated play, the number
of equivalence classes induced by a strategy %' conformable with ! is exactly the length of the
play. We need a complexity lower bound for a play that consists of a coordinated periodic play.
This is stated next.

Lemma 5 Let a = (a;;::;a,) 2 A" be a coordinated play, b 2 A with b! & a}; and d 2 N:
Then compi(dea+b) _ (dj 1)n+1:

Finally, the next result states a lower bound for a play in terms of the number of consecutive
action of player i.

Lemma 6 Let a = (ar;::;ax) be a play. Let B' % Al be a nonempty subset of the actions of
player i. Assume that k : B' ¥ N is such that for every b' 2 B! there is s = s(b') <t j k(b")
With asr1 = 1 = @sekeiy =b' and @,y & @l 4iysq- Then comp(a) . Lipi k(@):

By the de nition of the complexity of a strategy, the above lemmata are proved by counting
the number of di®erent strategies obtained when all possible plays ! are induced. Each induced
strategy generates an equivalence class of strategies and then the number of these equivalence
classes coincides with the number of the automaton states. The overall sketch of the proofs is:

1. Let % be a strategy compatible with !:

2. Consider the set of strategies (% j 1) j t 2 Ng where (%] 1) denotes the strategy induced
by the play ! of length t

10



3. For each strategy consider the number of reduced strategies with the concatenation of
histories.

This last number is the cardinality of the set (% j ;) jt 2 Ng and thus comp(%) is obtained.

3 MAIN RESULT

The main result establishes the existence of an equilibrium payo® of GT(my; m,) which is
" i closed to a feasible and rational payo®. In the context of nitely repeated games, deviations
in the last stages could be precluded if players did not know the end of the game. This may be
achieved if players implemented their strategies by playing with nite automata which cannot
count until the last stage of the game. On the contrary, player i will deviate if he is able to
implement cycles of length at least the number of the repetitions. Hence, if players answered
to di®erent plays of length smaller than the number of repetitions then they could spend their
capacity and not be able to count until the end of the game. In this way, a player can |l up the
rival's complexity by requiring him to conform with distinct plays of suzxciently large length,
i.e., approximately O("'T):

To Il up the complexity of the weaker player, the stronger player ( the one with the
biggest automaton) speci es the set of plays by means of a set of messages to be sent in the
communication phase. The complexity of the set of plays is determined by the complexity of
such a weaker player and the di®erence among the distinct plays is a small portion of each play
(the veri cation play). Thus, what is being determined in each message is the above veri cation
play. Hence, to design the set of plays can be understood as a codi cation problem where what
is being coded is the weaker player's complexity.

Similarly to the existing literature (Neyman, 1998) we o®er the equilibrium conditions in
terms of the complexity of the smallest automaton which implements the equilibrium play. The
main di®erence is that both the upper and the lower bounds that we achieve include previous
bound's domains. This is due to our optimal construction of the set of veri cation sequences
and the associated communication scheme. We characterize the above set by selecting a subset
of sequences over a nite alphabet. Since messages are a codi cation of plays we follow the
shortest codi cation in order to construct the communication phase!. We state informally

1This is in clear contrast with Neyman (1998) who does not construct the shortest communication phase
given his set of veri cation sequences.
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this rst result which is needed to show that under our construction the sets of veri cation
and communication sequences are the optimal sets to codify the weaker player's complexity.
The formal statement of this result is presented in section 5 where we introduce the tools of
Information theory which are needed to prove it. Then, Theorem 1 establishes the existence of
an equilibrium payo® of G™ (m;; m,) which is " j closed to a feasible and rational payo® under
automaton bounds which are the best in the literature.

Result 1: The set of messages for the communication phase coincides with the set of
sequences for the veri cation play, i.e. an optimal codi cation map is the identity. In other
words, given our set of veri cation sequences there is not a shortest codi cation scheme.

The main result below presents the equilibrium conditions to reach a feasible and rational
payo® in a nitely repeated game when players implement their strategies by means of nite
automata.

Theorem 1 Let G = (f1;2g; A;r) be a two person game in strategic form. Then for every "
suzciently small, there exist positive integers To and mg, such that if T _ To, and x 2 co(r(A))
with x' > u'(G) and mg  minfmy, myg  exp("T) and maxfmi, mzg > T then there exists
y 2 E(GT(myg;myp)) with jy' § x'j <

Theorem 1 will follow from conditions on: 1) a feasible payo® x 2 co(r(A)); 2) a positive
constant " > 0; 3) the number of repetitions T, and 4) the bounds of the automata sizes,
my; m,, that guarantee the existence of an equilibrium payo® y of the game G’ (m;; m,) that
is "-close to x.

To see that our bounds include previous bound's domains we include here Neyman's result:

Theorem (Neyman, 1998): Let G = (f1;2g;A;r) be a two person game in strategic form.
Then for every " suzciently small, there exist positive integers To and mg, such that if T _ T,
and x 2 co(r(A)) with x' > u'(G) and my  minfmy;m,g  exp("T) and maxfmq, m,g>T
then there exists y 2 E(GT(my;; my)) with jy' j xij <™

One of the conditions of our theorem is stated by means of the inequalities m; _ my
where mg is suzxciently large. Another condition require the bound of one or both size to be
subexponential in the number of repetitions, i.e., a condition that asserts that (log m;)=T is
su=ciently small. The characterization of this condition is related with the codi cation schemes
to be studied in Section 5.

12



4 THE SCHEME OF THE PLAY

In this section we present the scheme of the play to reach a feasible and rational payo® x in a
nitely repeated game. The plays along the equilibrium path are divided into a communication
phase followed by a play phase.

Assume without loss of generality that m;  m»: Knowing player 1's complexity, player 2
determines a precise number of plays from which one is selected and sent to player 1 in the
communication phase. This signal speci es one of the nitely many plays of the repeated game
to be played in the play phase and it uses two actions that we label 0 and 1. Player 2 plays a
mixed strategy during this phase and player 1 responds properly to any message. The action
of Player 1 is independent of the message (signal) sent by player 2. Since player 2 proposes the
plays, messages have to be independent of the associated payo®s to each of them. We reach
this independence by means of balanced sequences, i.e., sequences with the same number of
zeros and ones. The speci cation of the set of messages and the correspondence with the set of
plays is crucial in our construction, because we associate each message from the communication
phase with a unique play in the play phase.

After the communication phase the equilibrium play enters into the play phase which con-
sists of a cycle repeated along the play until T. The length of the cycle does not depend on
the signal sent by player 2. Each one of the cycles has associated payo® approximately equal
to the excient and rational payo® x. Thus, in any one of the proposed plays, player 1 has no
incentive to deviate prior to the very last stages of the nitely repeated game. The cycle has to
parts: the veri cation play and the regular play. The regular play is common for every signal
and it consists of a cycle of di®erent action pairs such that players reach a vector payo® " j
close to the excient and rational targeted payo® X.

Player 2 follows a veri cation play to check that player 1 has spent all his states following
the play. It consists of a coordinated play with the identity as the function between A and A? ,
i.e., both players play the same actions. In words, both players follow a monitoring phase such
that the sequence of actions can be understood as a coordination process which determines
each pure strategy. The sequence of actions played in this phase is a sequence whose empirical
distribution coincides with the uniform distribution and where the last element of the sequence
is  xed.

The veri cation scheme is constructed such that it satis es three properties. First, it is
balanced (the number of ones is equal to the number of zeros) to deter player 2's deviations by
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selecting the best payo® sequences. Second, this phase generates a payo® " close to x. Finally,
player 2 "1ls up player 1's capacity by generating enough pure strategies so that the number of
remaining states is suzxciently small. In this way, player 1's deviations from the proposed play
by counting up until the last stage of the game are avoided. For instance, player 1 could be
able to select just one proposed play and deviate in the last stage of this play while repeating
the cycle in all other proposed plays. Similarly, he could increase his own payo® by neglecting
a subset of plays. Thus, the repetition of the cycle precludes sophisticated deviations by player
1.

There are two schemes that player 1 has to design to make a good use of his complexity.
Player 1 needs all the plays in his automaton to follow the right play until T. There are
many player 1's automata which could process the information sent by player 2. Given our
automaton framework we minimize the information processing of player 1 by using the same
states to process the signal and to follow the regular part of the di®erent cycles. However,
this introduces a dizculty since these states of player 1's automaton admit both actions 0 and
1. Moreover, Player 1 uses one automaton with the minimal number of states for each play.
The way to decrease this number is by reusing states for two di®erent actions. For instance,
player 1 can use the same state to implement the action pairs (0;0) and (0; 1) because for the
action 0 he could accept both actions 0 and 1: This entails that there are deviations of player
2 that might be unpunished. If player 2 knew exactly the states that admit both actions, he
could take advantage over them in future stages of the game. These deviations can only be
undertaken by player 2 in the play phase, since the sequences from the communication phase
are balanced and thus he is indi®erent among the messages. To avoid this problem player 1
uses a mixed strategy whose support consists of the minimal subset of pure strategies which
are conformable with the proposed plays and such that it generates enough randomization to
obscure the location of his reused states. Player 1's mixed strategy is constructed by a uniform
distribution in this minimal subset.

Note that every player's behavior plays a di®erent role in the game. The signaling activity
of player 2 has two purposes: how to coordinate and how to |l up player 1's capacity. And
these are the goals of the player 2's mixed strategy. On the contrary, player 1's role consists
of supporting the \coordination™ proposed by player 2 by means of a mixed strategy. To this
end, player 1 builds a mechanism against player 2's undetectable deviations.
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5 SEQUENCES AND CODIFICATION SCHEMES

We proceed to construct the set of veri cation sequences and the associated communication
scheme. The key points of the construction are: 1) the characterization of such sequences by
both their empirical distribution and they informational properties and 2) the design of the
set of communication sequences through the optimal codi cation of the veri cation set. This
approach produces our result 1 and clari es the di®erence between previous constructions and
ours.

Notice that in order to 1l up the complexity of player 1, player 2 generates suzciently many
plays which player 1 has to conform with. The di®erence among them is given by the sequences
of action pairs for the veri cation play because the regular play is common. Moreover, there is
a map between each play and each message related to the corresponding veri cation. Hence,
we look for the shortest way to construct messages associated to the veri cation play and to
be sent in the communication phase, such that this last phase is also the shortest one.

To nd a solution to this problem is equivalent to solving a codi cation problem in Infor-
mation Theory, since the veri cation sequences have to be coded in the communication phase.
To codify means to describe a phenomenon. The realization of this phenomenon can be viewed
as the representation of a random variable. Then, a codi cation problem is just a one-to-one
mapping (the source code) from a nite set (the range of a random variable or input) to another
set of sequences of nite length (output sequences). What is important here is that the length
of the output sequences is the shortest one with respect to the length (or probability) of the
input sequences.

In our setting the set of veri cation sequences is the input set and the set of messages
corresponds with the output set. We start with the set of balanced sequences of length K,
whose cardinality is?> about O(2€i%) and which are the veri cation sequences. Our output set
consists of nite length strings from the binary alphabet with the shortest length and again
with the balancedness condition.

Solving the codi cation problem we obtain the set of messages for the communication phase.
Our codi cation veri es that it is the shortest one and the output sequences are balanced. By
tools of Information Theory we prove our result 1, i.e., that the trivial codi cation (the source
code is the identity) is optimal in the sense that its expected length is minimum and then there
IS no code with shortest expected length that the identity. This result is due to the fact that

23ee footnote 4 below.
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the set of sequences for the veri cation play is designed in such a way that player 1's complexity
(my) is bounded by an integer which is the cardinal of the smallest set of balanced sequences.
If the above condition is not satis ed then there will exist non-trivial optimal source codes®.

The formal details of our construction are presented next. We consider rst deterministic
sequences which satisfy some properties: they are balanced and the last component of each
sequence is xed. We use the method of types and the Type set to de ne these sequences. In
second place, we analyze the information properties of these sequences by means of concepts
such as entropy and the Kullback distance. This allows us to view the Type Set as the set
of random sequences of a given entropy, even without knowing the actual random variable
whose distribution is emulated by the deterministic sequence. Finally, we present the minimal
codi cation of the Type Set with this alternative approach.

5.1 Deterministic Sequences: Type Set

© a
Let Xy1;:::; Xn be a sequence of n symbols from an alphabet £ = aj;az;:::; a5 . We will use

the notation X" and X interchangeably to denote a sequence Xi; Xo; ::i; Xn:
We look for the set of sequences whose empirical distribution is close enough to a given
distribution. We just consider rational distributions of a given length n.

De nition 1 The type P, (or empirical probability distribution) of a sequence X = X;; X»:::; Xpy
is the relative proportion of occurrences of each symbol of £, i.e., Py(a) = Mﬁlﬁ foralla2 £,
where N (a j X) is the number of times that a occurs in the sequence x 2 £":

De nition 2 Given a length n, denote by Py, the set of types of sequences of length n;i:e:;
P,=fPxjx2£"g
For in%tance, if £ = f0;1g; then the set of possible types for the length n is:
Pn=(0;1);(§; LH)(4; £E2); iy (BE2; 2); (BEL; 4); (1, 0)

De nition 3 If P 2 P,, then the set of sequences of length n and type P is called the type
class of P, denoted by T(P); i.e., T(P)=fx2 £": P, =Pg:

3Neyman's source code (1998) is also the identity but it is not the optimal one given his set of veri cation
sequences. In particular, he uses half of the communication sequences to specify the chosen play and the other
half to balance them, in clear contrast with our codi cation which uses a whole sequence to determine the play.
His construction produces that the set of possible plays is smaller than ours, i.e., a subset of ours, and then
that our upper bound on player's 1 complexity is larger than Neyman's upper bound.
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5.2 Random sequences: Typical Set

We present here some basic results from Information Theory. For a more complete treatment
consult Cover and Thomas (1991).

Let X be a random variable over a nite set £, whose distribution is p 2 €¢(£); i.e.,
p(u) = Pr(X =) for each u 2 £:

De nition 4 The entropy H(X) of X is de ned by H(X) = j 8,2ep(1) log(p(1) = i Ex [log p(X)];
where 0 log 0 =0 by convention.

Notice that the entropy of a random variable depends on the distribution and not on the
values it takes and measures the amount of information contained in a random variable or in a
probability distribution.

Let X = (Xy;::;X,) be a vector of nite random variables over £]/_,£,: Then by the
de nition of entropy,

H(X) = H(X; 55 Xn) = i 8lu2e, i 8un2eaP(Hes 2 ) 109 Pl 2o in) where p(iy; i pn) =
P(Xy = ;55 X = Hn):

Given a pair of random variables (X1; X,) taking values in £; £ £, with joint distribution
p(Ug; 1o); we denote by p(U, j 11) the conditional probability that X, = 1, given that X; = j:
De ne h(Xzj W) = i8§,,..,P(H2] He) logp(Hz j Ha):

Thus h(>X, j 1y) is the entropy of X, when the realization X; = p; is known. Consider
h(Xz j ¢) as a random variable on £; equipped with the marginal distribution of Xj; p(u) =

8,25, P(H1; Ha):
De nition 5 The conditional entrop]y_)H (X2 ] X1) of X, given Xj is de ned by
H(Xz2] X1) = Ex, [n(X2] X1)] = 2¢, P(K)D (X2 | pa):

An easy computation shows that H(Xy; X5) = H(X,) + H(X; J X;) where H(X; X5) is
the entropy of the variable (X1; X5): Then, the generalization of the abowve result is the next
proposition.

Proposition 1 If X = (Xg;:::; Xp) is a vector of random variables then
H(X)=HXyg o Xn) = HXD) + i HXkj Xa; 5 X 1):
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The entropy of arandom variable is a measure of the uncertainty of the random variable, i.e.,
the amount of information required on the average to describe the random variable, while the
relative entropy (or Kullback Leiber distance) gives us the distance between two distributions.
It gives the level of inezxciency of assuming that the distribution is g when instead the true one

is p:

De nition 6 The relative entropy of the probability mass function p(x) with respect to the
probability mass function q(x) is de ned as

D(pko) = e p(x)logZR = E, log 262

Notice that the relative entropy is not a true distance since it is not symmetric and does
not satisfy the triangle inequality. Nevertheless, it is often consider as a distance between
distributions.

5.2.1 Typical set: Asymptotic Equipartition Property.

Consider independent, identically distributed ( i.i.d) random variables Xj;:::; Xn. The law of
large numbers states that% inzl X;j is close to its expected value, EX; for large values of n: The
Asymptotic Equipartition Property (AEP) is a consequence of the weak law of large numbers.
If X = Xj;::; X 1S a vector of i.i.d random variables and p(Xy;::; Xn) is the probability
m is close to the entropy H(X): The
Asymptotic Equipartition Property makes it possible to divide the set of all sequences into two

of observing the sequence Xi;:::; X, then & = log

sets, the typical set, where the sample entropy is close to the entropy of the random variable,
and the non-typical set, which contains the other sequences. Any property that is proved for
the typical set will determine the behavior of a large sample. Howewver, we might be able to
predict the probability of the sequence that we actually observe. We ask for the probability
p(Xy;::; Xp) of the outcomes Xg; ::i; Xy, where Xq; X,; i are i.i.d » p(x): We are asking for
the probability of an event drawn according to the same probability distribution. It turns out
that p(Xy; 15, X,) is close to 2i"H®) with high probability. Almost all events are almost equally
likely.

For instance consider the random variable X 2 f0;1g with a probability mass function
de ned by p(1) = pand p(0) = q: If Xy;:::; X, are i.i.d. according to p(X). Then the probability
of a sequence Xi; Xz; :; Xn IS iy p(Xi): Clearly, it is not true that all 2" sequences of length n
have the same probability.

The asymptotic equipartition property is formalized in the following theorem:
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Theorem 2 (AEP): If Xj;:::; Xy are i.i.d. with common distribution p(x) then
i £ logp(Xy; i X,) ¥ H(X) in probability.

De nition 7 The typical set A™

(Xq1; %) 2 £" such that
2i n(H(X)+1) p(Xl; e Xn) 21 n(H(X) i)

with respect to p(xy;:::; X,) is the set of sequences

As a consequence of-the AEP, the cardinality of the set A™ veriTes that

(1 j £)2nHOO+) A= 9n(HEOE9: for suciently large n.

Thus, the typical set has probability nearly 1, all typical sequences have about the same
probability 2i"H() and by indexing the typical set has short descriptions of length ¥ nH:

5.3 Information Properties of the Type Set

The essential properties of the method of types arise from the following theorem, which states
that all sequences with the same type have the same probability and that the size of a type
class T(P) is related with the type entropy.

These expressions make it possible to compute the behavior of long sequences drawn i:i:d.
according to some distribution based on the properties of the type of the sequence. Then, if
X1:Xz; 1, X are drawn i:i:d: according to q(x); the typical set associated with q(x) can be
considered as the Type Set of the empirical distribution associated with Xi.Xy; :::; Xn; where
the Kullback distance between the type P and g is small.

Theorem 3 a) If X;.X;;::1; X, are i:i:d: according to ¢; then the probability of x depends on
its type and is given by q"(x) = 2inHPI+DEka),

b) (n+%_)i£jan(P) jT(P)j 2nH(P)

For the binary case we can write a better bound of the cardinality of T(P) by Stirling’s

25 for P = (3:4) and length 2n with 1§ & 6
in

formula®. Speci cally, jT(P)j = ®,

1.
1+ o

4stirling's formula says that: b
nl =n"exp(in) 2%n(l+"yn)

with 1 "
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5.4 Codi cation and data compression

Given a random variable X over a nite set £, we are interested in generating a one-to-one map
(the source code) between the range of X and a nite set with speci ¢ properties. The most
important property among them is that the expected length of the source code of the random
variable is as short as possible. With this requirement we achieve an optimal data compression
which is important to identify a variable with a lower complexity.

Our purpose is to de ne a code from the support of the random variable distributed uni-
formly over sequences of length n (where n is even) with parity of ones and zeros in each of
them and witha xed last component equal to one, into the sequences belonging to the minimal
Type Set of length m. The input sequences are played in the veri cation phase and an optimal
codi cation of these sequences is used for the communication phase.

Known results in Information Theory relate the expected length of the code with the entropy
of the random variable to code. For instance, Shannon (1948) establishes that the length of
the code of each element of the range of the random variable is the logarithm of the inverse
of its associated probability. Then the expected length of the code is lower than the entropy
of the random variable. Also, Hu®man (see Cover and Thomas, 1991) constructs an algorithm
where the expected length of any source code is minimized and thus he provides with optimal
coding®. Next we present formally the de nitions of codi cation and data compression.

De nition 8 A source code C from a random variable X is a mapping from £, the range of
X, to D" the set of nite length strings of symbols from a D-ary alphabet. Let C(x) denote the
codeword corresponding to x and let I(x) denote the length of C(x):

De nition 9 The expected length L(C) of a source C(x) for a random variable X with prob-
ability mass function p(x) is given by L(C) = - p(X)I(x), where I(x) is the length of the
codeword associated with x:

De nition 10 A code is said to be non-singular if every element of the range of X maps into
a di®erent string in D, i.e., Xi & Xj D) C(X;) & C(Xj):

Non-singularity su=ces for an unambiguous description of a single value of X:

De nition 11 A codeword X is a pre x in a codeword y if there is a codeword z such that
Xz =y.

SHu®man also establishes an inverse ranking between the probabilities and the length of the codes of each
element. Elements with higher probability have an associated code of a shorter length and viceversa.
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De nition 12 A code c is called a pre x code or an instantaneous code if no codeword is a
pre x of any other codeword.

An instantaneous code can be decoded without reference to the future codewords since the
end of a codeword is immediately recognizable. The above property justi es the pre x code
as a good codes since there is no pre x part such that the end of each code is unique. The
su=cient condition to construct instantaneous code of minimum expected length is known as
the Kraft inequality. Formally:

Theorem 4 (Kraft inequality): For any instantaneous code over an alphabet of size D, the
codeword lengths I;; ;2 I, must satisfy the inequality 8Dk 1:

By the above de nitions we have to consider the coding of a source from a random variable
such that the expected length L(C) is as short as possible. This is equivalent to nding the
instantaneous code with the minimum expected length, i,e., to minimize L =  p;l; subject
to 8Dili  1: By the use of the Lagrangian multipliers we get that the optimal codelengths
are i = j logp pi: Then, the expected length is L = pil = i P pi logp pi = Ho(X): Thus,
Hp(X) L" with equality i® D il = p;:

Remark 1 Considengow a source alphabet of size 2K, with equidistribution. The entropy
associated is H = j ?ilzik log 2ik = k. By the above bound on L°, such a source is coded
by all codewords with length k.

In our problem we want to codify a subset of the Type Set® Tn ) of length n such that
the output of the codi cation veri es: 1) it consists of balanced sequences and 2) the last
component of each sequence is equal to 1. Notice that (E[he set of tihe vgri_cat?on sequences V
satis es: 1) V % TPn;1(3i3; 585) £ flg and 2) ,,,!2 <jvji & or £2 < jvj < &2
and 3) V % f0;1g"™ such that m is odd. Each sequence s 2 T Pn;1(3ki5; 525) £ flg has an
associated probability of m. The next result establishes that these sequences have optimal

descriptions of length about n.

Proposition 2 Let C be a source code from TPn;1(F5i5; 585) £ f1g ; uniformly distributed,
to the set of nite length strings of a binary alphabet. Then the expected length of C is greater
than n j 3 j logn and smaller thann j 1 j log n:

6 Assume that the ~rst component refers to the frequency of ones and then the second component to that of
Zeros.
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Proof:

By de nition L(C) =
P Z
—_ l _
T S2TPn (GRS mi)ENY JTPy 1 (B ity )ETIG) log TP ni 1(2n 5 7nyz) £T10 =

log TPn; 1(2n 3 i 2)£f19

l2)£flg <Zl

2Py (R mtmy£ g P(S) 100 575 =

niSiIogn<L(C)<niliIogn o

Formal statement of Result 1: Let V % T Pn;1(355; 525) £flg and Q = C(V), where
C is a source code with minimal expected length and with a balanced output. Then Q =V
and C is a bijective map.

Proof of Result 1: Let Q be the set of communication messages with Q = C(V); where
V is the set of veri cation sequences. We prove here that Q = V _
1y .
Let m be the smallest odd integer such that jQj < TPm( 2m ; "21; ) : By the above theorem
it is clear that m > n j 3: Recall that n is even and then such a smallest odd integer m is
n i 3+2 = nj 1: Then the communication phase consists of sequences in TP, ; 1(2n 5, 5n5) £T19

which already was the set V. Then the source code C is the identity’. o

2n2

The nature of the veri cation sequences which we want to codify is not a relevant infor-
mation to nd the optimal set for the communication phase. We present next an alternative
approach for the construction of the set of veri cation sequences which allow us to relate our
communication scheme under strategic complexity ( nite automata) with those in repeated
games with communication and full rationality (Lehrer, 1996; Lehrer and Sorin, 1997; Forges,
1990; Gossner, 1998; Gossner and Viellie, 1999 and Ben-Porath, 1998, among others).

To this end, recall that the entropy of sequences of i.i.d. random variables is a key concept to
describe such sequences. Also, in the framework of nite automata, it measures how many states
are needed to describe sequences and thus it is a good measure for communication schemes,
since their required “good properties” (better payo®s, no deviations from the equilibrium path,

"Notice that the cardinality of the set of veri cation sequences in Neyman (1998) is 2"il < jvj 2", and
then his optimal codi™ cation corresponds with a communication set equal to T Ppo; 1(2n0 5 T 2) £ f1g where
n’ is the smallest even integer which satis es %— > 2", Then the optimal codi cation length of the sequences
belonging to this set is about n, instead of 2n WhICh is Neyman's length for the communication sequences.
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etc.) are given with the minimal number of states. This minimality condition on the number
of states together with that of sequence-independent payo®s drive us to choose as the set of
veri cation sequences that of random variables with maximal entropy. Thus, we can consider
the set of veri cation sequences as a subset of a Typical set of length n given a random variable
X. A consequence of the AEP is that all sequences of the typical set of length n, Ai”) have about
the same probability 2i"H(X) and by using the above remark 1 they have also short descriptions
of length ¥ nH: Obviously the random variable X has to be close to the empirical distribution
of the chosen Type set. The next lemma establishes the condition on the random variable X
such that the Typical Set of length n associated to X contains the type set TP,,; 1(2n|2, > l2)
the distribution of X has to be close enough to the uniform distribution. This condition allow
us to give an alternative proof of the result 1.

F)
Lemma 7 Let X be a random variable with distribution g and = ;5¢.44(a(i) i ) logq(i)y <t
then TPpn;1(8id; 7%5) £ Flg % Al

Proof:
Let X = (X1;:5; Xn;1; 1) 2 TPn;1(55; 505) £ lg.
Let g = —jzf1...ng0 P the distribution induced by a sequence of i.i.d. variables Xy;::::; Xp,.

It suzces to prove that the probability of X = (X1;::;Xn;1;1) Veri es that 2iMHCO*)
q(x) 2inHEI):

By the relationship between the type of x and that of g then q(x) = 2 in(HEx)+D(Pxka)
Notice that (H(Px) + D(Px kq)) = H(q) + H(Px) i H(q) +D(Px kq) =

P . .
H@ +  i2r014(i 51095 + (i) logq(i) + 3 log 2£) =

P - -
=H(@+  i2r01(ai) i 3)loga(i) <H () +
Then g(x) = 2i"HPEPIDExk)) 2 in(H@+):.

Hence 2in(HCO*)  2inHEP)+DP<ka) — 2in(HX)i%) gnd we conclude that

X = (X Xm1; 1) 2 A o

Alternative proof of Result 1: By the above lemma we can consider that the set of
veri cation sequences is a subset of the typical set Ain) associated to a sequence of i.i.d of

random variables with common distribution g: By the AEP the probability of each sequence
is about 2iNHPE)+DEXkD)  Then by remark 1, the shortest description of each sequence is n
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. The image of the source code corresponds with the sequences used in the communication
phase. The coding map is singular and then for any sequence in the veri cation phase there
exists a unique element (signal or message) in the type set of length n with corresponds with
the communication phase. S ]

6 PROOF OF THE MAIN RESULT

Let G"(m1; my) be the “nite repetition played by ~nite automata of the two-player game in
strategic form G = (f1;2g;A;r) and let x 2 co(r(A)) such that x' > u'(G); i = 1;2: Without
loss of generality, X can be expressed as X = ;0’:1 Lir(at; a®) where f’:1 .i = 1. Consider the

following three cases, according to the number of player 1's di®erent actions to obtain x:
1. jfa};aj;algj = 1;
2. jfal; a}; adgj = 2;
3. jfai; a5 a30) = 3:

The proof of the main result in the rst case is a subcase of the proof of the second one.
A proof can be found in Neyman(1998); alternative proofs are provided by Papadimitriou and
Yannakakis (1994) and by Hernandez and Urbano (2000).

We construct a mixed strategy equilibrium for the second case, i.e., when jfai; a; algj = 2,
since it is rich enough to show the main features of the more general construction of the third
one yet it is easier to deal with. Thus, assume without loss of generality that al = al & al;
and that a3 = a3 and denote a} and a2 by 0 and a3 and a} by 1 and assume that x =
Lor(0;0) + _1r(1;1) + _or(0;1); with _; > 0, i = 0;1;2 and where i2=o .i = 1: Then, either
Lor2(0;0)+ _or2(0;1) > (u2(G) +2")(Lo+ .2), or r2(1;1) > ux(G) +2" and we assume this last
inequality. The other subcase, i.e., when al = al & a} and a? & a3 & a3 and the third case,
i.e., when jfal; al; algj = 3; is analyzed at the end of the paper.

Set
o]
=
di = [, 1]
d=1L*
£ o
d2: I—aa
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lLo(1jL)*
o(li=)

d3: a
do=1j diiddyd(d+1)=2 j dda
Iy =do+d;

Now, we de ne the play by means of a communication phase and a regular phase. This last
phase consists of a cycle with two parts. The rst one is a veri cation phase which is related
with the communication phase. The second one starts with the action pairs (0;0) and also
includes all the required actions pairs (0; 1) to achieve the payo® x in the cycle. The third part
is the remainder of the action pairs (0;0) and then all action pairs (1;1): The cycle is repeated
until the end of the game.

More speci cally, the number | above is the length of the cycle that both players repeat
until the end of the game. The cycle consists of playing the actions pairs (0;0), (1;1), (0;1)
in such a way that the payo® X is obtained, i.e., the number of times that each action pair
is played is approximately I_;; i = 0;1; 2; respectively. For eveEy TQ (the length of the game),
the cycle has to be repeated a large number of times, L where 3K L <-: To ensure that
at the end of the repeated game player 1 is in the regular play where the action pair (1;1) is
played, we choose | = [-15] where £ < + < 1 and (Lu+ DIiT<<land(L+1DI>T. To

L++

deter deviations it is enough to assume that L = 2 . The number of times that the action
pair (1;1) is played is about _,| and then d; is the integer part. The action pairs (0;0) and
(0; 1) are not played consecutively. The number of times that the action pair (0;0) is played is
dy plus dd; which is about _yl and that of the action pair (0;1) is dd,: The integer number d
is su=xciently large to accommodate all pair actions in such a way that the number of reused
states in the player 1's automaton is relatively small.

6.1 Equilibrium play

The following is a construction of an equilibrium point (%% ¢") of GT (m;; m,) with associated
equilibrium vector payo® (y;y?) with jy' j x'j <™.

The mixed equilibrium strategy of player 2, ", chooses randomly a pure strategy ¢° where
2 is an element of the message space Q. The message space Q is a set of sequences of length
2k, where k depends on the parameters of the game, T and m;. Moreover it veri es several
conditions: every message is a sequence with the same number of ones and zeros and the last
component is 1. Thus Q is a subset of T(P) with P = (%; %) and with sequences of length 2k.
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Each pure strategy % in the support of %° of player 1 and the pure strategy ¢~ of player 2
induce a play 1(%¢%) = (V1% ¢7); =0 11 (%;¢%)) that depends on 2, and therefore we denote
it by 1(® = (1:(®;::;11(®) and call it the proposed play. The payo® associated to 1(%;¢°)
does not depend on the selected message 2.

Player 2 communicates his choice of 2 in Q at the beginning of the play to player 1, who
processes this information. The action of player 1 in the communication phase is independent
of 2 and player 2 speci es the proposed play !(2) with his message. After the communication
phase, the proposed play enters in a cycle of length |. First, players verify the proposed play by
following the veri cation play for 2k stages. It consists of a coordinated play of actions pairs
(0;0) and (1;1). Then, both players play the regular play consisting of the action pairs (0;0);
(0;1) and (1;1) for the remaining stages until I:

The strategy of player 1 will detect with positive probability any deviation of player 2. Some
deviation of this player will be detected immediately with positive probability, and others will
lead to a detection with positive probability in a future stage. The strategy of player 1 triggers
to punishing (playing the strategy that holds player 2 down to u,(G): denoted by D' ) forever
once he detects a deviation by player 2. We turn now to the formal construction of the proposed
play and the associated equilibrium strategies.

The set of messages
We start with the construction of the set Q, and the integersk and I;. First, let k = k(my; l,),

¢
be the smallest integer such that 'zkk L >my jli. We will see that the number of pure strategies
for player 2 is at most 'Zkkil and by Lemma 6 the complexity of each pure strategy is at least

I1, “ling up, in this way, player 1's complexity. It follows that 'Zﬁfiill) i [mib)< 'Zkk 4:

Iy

Recall that | is the length of the cycle. For every T (the length of the game), the cycle has
to be repeated a large number of times, L. Also, recall that |; = dy+ d; where d; is the number
of action pairs (1;1) along the cycle of length I, i.e., |1 and dq is approximately '—Ll-: Then |,
is a function of O('T):

To build the set of messages, consider the set of equidistributed sequences of zeros and ones
of length 2k and such that the last component of each of them is a 1. These sequences have the
property that tneir empirical distributd')on (ﬁ)rrespond with the type (%; %) of length 25: Recall
that T($,2) = x2 0;1g°: Py =P = x2 f0;1g%: @ =1 foralla2f0;1g : Then,
the set that we consider is a subset of T(%; %) of length 2k and where the last component of
each sequence is a 1 to mark the end of both the communication phase and the veri cation play.
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Thus, Q isa subset of T (334 7X)£F1g % T (3; 2) and with cardinality _T(z—"k'ihll; = £ flg =
¢

JAK¢

N

2 _ i
= %

N|
Nl

The associated play to a given message

For every 2 we de” ne the associated play 1(2) of G, i.e., asequence 1 (?) = (1:(3);::; 17 (?)
with 14(2) = (11(3); 12(?)) in A. As noted above, the play consists of a communication phase
followed by a play phase. We set |1(2) as the communication phase. The play phase, denoted
by c(?), is a cycle which is repeated until the end of the game except for the last stage T: This
phase consists of the veri cation play p°(2) and the regular play e.

The purpose of the regular play e is twofold: to achieve the payo® x and with the lowest
complexity®. Since x = _or(0;0) + _1r(1;1) + _»r(0;1), an easy way to reach x would be to
play |, o times (0;0), followed by I,, times (0;1) and by I_; times (1;1), with an associated
complexity for player 1 of I. By lemma 6, x could even be achieved with a complexity of
I(,o+ .1): However, it is possible to reduce the above complexity by repeating the action pairs
in a di®erent way while keeping the same proportion than above. For instance, the action pair
(0;0) could be played a number of times and then introduce subplays of appropriated length
of the other action pairs (0;1) and (1;1). The connection among di®erent subplays is marked
by the action pair (0;1). Speci cally, the play of the action pair (0;0) consists of its \shortest"
repetition such that player 1 can safely accept the remaining action pairs (0;0) and (0;1) (by
using his reused states). To this end e is composed of three di®erent parts: The play c*, plus
the play of d; i k times of (0;0)’s and the play of d; j k times of (1;1)'s. In this way, player 1
can insert the | repetitions of (0; 1)’s in the states with a 0 as the action function and thus the
play c” consists of action pairs (0;0) and (0; 1), while the second play is just (0;0) action pairs,
and the third one represents about I_; times (1;1) action pairs. The regular play is common
for every signal.

Let

K52 = (a5 2055 Ca 221))

8Notice that we look for a construction which can be implemented by the player with the lowest complexity.
In this way we achieve the less restrictive equilibrium conditions.
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The construction of the cycle is as follows. Let
e=c"+(do i k)2 (0;0)+(dy i K)u(L;1)

De ne the play c” by,

X
c®= (dg(0;0)+(dz i 1)=(0;1) + (i i 1)=(0;0) +(0;1))
i=1
Notice that j(d3 @ (0;0) +d, = (0;1) + (i § 1) = (0;0) + (0;1))] = d3 +d2 +i; which does not
follow a cyclical pattern. Also, observe that the di®erence between the payo® of a run of c”
andothat of the corresponding part of (0;0)’s and (0;1)’s of x is sutciegtly small, i.e.,

SR(ds 8 (0;0) + &z 0 (0;1) + (i i 1) 8(0;0) + (0;1)) j ~CQL2ICDS < (L),

The play ¢® is designed such that the action pair (0; 1) is played about I, times and the
complexity of the regular play is minimized. To this end, player 1 uses the same action pair
(0;1) as a signal or marker to change from a subplay to another in each run of c¢®. In this
way, the complexity of e decreases from I(,o + . 1) to do +d1 (see lemma 10). Notice that the
above upper bound is the number of action pairs (0;0) and (1;1) which are needed (to reach
the payo® x) in a cycle of length I, where the pair (0;1) is used as a signal for player 1. The last
I-(0; 0) action pairs are used as a counting device to assure that the number of runs is exactly
d. Notice that the regular play is designed to compress the actions pairs (0; 0) by means of the
action pairs (0; 1) included in c”.

Recall that the veri cation play p”(? and the regular play e form the cycle ¢(2) that is
repeated until the end of the game except the last stage T: Then, de ne this cycle ¢ = c(?) of
length | by:

c=c®=p'®)+e=pPE)+c"+(do i K)o (0;0) +(d; i k)= (L;1).

Also, recall that comp*(e) . (do i K) + (d; i k) and then comp®(c) = comp*(u°(®) + (dy i
k)a(0;0)+(d; j k)a(1;1)) =dy+d; = I;. The play c® allows player 1 to reduce his complexity
of e and then the complexity of c(2).

In the last stage of the game player 2 plays the best response to the action 1 of player 1,
denoted by b?. Then 11 (3) = (1;b?).
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The associated play to a given 2 in Q is given by:

13 = p@A +LE* @) +c"+(do § k) (0;0)+ (d1 § k)= (L; 1) +
W) +c®+ (do i k)= (0;0) +
(Ti2kilLi(iik)ile@l)+1b%):

To summarize, a play 1(3) = (11(3);:::; 11(?) with 1,(3) = (11(3); 12(®) in A is as follows:

8 o
0;2) if 0 t 2k
uw'@ if 2k<tmod!l 4k %
1(3)=_ c° if dk<tmodl 4k+1jd;jd,
0;0) if 4k+1jd;jd,<tmodl 3k+|id1§
- (1) if 3k+1ljdi<tmodl 2k+1 >

11 (3 =(1;b%)
The rst row corresponds with the communication phase where player 2 sends the message
2 and player 1 plays 0. The veri cation phase is represented by the second row. The third,

fourth and fth rows coincide with the rest of the cycle of length I. The cycle is repeated until
the end of the game.

Properties of the associated play

In this section we study rst how close to x is the payo® induced by the cycle ¢(?) and by its
associated play !(?); and second, the complexity of player 1 associated to both the play !(?)
and the set of plays Q. The rst two lemmae assert that for T suzciently large, the payo®
induced by c(?) and by the proposed play !(2) is "-close to the equilibrium payo® x and it is
independent of the signal. The last lemma of this section establishes a lower bound for the
di®erent plays to measure player 1's complexity on the set of plays Q:

Lemma 8 The vector payo® R(c(?)) is independent of 2, and for suzciently large values of T,

iRIC@) i X <5

29



Proof:

The number of action pairs (0;0), (1;1) and (0; 1) has to be approximately I o, |1 and I,
(respectively). The number of times of (0;0)"; (1;1)% and (0;1)'s in the play ¢ is k + dd; +
d(d j 1)=2 +dy j k, k+d; i k, and dd, + d respectively.

Sincedp=1jd; jdd, j d(d+1)=2 j dds then
K+dd;+ddj1=2+dyjk=1jdd, jdjd.

Notice that jl o j k+dds+d(d j D=2+dp i Kj=jl.oiljddy jd jdiy=
:j|>1 i d1+|32 i ddy j dj j|31 i d1j+j|32 i dds j dj <1l+d

Then for suzciently large values of T, jR'(c(?)) i X'j < 5. o

F)
Lemma 9 The vector payo® thl r(14(2)) is independent of 2, and for su=zciently large values
of T,
R i xj<™

Proof:
P . — — .
Clearly thl r(1:(®) is independent of 2 because the communication and the veri cation
plays consist of balanced sequences. Then, both phases are independent of the chosen sequence.

Notice that jR'(1:(?)) i R'(c(®)j< ¥.
By the above lemma jR'(1(2)) i X'j =jR'(!(®) i R'(c(®) + R'(c(®) i XIj
R i RC@i+iR(c®) i Xj<f+5=3+5<"

j@]

Both players' complexity give us the equilibrium conditions on the automaton sizes. Player
2's complexity on a given play ! (2);i.e., comp?(!(?)); is equal to T + 1: To “nd out a lower
bound of player 1's complexity, we study his play complexity associated to 2, i.e., compi(! (3)).
Player 1 has to respond correctly to each signal and thus we compute his complexity on the
set of plays 1(3) for 2 2 Q, comp*(Q); where Q is the set of plays. Recall that a player's
complexity of a set of plays Q is de ned as the smallest complexity of a strategy % which is
conformable to Q:

To compute comp*(Q), we have to consider the coordinated and the non-coordinated plays.
The coordinated plays consist of the play of both the veri cation phase of length 2k and the
last action pairs (d; i k )(1;1). Hence, a lower bound of player 1's complexity is the number
of di®erent coordinated plays in the play phase. Their complexity is exactly their length which
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coincides with the number of the action pairs in the veri cation play plus the number of (1;1)’s
after c®. Notice that the play of ¢ i.e., (?ga2k+1(3); i d15do+k(®), IS NOt a coordinated
play: its play complexity is obtained by lemma 6. Then, to bound player 1's complexity on
the set of plays 1(2); 22 Q, we nd lower bounds of both the two coordinated plays in 1(3)
and the non-coordinated part of !(2). With them, it is shown that a lower bound of player 1's

complexity, comp(Q); is jQj l;:

Lemma 10 1)For every (3t);(&;t) 2 Q£ (F1; 2k +dsg [l § di + k+ 1;:::;1 § 1g) with
Gy e @)

(1@: 2 e, 1109) & (e (@); 21 Vo 11(P))

2) Let ' = (1g,+1(3); ::1154,+k(®), alower bound of player 1's complexity of T is comp(1) _
do

3) By 1) and 2) comp*(Q) . jQjls

Proof:

1) To bound player 1's complexity on ¥(2); 22 Q, we nd rst lower bounds of both the
two coordinated plays in !(2) and the non-coordinated part of it.

After the communication phase for 2k < tmodl 4k+d;and | j d;+k <tmodl |
both players follow a coordinated play. We have to prove that for every (2t);(@;t) 2 Q £
(F1; 52k + dsg [Fl § dy + k; 25 1g) with (2;1) & (2; 1), then

(1@ 31) & (Lo (@) 115 Yo, 12(P)).

It suzces to show that for any pair (2,t) & (?;t) and 2k <tmod| 4k+d;andljd;+k <
tmodl | either there exists0 s T with (1:(®;::; 1as(®) & (10(3); 125 Vo (®)); or there
exists0 s | with 1,,(3) & 1. s(®):

Suppose that t = t’ and thus 2 & 2. Therefore there exists 0 s’ < 2k with 2y & 2. Let
s=ljt+s'suchthat0 s I: We conclude that !i.s(2) & 1s(2)):

Next, suppose that t & t". We can always choose one s such that the 14s(2) is in the regular
part and Ye+s = 4ok, With that we conclude that 14.s(3) = (0;0) and w,0x(2) = (1;1):
More speci cally, suppose that t < t. Ift> jt > 1§ dy j 2k, and t0 + 2k + 1 < | setting
s=2k+1jt+1 f+s=1+2k+1+t jtthen Tpis(® = (1;1) and 1ws(®) = (0;0): If
't dyjkasd;>2ksettings=2k+1jt'+1; then 1w.s(®) = (1;1) and Tu+5(2) = (0;0).
Note that this choice is independent of 2;2' 2 Q.

2) To bound the complexity of the non-coordinated part, i.e., ' = (Tg,+24+1(®); 1V d,+k(?)
we use lemma 6 where B! = f0g and k(0) = do. Then comp(!) _ do:
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3) By adding the above complexity bounds then comp!(Q) . jQjli: o

6.2 Construction of the equilibrium strategy of player 2

We now describe player2's equilibrium strategy. It consists of a mixed strategy supported by
J Q j pure strategies. For every 2 2 Q, a proposed play !(2) is associated to a pure strategy
in the support of ;°; the equilibrium mixed strategy. Player 2 follows the proposed play and
punishes forever as soon as he detects a deviation. Thus, for any 22 Q, ;* = (4¢)i=; is the

pure strategy of player 2 de ned by,
C

i (s1; i se1) = 12(9) if (s1;:5st51) = (M1(®); 5 14519);

D2 otherwise

The pure strategy ¢° 2 8%(T; T+1), i.e., ¢~ isimplemented by an automaton < f1;::; T;T +1g;1
t2; g2 > of size T + 1 where:

2 f1;:,; T, T + 1g is the set of states.
2 1is the initial state.
2 The action function 2 de ned by f2(t) = 12(3) ift T;fX(T +1) = D2

2 The transition function g?; de ned by gé(t;a) = t+1ifa = 1}® andt T, and
g?(t;a) =T + 1 otherwise, i.e., ifa & 11(3),orift=T + 1.

6.3 Construction of the equilibrium strategy of player 1

Player 1's equilibrium strategy is a mixed strategy. Player 1 has to answer correctly to any signal
sent by player 2. Hence, each pure strategy that belongs to the mixed equilibrium strategy must
be conformable with the set of plays f1(2) : 22 Qg: In the communication phase player 1 has
to process the information sent by player 2 and he does it by using the same states than those
for the regular play. The veri cation play consists of a coordinated play where both players
play the same action at the same time. The regular play is composed of two di®erent parts. In
the rst one c” is played. The second part consists of a coordinated play with dp j k action
pairs of (0;0)’s followed by d; j k action pairs of (1;1)’s. To reduce the associated complexity
player 1 reuses states with action function 0 to implement both action pairs (0;0) and (0; 1):
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Recall that in these states player 1 cannot punish deviations since both action are admitted
and thus he construct an equilibrium mixed strategy that conceals the disposition of his reused
states in the regular play. The di®erence among player 1's pure strategies in the support of
the equilibrium strategy is the location of these states for the communication phase and for
the play of c® in the regular play. Player 1's mixed strategy is a uniform distribution over the
minimal subset of pure strategy % 2 8(m,) where % is conformable with f1(2):22 Qg: The
minimal set is understood as the minimal set with enough uncertainly about the true locations
of his reused states.

6.3.1 The Automaton of player 1

The mixed equilibrium strategy of player 1, %" 2 €(8(m4; T)); is a mixture of pure strategies,
each one being implemented by an automaton conformable with Q: Each automaton has to
implement the communication phase and the play phase. We de ne rst, the state space
and the action function which implement ! (2); for all 2 2 Q. Second, we present the transition
function for the play phase, i.e., the veri cation play and the regular play. Finally, we construct
the transition function for the communication phase which determines the initial state.
The state space is
Ml=fe®g[ Q£ fl;:; g

The action function of the automaton is given by,

f}(®) = D;
and 8
S e if 1§ 2
f‘(2;j)=B 0 if k <j do+k

1 if do+k<j do+di =14

The play phase: The play phase is a cycle which is composed of the veri cation play and
the regular play. The rst one is a coordinated play of length 2k and it is independent of the
pure strategy selected by player 1. The regular play consists of a play which is independent, or
deterministic part, and another play which depends on the pure strategy selected by player 1.
We start with the description of the deterministic part which is quite similar to that of Neyman
(1998).
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We visualize the states of the automaton of the form (2;J) as arranged in a rectangular
array with jQj rows and |; columns. Recall that I; = 2k +dg j K+ d; j ki The rows are
indexed by the di®erent elements 2 in Q and the columns are indexed by 1;:::; 1;: We may think
that every row corresponds to a pure strategy of player 2. Given 2 in Q, in the rst 2k states
the action function assigns an action 2; if 1~ j 2k which depends on the row (veri cation
phase). Then, the action is 0 in each state whose column is between 2k +1 to I; § d; § k.
For the last d; § k columns, the action function assigns the action 1. The number of columns
coincides with the complexity of player 1's cycle.

Figure 1 illustrates the automaton of player 1 for k = 3; and j Q j= IZkki1¢ = I§¢ = 10:
Suppose that the regular play has 67 columns, where dy = 33 and d; = 40 and that the
veri cation play has 6 associated columns. The lled disks (2) represent states of the automaton
whose action function is a 0, when player 2 plays a 0 as well. The small disks (£) represent
states that play the action 1 when player 2 plays a 1. The big disks (<) mean the nal states
of the regular play where both players have to play 1 at the same time. The transition function
in these last states goes to the rst state in the same row. The horizontal arrows indicate the

transition of the automaton when player 1 follows a coordinated play.

N
-
+
-
+
-
N
-
N
L]
I+
L]

N
L]

N
L]

tee ™20 4+ 0 + 0 ((¢

(I Y GV YR VI VR O PR R

N
1+
N
-
I+
-
N
L]
I+
L]
N
L]
N
L

gee ™20 + 0 + 0 ((¢

N
L]
I+
L]

N

-

N

-

+

-

-+

-

N
1=

N
1=

tee ™20+ 0 + 0 (¢¢

N
L]
N
-
+
-
-+
-
N
L]
I+
L
N
L
N
L

tee ™20 4+ 0 + 0 ((¢

N
L]
N
1=
I+
-
N
-
+
-
+
-
N
-
N
L

gee ™20 + 0 + 0 ((¢

N
L
N
-
N
-
+
-
+
-
+
-
N
-
N
1=

tee ™20+ 0 + 0 (¢¢

1+
L]
N
L]
N
-
N
-
-+
-
-+
-
N
-
N
L
L]

(tc ¥ 20 + 8+ B ¢(¢

I+
1=
N
1=
N
1=
I+
1=
N
1=
I+
N
N
L

t¢c 820 + 8 + B (¢

I+
1.
N
=
I+
=
N
=
N
.
I+
.
N
.
N
.

(¢¢ 20 + 0 + W ((¢

1+
L]
I+
L]
N
L]
N
L]
N
L]
I+
L
N
L
N
L

(¢ 820 + 8+ F(0¢

Veri cation Play Regular Play

Figure 1.

34



Next we de ne the transition function for the play phase. According to the di®erent nature
of the plays in this phase (deterministic and random) the transition function is designed such
that it allows both punishing deviations immediately in the deterministic part and precluding
deviations in the random one.

The transition of the automaton is de ned such that for each xed 2 2 Q, player 1 remains
in the same row and goes to the next column in case player 2 plays correctly in the veri cation
phase and for states (3;J) with 2k <j  do+kif player 2 plays a 0 and for statesdy+k j <1
when player 1 plays a 1. For the state (3 1,); if player 2 plays 1 then the transition function
goes to the " rst column in this row, i.e., player 1 starts another repetition of the cycle if player
2 plays a 1 in this stage. This leads to the following transitions:

g(Eiyg= CATD AP 12k and =0
EGji+1) 0f 2k<j 1y jd+K
8
S G+ if 1 j<xk and2 =1
gl((z;j);1)=$(2;j+1) if l,jd+k j<l

= @y if i=1

The states of the automaton of the form (3;j) suchthat1 j 2kordo+k J I
implement a coordinated play. Any deviation from this play at these states results in punishing
forever.

0’ (%j)e)=®if 1 j 2kand?&e

g' (%)) =®if do+k j I

The state ® is an absorbing state and then player 1 punishes forever after the rst deviation
is detected. The transition function is as follows:

g (f®g; n) = ®:

Up to now, we have de ned the deterministic part of the regular phase. To reduce the
complexity of the cycle, player 1 reuses states whose action function is a 0 and he uses the
action 1 of player 2 as a signal to start another run of c®. These states are of the form (3;))
with 2k < j do i 5k with no reused state following c¢® and processing the signal in the
communication phase. There are dd, states that tolerate both actions 0 and 1: To conceal the
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location of these states we add a random procedure to implement the action pairs (0; 1) which
are played in the play c®: This random procedure is de ned by the following random integers:

Let z be an integer number suchthatl z 2 anc‘iaf = 2d,+d3+d . Set a random increasing
function %: f1;::;Lg @ 2k +dy+1;::;do i 4k § L with %(i + 1) > %(i) + Ld,+d; + d, and
consider a random sequence of elements i4;::; ig of f1;:::; Lg:

F)
Recall that ¢® = ?:1(d3 a(0;0)+(dy, § 1)e(0;1)+ (i j1)a(0;0)+(0;1)). Now, we can
de ne the transition function of player 1's automaton implementing c” :

We start with the de nition of the transition function of the state (2 2k), i.e., when the
veri cation play nishes. Player 2 has to play the action 1 and then player 1 jumps to the
column %(i,) j d3 which it is unknown to player 2. In this way player 2 is uncertain about the
- rst reused states in ¢®. The transition function is de ned by:

g'((% 2k); 1) = (3 %(i1) i d3):
Forevery 1 t d we de ne the transition function for the states whose action function

is a 0 but accept the action 1 of player 2, i.e., these states implement the action pairs (0;1) in
c” as:

gL ((Z %(iy) + 25);1) = (Z%(iy) +zs+s)if 0 s<d;
and

(@) +syny = ) B ) T s =) +ad; vt and t<d

32k +1) if s=%(y)+zd,+t and t=d
The st row is the transition function for every d, stages of (0;1) in ¢” given i;, for0 <t d:
The second one de nes the transition function for the last (0;1); for every repetition t < d.
Notice that the assumptions on the random sequence iy;::;iq, imply that for 1 t < t,
(i) +t & %(ip) +t: Finally, the last row is the transition function for the last (0; 1) for the last
repetition of c®. The states that admit both actions are properly located in the rst d, states.

The next gure illustrates the transition function in the regular phase implementing c®:
We consider two cases: 1) assume that L = 2 thend = 2 = 16 and d3 = 3 = d,. Let
i;:0 =1;2;1;:and (1) = 14 and %(2) =58 ; 2) assume now that L =2 then d = 24 = 16
and d3 =3 =d,. Letiq;:;ig =2;1;1;:: and %(1) = 14 and %(2) = 58:

36



Case 1:
1.8 91011121314151617181920212223 1 ¢¢t¢® 555657 5859 60 61 62 63 64 65

T 020202y WM NI 2N 2020 206((6; ¥ 22021 TR ZnFizn2y |

Case 2:
1_8 910111213 14151617181920212223 1 ¢¢¢H® 555657 5859 60 61 62 63 64 65

Ayzr292r2121 MZOT Z0M 202y oo 0 l2yzy21 :'ﬁ'm_-,!2_"’_l'-,!2_”-:l

Figure 2.

The communication phase: In the communication phase player 1 has to process the in-
formation sent by player 2. He uses the same states to be used in the regular play. We design
the transition function for the rst 2k stages such that player 1 follows a speci ¢ play after
the communication phase and he conceals his reused states by changing their locations in his
pure strategies. In other words, each pure strategy in the support of player 1's mixed strategy
is designed such that it selects the right row along the communication phase and it does not
reveal which states admit both actions.

The transition function of player 1's automaton in this phase depends on the pure strategy
selected. Each pure strategy is given by two random numbers p and n. The rst of them
determines the initial state of the automaton. We denote this initial state by (1;p). Thus, p is
the column where player 1 processes the signal sent by player 2 and it veri es that dy j 5k
p doj 3k

Given 2 = (2152505 210 1) 2 Q let ke be the smallest integer such that Pﬁl 2 =kor
k> j ﬁlzi = k: The random integer n 2 f1; 2g determines the jumps in the columns ( along
the same row) that player 1 follows in the communication phase when player 2 sends a 1 after
k- stages.

The transition function of the communication phase consists of three parts: the rst one
corresponds to the rst stages until kz; the second to k= until 2k j 1, and nally the third part
refers to the last stage of the communication.

Thus, to select the right row during the rst stages, the transition function jumps among

the di®erent rows guarantying that when the number of either ones or zeros is greater or equal
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than k the state of the automaton is in the row that corresponds to player 2's sequence of
actions in the " rst k- stages of the game. This row is the one where the rst components are
the corresponding to the signal sent by player 2, followed by the maximal number of zeros.
Thus, player 2's signals are ranked in this way. This is achieved through the following partial
transition function:

Prp i Prp
If2=(2;:52%%;)2Qand  LZi<kand(ipi ii3%<kand
h=kiGipi i then
' (Z0):1) = (215530 150,05 0; 2 prarn 0 1);§+ 1) iF p j o p+2K
P;. . P..
If2=(2;52,1) 2Qand 12 =kor(Gip)i 152 =kand
h=kiGipi Hzthen g@jyD=@Ej+n) if p j p+2k
9 (=)0 =)+ if p j p+2k
In second place, we design the transition function® when player 2 is sending the last part
of the signal except for the last stage, i.e., for t: k= > t > 2k. Here, the randomness of the
jumps, n, allows player 1 to hide his reused states. Recall that n 2 f1; 2g, then:

2 = (2,-2 Pjipz_: Ps = Pjipz_: —-1-
If Ciyih%kn1)2Qand  {A72i=kor(ip)i ji7%=kandn=1; then
g (XD =Ej+1) if p+k j<p+2k

2 — (2,52, - P_!'ipz_ — HE- = Pj:ipz_ — _: -
If (155 %2%11) 2 Qand i =kor(Gip)i 2;d=kandke=2£(k i
ke 2, § D+ (K j ka+ ke %) and n = 2, then

ji=1 1 i=1 1!
g G =(Ei+2) if ptke j<p+ke
Finally, the last state in the communication phase is not in the same column for every row.

It depends on 2, n, p, i.e., on where the communication starts, on the distribution of ones in 2
and on the number of jumps.

Let e be a function
e:

Q i? [p;up+3K]
x

i? e®=p+3kij %12
i=1

®Notice that we do not use a distribution over transition functions, but we produce enough uncertainty on
the “nal states of the transition function to deter deviations.
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Notice that the max @(?) is when 2 = (0;::;;0;1;:::;1) 2 Q and then e(®) =p +3k j 2.

Now it is possible to de” ne the “nal state's transition function for every row: g*((3;e(2));1) =
*1):

This is equivalent to: g*((1;p);2) = (3 1):

In all other cases the value of g* equals ®.

Figure 3 illustrates the communication phase associated to the veri cation play in the above
example for k = 3and n = 2. The star (? ) is the initial state. The diamonds (}) represent
those states in the regular play that are used to process the information sent by player 2 in
the communication phase, and thus admit both actions 0 and 1 from player 2. The big states
with a dot are the states in the regular play that player 1 uses to determine the end of the
communication phase. These states also admit both actions, 0 and 1.

3
212120121 011001
¢ 3
2122121 010101
2!:¢!:::|!2!|?J 010011
£ 3J
238212021 001101
£ 3 |_|6:'
22z g Wilg 29k 001011
SRERE SU N CU N 000111
A J
93!2!2@2!\] 100101
23%2!’@2!2! 101001
g 3J
220120121 110001
Figure 3.

As noted above, player 1's automaton is a matrix with | columns and IZ"ki i* rows. Thus,
the communication phase starts in the p column that player 1 has chosen randomly. Hence,
the states used to process the signal are located in a submatrix with 2k rows and a number of
columns which depends on n and 2.

Finally, we note that the conditions to nd out player 1's bounds come from

2RIy i X<™
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2 The relationship between the number of reused states and the number of states with
action function 0 is approximately £
ikin®s ity
2 kill 2 [ ] < k 2
With the rst and the second condition we obtain a bound on k with respect to T and " by
counting the number of action pairs played when the game is repeated until T and the maximal
number of reused states: Then, with the last condition we obtain the upper bound of player 1's
complexity.

6.4 Equilibrium conditions:

We check here that the constructed strategies are indeed an equilibrium. We show rst that
any pro table deviation by player 1 cannot be implemented by a nite automata of complexity
mj: We study the complexity of a strategy of plagr 1 which yields a higher payo® when

playing against ¢°, i.e. comp(%) where ri(%;¢%) . (== iC (2)) : Secondly, we show that with

a probability close to 1 there is no pro table deviation from player 2.

Let % be a strategy of player 1and let2 2 Q, with r¥ (%; ;%) . PtT_l uﬂ :Then, V(%) =
1(2)foranyt L wherez is a xed number that depends on the action pair (1,1), with payo®s
X, and on the other payo®s of the stage game G. Therefore, for any strategy % of player 1,
k(% ¢%) T, ZCO 4 S where C depends on the game G,

Let % be a pure strategy of player 1 with ri(¥%¢") . I:l@ and such that % is
implemented by an automaton of size mj.

In order to characterize the size of the automaton which implements a pro table deviation,
consider the following partition of the set of messages.
Let
. n .2 PT ri(1 °
Q(1;%) = n2 2 Qsuch that rk(%¢%) > [, =&
QR %) = n2 2 Q such that rk (% ¢%) = Pthl

ri(ae
P T
Q(3%)= 22Qsuchthatri(% ) < [,

rr(1(2
=

To study the complexity of % we must know the one of I(2) for every 2 2 Q, hence we
analyze the complexity of every set of the partition of Q. De ne Q1 = F1(%;¢°) : 2 2 Q(1;%)g;
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Q: = f1(¥%¢7):22Q(2;%)g; and Q3 = FI(¥%;¢") :22 Q(3;%)g: Notice that comp'(Q.) .
11jQ(2; %)j by lemma 10.

PP

.
& g 1= G2 Hence,

. P
As % veri esthat ri(%;¢%) . 1, “%CD then rk(% ") .

\ P
rT(/‘hC ) 22Q JQJrT(/4 6 ) -
§22Q(1 a0 T (% &) + Saooan T (% ¢7) + Saog@antt (¥ ¢ )

P 2 — .
Now, since any strategy % of player 1, ri(%; ) thl ﬂ%—» + % and by the de nition of

Q(3; %); then
3

-~ 3 -~

P 1(2 - - P 1(2
QLW TR+ +joEw) L, T

ri(1(2

. . P

QLI+ QEW] gy HE

Thus —jQ(l ¥)j . ]Q(@3; %)) and for T large enough jQ(1;%)) . 2JQ(3;%)j

In the next lemma we study the least complexity of a strategy of player 1 which can give

P 2
him more that = |_, =D,

P 1cn(2
Lemma 11 The complexity of % such that ri (%; (%) . tT_ u—(-D- is
comp*(%) . (L i DI1jQ(L;%)j + hjQ(2;%)]

Proof:
By the de nition of complexity, comp*(%) = comp* f1(%¢) :22 Qg .
comp F1(%;¢%) : 22 Q(L; %) [ Q(2;%)g = comp*(Q1) + comp*(Q2):

Notice that comp(Q) . 11 jQ(2;%)j by lemma 10. Let us bound the complexity of Q::
By the de nition of Q(1;%), for every 2 2 Q(1;%), ri(%¢") > RY(¥(?)): Therefore there

exists a deviation from the proposed play at the end of the game i.e., for every t 4k + LI,
1.(%¢%) = 1(3): Now by lemma 4, a deviation takes place after 4k + LI. By the de nition
of complexity with “nite automata it su%ces to prove that for every pair (3t); (&;t9) with
GGte @ thandt _ tPin

QL %) EFAK+jc) ;i dk+ 1§ 1; 4k +jc”j+1 § 1; 4k +21 j 14k +jc®j+21; 4k +(L DI i 1g
there exists s < T j tsuch that

(1) () = (15 () 5 us(®)
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and

W(1103); 5 Vews(®) 6 (11 ()55 Voes(D)

First, we study the coordinated plays. The play (Yax+1+j=j(®); 55 Vak+1+d,(?) is a coordi-
nated play with the rstdy j k and the last d; actions pairs being (0;0) and Yo+ (3 = (1;1).
As d; > 2k, the string (1;1) + d; = (0;0) only appears at the end of the play and then if
4k +jc%j t<t<dk+I1;

(N1 ®; 25 Vet @) & (11(®); 255 Vst 0 (D)

and

% V1@ Y @) & (% j 11(P); 25 Toes () because each one of these two plays is a
coordinated play.

We just consider the case where t & t(modl). Notice that the play c” is independent of
the signal 2. Moreover (Yc+jcej+1+1(2); 5 Yaka21(?)) is @ coordinated play. Then, if t = t'mod(l)
and 26 2

(L) 1 (®) & (1o(®); 5 Lo (D)

Let s be the largest positive integer such that

(14(3); 55 Tas(®) & (Te(®); 15 Yoas (D)

then, it follows that 11, ,(?) & 11, (¥).

Suppose now that t > t%; t =t" mod (I) and 2 2 Q(1; %):
Let s be the largest positive integer such that 11,5(2) & V3, (% ().

> P 1cn (2
As ri(%; %) . thlu'TJ-n D s<Tijtand %P Las(®) & %H(1o(@); 2 Tors(P):

Lemma 12 For any strategy % 2 8'(my)
X

A6 = R(IE)
Q
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Proof:

1 a Pr
Suppose that ri(%;¢°) .

t=

ri(1).
1 T '
Consider the partition of Q = Q(1;%) [ Q(2;%) [ Q(3; %):

First, if jQ(3;%)j = ; then jQj = jQ(1;%)j + jQ(2; %)j: By the above lemma the complexity
of % is greater than or equal to 3l; jQ(1;%)j + 1jQ(2; %)j

i .0
¢ Asmy L (L § DIQLM + QW) = hiQi + (L § Q%) and since i)
ol < Izk" * then

my . myi2l+(Li2)jQ(L; %)) » jQ(L; %)= ;
I:)T ri(1).
1= T

We conclude that ri (%; %) =

Next, if jQ(3;%)] & ;; as already noted, we can assume that for T large enough jQ(1;%)j .
2jQ(3;%)j. Then,

My . (L i DIQ; %)) + 1jQ(2: %)j = LjQ(1; %)j + E-ERLjQ(1; %)j + 1jQ(2; %)j > 1jQj +
LR, jQ(L; %)j > my, which is a contradiction. o

Lemma 13 For any strategy ¢ 2 8° and every 22 Q

rEe) s e):

Proof:

Let ; be a pure strategy of player 2 such that for some 2 2 Q, 1:(%°;¢) = 1¢(?) for every
1t 2kand r2(#%°;¢) o ra(%¢°).

Let s’ be the smallest integer such that 2k <s' T with 1s(%"¢) & 19(?) and 1¢(%%;¢) =
1L (dfori<t<g,

If 1.(3 = (1;1); player 1 punishes immediately forever, since when player 1 plays the action
1 he uses states which do not tolerate both actions. Recall that r?(1;1) _ u?(G) + 2": Then
player 2 will lose about 2"(,1 § "?)I. Then r2(%%¢) r2(%%¢"):

If 1.(®=(L;1)thent T j .41=3 and with a probability close to one playerl punishes in
the next dy j 2k j 1 stages. Then, r2(%°;;)  ra(%°;¢°):

If 1,(® = (0;1) then player 2 deviates in ¢® and with a probability close to one player 1
punishes in the next dy j 2k j 1 stages. Then r2(%%¢) r2(%%;:°):
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Finally if player 2 deviates in the communication phase, i.e.. if (Y2(%%;¢); 0 V3. (%% ¢)) is
not in Q, then with a probability of at least % player 1 will detect the deviation in one of the
next 5k stages.

Therefore ¢ is a best reply against %°. o

We nish by giving some details of the above equilibrium construction for the remaining
cases: when the payo® x is obtained by three di®erent actions of player 2 and two of player 1
(the other subcase of case 2) and when it is obtained by three di®erent actions of both players
(case 3).

Subcase 2.2: Assume that a} = a} & aj, and that aZ & a3 & a3 and denote aj, a} and a?
by 0; aj and a3 by 1 and a3 by 2;and assume that x = _,r(0;0) + _,r(0;1) + _,r(1;2), with
.i>0,i=0;1;2and where 2, ;=1

Here the communication phase entails using the action pairs (0;0) and (0; 2); while those
of the veri cation play are (0;0) and (1;2), where the rst one is played whenever player 2
sends a 0 in the communication phase and the second whenever he sends the action 2. By the
de nition of x, the regular play consists of the three pair of actions (0;0), (0;1) and (1; 2):

Case 3: jfal;a};aigj =3

Subcase 3.1: Assume that a} & a} & al, and that a2 = a3 & a3 and without loss of
generality denote ai, a2 and a3 by 0; aJ and a3 by 1 and a} by 2; and assume that x =
Lor(0;0)+ _1r(1;1) + _or(2;0), with _; >0, 1 =0;1;2 and where iZ:O i= 1

Now the communication phase consists of the action pairs (0;0) and (0; 1); while the pairs
(0;0) and (1;1) are for the veri cation play, where the rst one is played whenever player 2
sends a 0 in the communication phase and the second whenever he sends the action 1.

Subcase 3.2: Finally, assume that al & a} 6 a}, and that a? = aZ = a3 and denote al and a?
and by 0; a} and a3 by 1 and a} and a2 by 2; and assume that x = _or(0;0)+_1r(1; 1)+, 2r(2; 2),
with _; >0, i=0;1;2 and where izzo,i =1:

The communication phase consists now of the action pairs (0;0), (0;1) and (0; 2) while the
veri cation play of the pairs (0;0), (1;1) and (2;2). Here the veri cation set is bigger since the
cardinality of the veri cation sequences' alphabet is three.

44



7/ CONCLUDING REMARKS

We conclude by summarizing the main features of our construction. Let G™ (my;m;) be the
“nite repetition played by nite automata of the two-player game in_strategic form G =
(F1;29;A;r) {il:r;d let x 2 co(r(A)) such that x' > u'(G) with x = PaZA,ar(ail;aiz), and
a2A where _,.a=1and  a>0.

The equilibrium play to achieve x as the equilibrium outcome follows a communication
phase and a speci ¢ cycle of action pairs play which depends on this communication phase,
and whose frequencies are approximately _,. The cycle play consists of two parts. One is
independent of the communication, the regular play where the payo® x is obtained, while the
other, the veri cation play, is uniquely determined by the message sent in the communication
phase. Each part of the cycle play is codi ed taking into account that the action pairs in the
regular play have increasing payo®s for the stronger player, which precludes his deviations as
the cycle goes on. In order to keep the distortion from x as small as possible, i.e. ™ small, the
action pairs used in the veri cation play should be also used in the regular play (although, this
IS not always possible). Finally the communication scheme is designed such that the sender
player uses di®erent actions to this end while the receiver uses just one action.

The above features establish the codi cation alphabet for the equilibrium play. Also the
communication and veri cation sequences satisfy an entropy condition to ensure a xed com-
plexity. In particular, ezcient veri cation to Il up the weaker player's complexity, translates
to sequences of maximal entropy, since the number of veri cation sequences determines this
player’'s complexity.

The construction of the equilibrium play can be understood as a codi cation problem where
what is being codi ed is the game parameters: the complexity of the weaker player and the
targeted payo® x. The inter-play communication phenomenon allows to connect the notion of
automaton complexity with that of communication entropy.

Finally, notice that when the players’ automata have the same number of states, i.e. m; =
m,, the above construction remains the same: players could °ip up a coin to decide the one
who undertakes the communication. Alternatively, other constructions with the ©avor of the
one presented above could be designed. For instance, players could both send a message in the
communication phase, follow a regular play and then verify through the following construction.
Let Q and Q' be the communication set of messages of players 1 and 2, respectively. Recall

that Q and Q’ are subsets of T Py; 1(2—‘;% , #iz)f,flg: Let k? be the smallest even integer such
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that 'k?ok(;ltt > 2 and let ¢ be an element of the following typical set T Pw;1(3% , 55) £F1g:
Let a 2 Q be a message of Player 1 and consider a biyective map a£ TPy;; ¥ TPy;,: The
veri cation consists of a subset of TPy ; via the above biyective mapping, denoted by (%), such
that each sequence ¢ = azxh, for a given message b of Player 2. Notice that both players' signals
are balanced and the sequence used in the veri cation phase is balanced as well. The length of
the communication is two times the one in the asymmetric case, while that of the veri cation
play is about the same than in the previous case. Nevertheless, the number of possible plays
does not vary. With this new construction the rate of distortion, "; is about the same than
above. Notice that here, the number of players' messages has to be the same to 1l up the their
automata capacity, and that each player's pure strategy consists of a part related with it signal
(sent in the communication phase) and of a second part related with all possible messages of

the other player.
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