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PSEUDORANDOM PROCESSES: ENTROPY AND AUTOMATA

Pen¶elope Hern¶andez and Amparo Urbano

A B S T R A C T

This paper studies implementation of cooperative payo®s in ¯nitely repeated games when

players implement their strategies by ¯nite automata of big sizes. Speci¯cally, we analyze how

much we have to depart from fully rational behavior to achieve the Folk Theorem payo®s, i.e.,

which are the maximum bounds on automata complexity which yield cooperative behavior in

long but not in¯nite interactions. To this end we present a new approach to the implementation

of the mixed strategy equilibrium paths leading to cooperation. The novelty is to o®er a new

construction of the set of the pure strategies which belong to the mixed strategy equilibrium.

Thus, we consider the subset of strategies which is characterized by both the complexity of

the ¯nite automata and the entropy associated to the underlying coordination process. The

equilibrium play consists of both a communication phase and the play of a cycle which depends

on the chosen message. The communication set is designed by tools of Information Theory.

Moreover, the characterization of this set is given by the complexity of the weaker player that

implements the equilibrium play. We o®er a domain of de¯nition of the smallest automaton

which includes previous domains in the literature.

KEYWORDS: Complexity; Cooperation; Entropy; Automata; Repeated Games.
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1 INTRODUCTION

The message of the Folk Theorem and several other results (Aumann,1960, 1981; Rubinstein,

1979, 1980) is that cooperative behavior may emerge in non-cooperative situations when the

nature of interactions is long term. However, in the ¯nite repetition of most of these situations,

all equilibria lead to the non-cooperative outcome of each stage. This is in clear contrast,

for instance, with common observations in the experiments involving ¯nite repetitions of the

prisoner's dilemma, where participants achieve some mode of cooperation. On the other hand,

if players are restricted to choose automata that are too small to count the number of stages

of the repeated game then both players choosing "a cooperating automata" is a Nash equilib-

rium. One may therefore think of "bounded rationality" or bounded ability to handle strategic

complexities, as a way to solve the prisoners's dilemma paradox. It is surprising that even if

the players can choose large automata, then they can get arbitrarily close to the cooperative

payo®s provided that they are allowed to randomize in their choices of automata (Neyman,

1985).

A great deal of attention has been paid recently to repeated games with bounded complexity.

Speci¯cally, there are several papers in the repeated games literature, which study the conditions

under which the set of feasible and rational payo®s are equilibrium outcomes, when there are

bounds (possibly very large) to the number of strategies that players may use. In the context

of strategies implemented by ¯nite automata, these bounds are given by the complexity of

the players's automata which implement the equilibrium ( see Rubinstein, 1986; Abreu and

Rubinstein, 1988; Neyman, 1998; Papadimitriou and Yannakakis, 1994; Neyman and Okada,

1997, among others).

The present paper studies implementation of cooperative payo®s in ¯nitely repeated games

when players implement their strategies by ¯nite automata whose sizes are exogenously given;

the motivation being to justify the empirical regularity of such a cooperative behavior (Axelrod,

1980). Speci¯cally, we analyze how much we have to depart from fully rational behavior to

achieve the Folk Theorem payo®s, i.e., which are the maximum bounds on automata complexity

which yield cooperative behavior in long but not in¯nite interactions.

Building on the work of Neyman (1998), we improve existing results in the literature (Ney-

man, 1998; Neyman and Okada, 1997, Zemel, 1989 and Papadimitriou and Yannakakis, 1994)

by taking a di®erent approach and focusing on the complexity of mixed strategy equilibrium

paths leading to the Folk Theorem payo®s. Given that in our setting players not only choose
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large automata but also randomize among them, the equilibrium is a mixture of such choices.

Each player's pure strategy determines a possible play and the set of pure strategies which

belong to the support of the mixed strategy determines the set of possible plays. Thus, the

¯rst problem to solve is to choose the subset of a player's pure strategies which generates the

mixed strategy and, in turn, the set of possible plays. There are many of these subsets since

the number of ¯nite automata is an exponential number of a player's complexity. Then, the

second problem is to select a right subset such that the selection of the speci¯c equilibrium play

satis¯es good properties of complexity and e±ciency. This implementation of a speci¯c mixed

strategy equilibrium is through a coordination process which yields a payo® close enough to

any of the ones belonging to the set of feasible and rational payo®s. Thus, the complexity of

such a process determines that of the equilibrium path and we look for processes with satisfy

both the equilibrium complexity bounds and maximal e±ciency (closer to the targeted payo®).

We characterize the above properties of a coordination scheme by its informational features.

Speci¯cally, the complexity of the process is related with the associated entropy, which captures,

from an Information Theory viewpoint, the cardinality of the sequences belonging to a particular

set with some good properties (Typical Set). The number of equilibrium plays depends on the

cardinality of the selected sequences and thus on its associated complexity. Processes with low

entropy translates to small cardinalities and hence to small number of plays while processes with

the maximal entropy imply a large number of sequences and then a large number of equilibrium

plays. On the other hand, e±ciency of the process is translated to optimal codi¯cation schemes

which produces "short" coordination processes.

Speci¯cally, to construct an equilibrium play the coordination process consists of both a

communication phase and the play of a cycle, whose last part, the veri¯cation play, depends

on the speci¯c chosen message. Since equilibrium plays are in a one-to-one relationship with

the set of communication messages, the design of this set (with respect to the cycle's play) is

crucial for the construction. Then our equilibrium conditions are determined by the inter-play

communication scheme. We consider the subset of pure strategies which is characterized by

both the complexity of the ¯nite automata and the entropy associated to the communication

and the veri¯cation phenomena.

The novelty of the paper is to present a new approach to construct mixed strategy equilibria

with ¯nite automata. This new viewpoint allows us to characterize the set of pure strategies

which belong to the support of the equilibrium mixed strategies. Moreover since we o®er

the less restrictive equilibrium conditions this set cannot be improved upon. The previous
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literature (Neyman, 1998; Neyman and Okada, 1997) give restrictions on the whole set of pure

strategies. In our approach the restrictions are given on each pure strategy and thus we are able

to characterize each equilibrium automaton. To impose such constraints we make use of the

notion of entropy as a measure of the messages' uncertainty of our communication scheme and

also as a way to measure their associated complexity. This construction also allows us to relate

our communication scheme under strategic complexity (¯nite automata) with those in repeated

games with communication and unbounded rationality (Lehrer, 1996; Lehrer and Sorin, 1997;

Forges, 1990; Gossner, 1998; Gossner and Viellie, 1999 and Ben-Porath, 1998 among others).

A related line of research addresses the same question under speci¯c restrictions of the

players' set of strategies by an exogenous bound: one of the player's strategies are restricted

to those that have strategic entropy less than a prespeci¯ed bound; where a player's strategic

entropy refers to the uncertainty of his mixed strategy relative to the other player's strategy

(see, Neyman and Okada, 1999 and 2000).

Since punishments in the ¯nitely repeated game are in pure strategies, the main result

of the paper is given in terms of the weaker player's complexity. The domain of de¯nition

of this player's complexity includes all the others bounds already o®ered in the literature.

This improvement is achieved by the approach that we follow: to understand the problem of

constructing the set of pure strategies as a codi¯cation problem where what is being codi¯ed

is the complexity of the player with the smallest automaton (the "weaker player").

Although we use the concept of entropy as a technical tool, it also gives us a much deeper

understanding of the connection between communication and codi¯cation issues. The com-

plexity costs associated to the veri¯cation play are measured in terms of the weaker player's

complexity, since his automaton's capacity determines the number of plays. Moreover, since,

this player's complexity bounds are related to the "-approximation to the targeted equilibrium,

there are also e±ciency costs associated to the veri¯cation play. However, the communication

costs are just measured in terms of the players' payo®s (in the "-approximation to the targeted

equilibrium) since in our construction the weaker player's automaton need not additional states

to process the information. In this framework, the entropy notion is useful to characterize both

the complexity and the e±ciency costs associated to the veri¯cation play and the communica-

tion phase. On one hand, the entropy of sequences of i.i.d. random variables give us a good

measure of the complexity of such sequences. On the other, the optimal (shortest) codi¯cation

of the veri¯cation sequences produces the shortest communication phase, which, in turn, is

bounded by the entropy of the random variable associated to the veri¯cation sequences. Thus,
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the entropy measures both the complexity and the e±ciency costs associated to the equilibrium

play.

The paper is organized as follows. Section 2 sets up the one-shot game, the ¯nitely repeated

game and the ¯nite automata framework and some known results in play complexity are stated.

Section 3 o®ers the main result, while section 4 presents the scheme of the play. The analysis of

sequences and codi¯cation schemes is undertaken in section 5, where some tools of Information

Theory are presented and a ¯rst result of our construction, stated in section 3, is proven.

Section 6 is devoted to prove the main result. To this end, the constructions of (a) the set of

messages, (b) the equilibrium play, and (c) the players' automata, are o®ered and it is checked

that they satisfy the equilibrium conditions. Concluding remarks close the paper.

2 PRELIMINARIES

2.1 The one-shot game

Let G=(f1; 2g; (Ai)i2f1;2g; (ri)i2f1;2g) be a game where f1; 2g is the set of player. Ai is a ¯nite
set of actions for player i (or pure strategies of player i) and ri : A = A1 £ A2 ¡! R is the

payo® function of player i.

We denote by ui(G) the individual rational payo® of player i in pure strategies, i.e., ui(G) =

min max ri(ai; a¡i) where the max ranges over all pure strategies of player i, and themin ranges

over all pure strategies of player 3¡i. For any ¯nite setB we denote we denote by ¢(B) the set of
all probability distributions on B. An equilibrium of G is a pair ¾ = (¾1; ¾2) 2 ¢(A1)£¢(A2)
such that for every i and any strategy of player i, ¿ i 2 Ai; ri(¿ i; ¾¡i) � ri(¾1; ¾2); where

r(¾) = E¾( r(ai; a¡i)) If ¾ is an equilibrium, the vector payo® r(¾) is called an equilibrium

payo®.

We denote by E(G) the set of all equilibrium payo®s of G.

2.2 The ¯nitely repeated game GT

>From G we de¯ne a new game in strategic form GT which models a sequence of T plays of

G, called stages. By choosing actions at stage t, players are informed of actions chosen in

previous stages of the game. Formally, let Ht; t = 1; :::; T , be the Cartesian product of A by

itself t¡ 1 times, i.e.: Ht = At¡1, with the common set theoretic identi¯cation A0 = ®, and let
H = [t¸0Ht. A pure strategy ¾i for player i in GT is a mapping from H to Ai; ¾i : H ! Ai.
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Obviously, H is a disjoint union of Ht; t = 1; :::; T and ¾it:Ht ! Ai as the restriction of ¾i

to Ht. We denote the set of all pure strategies of player i in G
T by §i(T). Any 2-tuple

¾ = (¾1; ¾2) 2 £§i(T ) of pure strategies induces a play !(¾) = (!1(¾); :::; !T (¾)) with

!t(¾) = (!
1
t (¾); !

2
t (¾)) de¯ned by !1(¾) = (¾

1(®); ¾2(®)) = ¾(®) and by the induction relation
!it(¾) = ¾

i(!1(¾); :::; !t¡1(¾)) = ¾
i
t(!1(¾); :::; !t¡1(¾)):

Let rT(¾) =
r(!1(¾))+:::+r(!T(¾))

T
be the average vector payo® during the ¯rst T stages induced

by the strategy pro¯le ¾:

Two strategies ¾i and ¿ i of player i in GT are called equivalent if for every 3¡ fig tuple of
pure strategies ¾¡i; !t(¾i; ¾¡i) = !t(¿ i; ¾¡i) for every 1 � t � T .

An equivalence class of pure strategies is called a reduced strategy.

2.3 Finitely repeated games played by ¯nite automata

A ¯nite automaton for player i that implements the strategy pro¯le ¾ in GT is a tuple Mi =<

Qi; qi0; f
i; gi >, where:

² Qi is the set of states

² qi0 is the initial state

² f i is the action function, f i : Qi ! Ai

² gi is the transition function from state to state gi : Qi £ A¡i ! Qi

The size of a ¯nite automaton is the number of its states, jQj.

We de¯ne a new game in strategic form GT (m1;m2) which denotes the T stage repeated

version of G, with the average payo® as evaluation criterion and with all the ¯nite automata

of size mi as the pure strategies of player i, i = 1; 2. Let §i(T;mi) be the set of pure strategies

in GT(m1;m2) that are induced by an automaton of size mi:

A ¯nite automaton for player i can be viewed as a prescription for this player to choose his

action in each stage of the repeated game. If at state q the other player chooses the action

tuple a¡i, then the automaton's next state is gi(q; a¡i) and the action to be taken at stage 1 is

f i(qi). The action in stage 2 is f i(g i(qi; a¡i1 )) where a
¡i
1 is the action taken by the other players

in stage 1. More generally, de¯ne inductively,
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gi(q; b1; :::; bt) = gi(gi(q; b1; :::; bt¡1); bt),

where a¡ij 2 A¡i, the action prescribed by the automaton for player i at stage j is

f i(gi(qi; a¡11 ; :::; a
¡i
t¡1)).

For every automatonM for player i, de¯ne a strategy ¾iM in GT by

¾iM(a1;:::;at¡1) = f
i(gi(qi; a¡i1 ; :::; a

¡i
t¡1)): A strategy ¾

i for player i in GT is implementable by

the automaton M if ¾i is equivalent to ¾iM i.e.: for every ¿ 2 §2(T); !(¾i; ¿ ) = !(¾iM ;¿ ):

2.4 Notation

Let G = (f1; 2g ;A; r) be the two-player game in strategic form de¯ned in section 1.1. Denote
by K twice the largest absolute value of a payo® in the game G: Thus, ri(a) ¡ ri(b) � K for

every a; b 2 A and i = 1; 2:
Given the set X, co(X) means the convex hull of X:

Recall that ui(G) is the individual rational payo® of player i in pure strategies and denote

by F (G) the set of feasible and rational payo®s of G i.e., the set of payo® pro¯les x such that

x 2 co(r(A)) and xi > ui(G)
Denote by [x] the integer part of a real number x.

The number of elements of a set X is denoted by jXj :
Let f be a real function then:

f grows polynomially is denoted by f = O(p) for some polynomial p i:e: : f = nO(1):

f grows subexponentially is denoted by f = o(2n
²
); i:e: : 8²¶> 0 f

2n²
< ²¶ for all su±ciently

large n:

2.5 Play complexity

The main results in play complexity are those given by Kalai and Stanford (1988) and Neyman

(1998). We present here the de¯nitions of the complexity of a strategy in G1 and then the

de¯nitions in GT .

First, a ¯nite sequence of actions (a1; :::; at) is compatible with a pure strategy ¾
i if for every

1 � s � t; ¾i(a1; :::; as¡1) = a
i
s: Let A

n(¾i) be the set of all sequences of actions of length n

that are compatible with ¾: Consider for any sequence of actions (a1; :::; at) and a pure strategy

¾i the new strategy (¾i j a1; :::; at) in G1 given by

8



(¾i j a1; :::; as)(b1; :::; bs¶) = ¾i(a1; :::; as; b1; :::; bs¶):

The number of di®erent reduced strategies that are induced by a given pure strategy ¾i

of player i in GT (m1;m2) and all ¾i-compatible sequences of actions of length n, for all n,

provides with a ¯rst measure of the complexity of ¾, comp1(¾i): This de¯nition has a natural

extension to the ¯nitely repeated game, GT . Let (¾t)Tt=1 where ¾ 2 §i(T) and de¯ne comp2(¾) =
min fcomp2(¿) : ¿ 2 §iand 8t; 1 � t � T; ¾t = ¿tg :
Second, de¯ne comp2(¾i) as the size of smallest automaton that implements ¾i:

The two above de¯nitions turn out to be equivalent (Neyman, 1998, proposition 2), comp1(¾i) =

comp2(¾i):

We shall often need bounds on the complexity of strategies that induce a given play. Hence,

for a play !, de¯ne player i's complexity of !, compi(!); as the smallest complexity of a strategy

¾i of player i which is compatible with !:

compi(!) = inf fcompi(¾) : ¾ 2 §i is compatible with !g :

Let Q be a set of plays. A pure strategy ¾i of player i is conformable to Q if it is compatible

with any ! 2 Q: The complexity of player i of a set of plays Q is de¯ned as the smallest

complexity of a strategy ¾i of player i that is comformable to Q.

compi(Q) = inf fcompi(¾) : ¾ 2 §i is comformable to Qg

The following lemmata, proved in Neyman (1998), provide bounds of the complexity of some

particular plays which will be used in the proof of the main result. The ¯rst result provides

with an upper bound of the complexity of a sequence of actions of length t:

Lemma 1 Let a = (a1; :::; at) 2 At: Then compi(a) � t:

Let a = (a1; :::; at) 2 At and b = (b1; :::; bs) 2 As; and denote by a+b = (a1; :::; at; b1; :::; bs) 2
At+s the concatenation of two histories. The second lemma states the complexity bound of such

a concatenation.

Lemma 2 Let a = (a1; :::; at) 2 At and b = (b1; :::; bs) 2 As: Then compi(a+b) ¸ max(compi(a); com

For a = (a1; :::; at) 2 At and a positive integer d, de¯ne d ¤ a by induction on d : 1 ¤ a = a:
and (d + 1) ¤ a = d ¤ a + a:
The complexity of a sequence of actions that changes in the last stage is stated next.

Lemma 3 Let a = (a1; :::; at) 2 At with a1 = a2 = ::: = at¡1 and ait¡1 6= ait: Then compi(a) = t:
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Let a = (a1; :::; at) 2 At and b = (b1; :::; bs) 2 As; and s with min(t; s) ¸ s¡ 1 then de¯ne
a =s b if ar = br for every r < s:

Consider two ¯nite sequences of actions a and b such that the ¯rst action for player i in a

and b is di®erent.: ai1 6= bi1: The next lemma presents a lower bound for the complexity of a
play that consists of a cycle (t¤a+ b) repeated d times and there is a deviation of player i after
the t¤a action pairs on. This result is useful to measure the complexity needed to deviate from
a given cycle play.

Lemma 4 Let a = (a1; :::; ak) 2 Ak and b = (b1; :::; bn) 2 An with ai1 6= bi1; t ¸ 0 and d ¸ 1:

Assume that ! = (!1; :::; !s) 2 As with (d¡ 1)(tk + n) + tk + 1 < s � (d + 1)(tk + n) and

d ¤ (t ¤ a + b) =s ! and ((d + 1) ¤ (t ¤ a + b))is 6= ! is: Then compi(!) ¸ d(t+ 1):

Let f : A1 ! A2 be a 1-1 function and let a = (a1; :::; an) 2 An be a play with a2t = f(a1t ) for
every 1 � t � n, then a is called a coordinated play. In case of a coordinated play, the number

of equivalence classes induced by a strategy ¾i conformable with ! is exactly the length of the

play. We need a complexity lower bound for a play that consists of a coordinated periodic play.

This is stated next.

Lemma 5 Let a = (a1; :::; an) 2 An be a coordinated play, b 2 A with b1 6= a11; and d 2 N:

Then compi(d ¤ a + b) ¸ (d¡ 1)n + 1:

Finally, the next result states a lower bound for a play in terms of the number of consecutive

action of player i.

Lemma 6 Let a = (a1; :::; ak) be a play. Let Bi ½ Ai be a nonempty subset of the actions of

player i. Assume that k : Bi ! N is such that for every bi 2 Bi there is s = s(bi) < t¡ k(bi)

with as+1 = ::: = as+k(bi) = bi and ais+1 6= ais+k(bi )+1. Then comp(a) ¸ P
ai2B i k(ai):

By the de¯nition of the complexity of a strategy, the above lemmata are proved by counting

the number of di®erent strategies obtained when all possible plays ! are induced. Each induced

strategy generates an equivalence class of strategies and then the number of these equivalence

classes coincides with the number of the automaton states. The overall sketch of the proofs is:

1. Let ¾ be a strategy compatible with !:

2. Consider the set of strategies f(¾ j !t) j t 2 Ng where (¾ j !t) denotes the strategy induced
by the play ! of length t
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3. For each strategy consider the number of reduced strategies with the concatenation of

histories.

This last number is the cardinality of the set f(¾ j !t) j t 2 Ng and thus comp(¾) is obtained.

3 MAIN RESULT

The main result establishes the existence of an equilibrium payo® of GT(m1;m2) which is

"¡closed to a feasible and rational payo®. In the context of ¯nitely repeated games, deviations
in the last stages could be precluded if players did not know the end of the game. This may be

achieved if players implemented their strategies by playing with ¯nite automata which cannot

count until the last stage of the game. On the contrary, player i will deviate if he is able to

implement cycles of length at least the number of the repetitions. Hence, if players answered

to di®erent plays of length smaller than the number of repetitions then they could spend their

capacity and not be able to count until the end of the game. In this way, a player can ¯ll up the

rival's complexity by requiring him to conform with distinct plays of su±ciently large length,

i.e., approximately O("T):

To ¯ll up the complexity of the weaker player, the stronger player ( the one with the

biggest automaton) speci¯es the set of plays by means of a set of messages to be sent in the

communication phase. The complexity of the set of plays is determined by the complexity of

such a weaker player and the di®erence among the distinct plays is a small portion of each play

(the veri¯cation play). Thus, what is being determined in each message is the above veri¯cation

play. Hence, to design the set of plays can be understood as a codi¯cation problem where what

is being coded is the weaker player's complexity.

Similarly to the existing literature (Neyman, 1998) we o®er the equilibrium conditions in

terms of the complexity of the smallest automaton which implements the equilibrium play. The

main di®erence is that both the upper and the lower bounds that we achieve include previous

bound's domains. This is due to our optimal construction of the set of veri¯cation sequences

and the associated communication scheme. We characterize the above set by selecting a subset

of sequences over a ¯nite alphabet. Since messages are a codi¯cation of plays we follow the

shortest codi¯cation in order to construct the communication phase1. We state informally

1This is in clear contrast with Neyman (1998) who does not construct the shortest communication phase

given his set of veri¯cation sequences.
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this ¯rst result which is needed to show that under our construction the sets of veri¯cation

and communication sequences are the optimal sets to codify the weaker player's complexity.

The formal statement of this result is presented in section 5 where we introduce the tools of

Information theory which are needed to prove it. Then, Theorem 1 establishes the existence of

an equilibrium payo® of GT (m1;m2) which is "¡closed to a feasible and rational payo® under
automaton bounds which are the best in the literature.

Result 1: The set of messages for the communication phase coincides with the set of

sequences for the verī cation play, i.e. an optimal codī cation map is the identity. In other

words, given our set of verī cation sequences there is not a shortest codi¯cation scheme.

The main result below presents the equilibrium conditions to reach a feasible and rational

payo® in a ¯nitely repeated game when players implement their strategies by means of ¯nite

automata.

Theorem 1 Let G = (f1; 2g; A; r) be a two person game in strategic form. Then for every "
su±ciently small, there exist positive integers T0 and m0, such that if T ¸ T0, and x 2 co(r(A))
with xi > ui(G) and m0 � minfm1, m2g � exp("T) and maxfm1, m2g > T then there exists
y 2 E(GT(m1;m2)) with jy i ¡ xij < ":

Theorem 1 will follow from conditions on: 1) a feasible payo® x 2 co(r(A)); 2) a positive
constant " > 0; 3) the number of repetitions T , and 4) the bounds of the automata sizes,

m1;m2, that guarantee the existence of an equilibrium payo® y of the game GT (m1;m2) that

is "-close to x.

To see that our bounds include previous bound's domains we include here Neyman's result:

Theorem (Neyman, 1998): Let G = (f1; 2g; A; r) be a two person game in strategic form.
Then for every " su±ciently small, there exist positive integers T0 andm0, such that if T ¸ T0,

and x 2 co(r(A)) with xi > ui(G) and m0 � minfm1;m2g � exp("3T) and maxfm1, m2g > T
then there exists y 2 E(GT (m1;m2)) with jyi ¡ xij < ":

One of the conditions of our theorem is stated by means of the inequalities mi ¸ m0

where m0 is su±ciently large. Another condition require the bound of one or both size to be

subexponential in the number of repetitions, i.e., a condition that asserts that (log mi)=T is

su±ciently small. The characterization of this condition is related with the codi¯cation schemes

to be studied in Section 5.
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4 THE SCHEME OF THE PLAY

In this section we present the scheme of the play to reach a feasible and rational payo® x in a

¯nitely repeated game. The plays along the equilibrium path are divided into a communication

phase followed by a play phase.

Assume without loss of generality that m1 � m2: Knowing player 1's complexity, player 2

determines a precise number of plays from which one is selected and sent to player 1 in the

communication phase. This signal speci¯es one of the ¯nitely many plays of the repeated game

to be played in the play phase and it uses two actions that we label 0 and 1. Player 2 plays a

mixed strategy during this phase and player 1 responds properly to any message. The action

of Player 1 is independent of the message (signal) sent by player 2. Since player 2 proposes the

plays, messages have to be independent of the associated payo®s to each of them. We reach

this independence by means of balanced sequences, i.e., sequences with the same number of

zeros and ones. The speci¯cation of the set of messages and the correspondence with the set of

plays is crucial in our construction, because we associate each message from the communication

phase with a unique play in the play phase.

After the communication phase the equilibrium play enters into the play phase which con-

sists of a cycle repeated along the play until T . The length of the cycle does not depend on

the signal sent by player 2. Each one of the cycles has associated payo® approximately equal

to the e±cient and rational payo® x. Thus, in any one of the proposed plays, player 1 has no

incentive to deviate prior to the very last stages of the ¯nitely repeated game. The cycle has to

parts: the veri¯cation play and the regular play. The regular play is common for every signal

and it consists of a cycle of di®erent action pairs such that players reach a vector payo® "¡
close to the e±cient and rational targeted payo® x.

Player 2 follows a veri¯cation play to check that player 1 has spent all his states following

the play. It consists of a coordinated play with the identity as the function between A1 and A2 ,

i.e., both players play the same actions. In words, both players follow a monitoring phase such

that the sequence of actions can be understood as a coordination process which determines

each pure strategy. The sequence of actions played in this phase is a sequence whose empirical

distribution coincides with the uniform distribution and where the last element of the sequence

is ¯xed.

The veri¯cation scheme is constructed such that it satis¯es three properties. First, it is

balanced (the number of ones is equal to the number of zeros) to deter player 2's deviations by
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selecting the best payo® sequences. Second, this phase generates a payo® " close to x. Finally,

player 2 l̄ls up player 1's capacity by generating enough pure strategies so that the number of

remaining states is su±ciently small. In this way, player 1's deviations from the proposed play

by counting up until the last stage of the game are avoided. For instance, player 1 could be

able to select just one proposed play and deviate in the last stage of this play while repeating

the cycle in all other proposed plays. Similarly, he could increase his own payo® by neglecting

a subset of plays. Thus, the repetition of the cycle precludes sophisticated deviations by player

1.

There are two schemes that player 1 has to design to make a good use of his complexity.

Player 1 needs all the plays in his automaton to follow the right play until T . There are

many player 1's automata which could process the information sent by player 2. Given our

automaton framework we minimize the information processing of player 1 by using the same

states to process the signal and to follow the regular part of the di®erent cycles. However,

this introduces a di±culty since these states of player 1's automaton admit both actions 0 and

1. Moreover, Player 1 uses one automaton with the minimal number of states for each play.

The way to decrease this number is by reusing states for two di®erent actions. For instance,

player 1 can use the same state to implement the action pairs (0; 0) and (0; 1) because for the

action 0 he could accept both actions 0 and 1: This entails that there are deviations of player

2 that might be unpunished. If player 2 knew exactly the states that admit both actions, he

could take advantage over them in future stages of the game. These deviations can only be

undertaken by player 2 in the play phase, since the sequences from the communication phase

are balanced and thus he is indi®erent among the messages. To avoid this problem player 1

uses a mixed strategy whose support consists of the minimal subset of pure strategies which

are conformable with the proposed plays and such that it generates enough randomization to

obscure the location of his reused states. Player 1's mixed strategy is constructed by a uniform

distribution in this minimal subset.

Note that every player's behavior plays a di®erent role in the game. The signaling activity

of player 2 has two purposes: how to coordinate and how to ¯ll up player 1's capacity. And

these are the goals of the player 2's mixed strategy. On the contrary, player 1's role consists

of supporting the \coordination" proposed by player 2 by means of a mixed strategy. To this

end, player 1 builds a mechanism against player 2's undetectable deviations.

14



5 SEQUENCES AND CODIFICATION SCHEMES

We proceed to construct the set of veri¯cation sequences and the associated communication

scheme. The key points of the construction are: 1) the characterization of such sequences by

both their empirical distribution and they informational properties and 2) the design of the

set of communication sequences through the optimal codi¯cation of the veri¯cation set. This

approach produces our result 1 and clari¯es the di®erence between previous constructions and

ours.

Notice that in order to l̄l up the complexity of player 1, player 2 generates su±ciently many

plays which player 1 has to conform with. The di®erence among them is given by the sequences

of action pairs for the veri¯cation play because the regular play is common. Moreover, there is

a map between each play and each message related to the corresponding veri¯cation. Hence,

we look for the shortest way to construct messages associated to the veri¯cation play and to

be sent in the communication phase, such that this last phase is also the shortest one.

To ¯nd a solution to this problem is equivalent to solving a codi¯cation problem in Infor-

mation Theory, since the veri¯cation sequences have to be coded in the communication phase.

To codify means to describe a phenomenon. The realization of this phenomenon can be viewed

as the representation of a random variable. Then, a codi¯cation problem is just a one-to-one

mapping (the source code) from a ¯nite set (the range of a random variable or input) to another

set of sequences of ¯nite length (output sequences). What is important here is that the length

of the output sequences is the shortest one with respect to the length (or probability) of the

input sequences.

In our setting the set of veri¯cation sequences is the input set and the set of messages

corresponds with the output set. We start with the set of balanced sequences of length k,

whose cardinality is2 about O(2k¡1) and which are the veri¯cation sequences. Our output set

consists of ¯nite length strings from the binary alphabet with the shortest length and again

with the balancedness condition.

Solving the codi¯cation problem we obtain the set of messages for the communication phase.

Our codi¯cation veri¯es that it is the shortest one and the output sequences are balanced. By

tools of Information Theory we prove our result 1, i.e., that the trivial codi¯cation (the source

code is the identity) is optimal in the sense that its expected length is minimum and then there

is no code with shortest expected length that the identity. This result is due to the fact that

2See footnote 4 below.
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the set of sequences for the veri¯cation play is designed in such a way that player 1's complexity

(m1) is bounded by an integer which is the cardinal of the smallest set of balanced sequences.

If the above condition is not satis¯ed then there will exist non-trivial optimal source codes3.

The formal details of our construction are presented next. We consider ¯rst deterministic

sequences which satisfy some properties: they are balanced and the last component of each

sequence is ¯xed. We use the method of types and the Type set to de¯ne these sequences. In

second place, we analyze the information properties of these sequences by means of concepts

such as entropy and the Kullback distance. This allows us to view the Type Set as the set

of random sequences of a given entropy, even without knowing the actual random variable

whose distribution is emulated by the deterministic sequence. Finally, we present the minimal

codi¯cation of the Type Set with this alternative approach.

5.1 Deterministic Sequences: Type Set

Let x1; :::; xn be a sequence of n symbols from an alphabet £ =
©
a1; a2; :::; aj£j

ª
. We will use

the notation xn and x interchangeably to denote a sequence x1; x2; :::; xn:

We look for the set of sequences whose empirical distribution is close enough to a given

distribution. We just consider rational distributions of a given length n.

De¯nition 1 The type Px (or empirical probability distribution) of a sequence x = x1; x2:::; xn

is the relative proportion of occurrences of each symbol of £, i.e., Px(a) =
N(ajx)
n

for all a 2 £,
where N(a j x) is the number of times that a occurs in the sequence x 2 £n:

De¯nition 2 Given a length n, denote by Pn the set of types of sequences of length n; i:e:;

Pn = fPx j x 2 £ng

For instance, if £ = f0; 1g ; then the set of possible types for the length n is:
Pn =

©
(0; 1);( 1

n ;
n¡1
n )(

2
n;

n¡2
n ); :::; (

n¡2
n ;

2
n ); (

n¡1
n ;

1
n); (1; 0)

ª

De¯nition 3 If P 2 Pn, then the set of sequences of length n and type P is called the type

class of P , denoted by T(P ); i.e., T(P ) = fx 2 £n : Px = Pg :
3Neyman's source code (1998) is also the identity but it is not the optimal one given his set of veri¯cation

sequences. In particular, he uses half of the communication sequences to specify the chosen play and the other

half to balance them, in clear contrast with our codi¯cation which uses a whole sequence to determine the play.

His construction produces that the set of possible plays is smaller than ours, i.e., a subset of ours, and then

that our upper bound on player's 1 complexity is larger than Neyman's upper bound.
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5.2 Random sequences: Typical Set

We present here some basic results from Information Theory. For a more complete treatment

consult Cover and Thomas (1991).

Let X be a random variable over a ¯nite set £, whose distribution is p 2 ¢(£); i.e.,

p(µ) = Pr(X = µ) for each µ 2 £:

De¯nition 4 The entropyH(X ) ofX is de¯ned byH (X) = ¡§µ2£p(µ) log(p(µ) = ¡EX [log p(X)] ;
where 0 log 0 = 0 by convention.

Notice that the entropy of a random variable depends on the distribution and not on the

values it takes and measures the amount of information contained in a random variable or in a

probability distribution.

Let X = (X1; :::; Xn) be a vector of ¯nite random variables over £n
k=1£k: Then by the

de¯nition of entropy,

H (X) = H(X1; :::; Xn) = ¡§µ12£1:::§µn2£np(µ1; :::; µn) log p(µ1; :::; µn) where p(µ1; :::; µn) =
p(X1 = µ1; :::; Xn = µn):

Given a pair of random variables (X1; X2) taking values in £1 ££2 with joint distribution
p(µ1; µ2); we denote by p(µ2 j µ1) the conditional probability that X2 = µ2 given that X1 = µ1:
De¯ne h(X2 j µ1) = ¡§

µ22£2
p(µ2 j µ1) logp(µ2 j µ1):

Thus h(X2 j µ1) is the entropy of X2 when the realization X1 = µ1 is known. Consider

h(X2 j ¢) as a random variable on £1 equipped with the marginal distribution of X1; p(µ1) =
§µ22£2p(µ1; µ2):

De¯nition 5 The conditional entropy H (X2 j X1) of X2 given X1 is de¯ned by
H (X2 j X1) = EX1 [h(X2 j X1)] =

P
µ12£1 p(µ1)h(X2 j µ1):

An easy computation shows that H(X1; X2) = H(X1) +H(X2 j X1) where H(X1; X2) is
the entropy of the variable (X1; X2): Then, the generalization of the above result is the next

proposition.

Proposition 1 If X = (X1; :::; Xn) is a vector of random variables then

H (X) = H(X1; :::; Xn) = H(X1) +
Pn

k=2H (Xk j X1; :::; Xk¡1):
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The entropy of a random variable is a measure of the uncertainty of the random variable, i.e.,

the amount of information required on the average to describe the random variable, while the

relative entropy (or Kullback Leiber distance) gives us the distance between two distributions.

It gives the level of ine±ciency of assuming that the distribution is q when instead the true one

is p:

De¯nition 6 The relative entropy of the probability mass function p(x) with respect to the

probability mass function q(x) is de¯ned as

D(p k q) =P
x2£ p(x) log

p(x)
q(x)

= Ep log
p(X)
q(X)

Notice that the relative entropy is not a true distance since it is not symmetric and does

not satisfy the triangle inequality. Nevertheless, it is often consider as a distance between

distributions.

5.2.1 Typical set: Asymptotic Equipartition Property.

Consider independent, identically distributed ( i.i.d) random variables X1; :::; Xn. The law of

large numbers states that 1n
Pn

i=1Xi is close to its expected value, EX; for large values of n: The

Asymptotic Equipartition Property (AEP) is a consequence of the weak law of large numbers.

If X = X1; :::; Xn is a vector of i.i.d random variables and p(X1; ::; Xn) is the probability

of observing the sequence X1; :::; Xn then 1
n
log 1

p(X1 ;::;Xn)
is close to the entropy H(X): The

Asymptotic Equipartition Property makes it possible to divide the set of all sequences into two

sets, the typical set, where the sample entropy is close to the entropy of the random variable,

and the non-typical set, which contains the other sequences. Any property that is proved for

the typical set will determine the behavior of a large sample. However, we might be able to

predict the probability of the sequence that we actually observe. We ask for the probability

p(X1; ::; Xn) of the outcomes X1; :::; Xn; where X1; X2; ::: are i.i.d » p(x): We are asking for

the probability of an event drawn according to the same probability distribution. It turns out

that p(X1; :::; Xn) is close to 2¡nH(p) with high probability. Almost all events are almost equally

likely.

For instance consider the random variable X 2 f0; 1g with a probability mass function
de¯ned by p(1) = p and p(0) = q: If X1; :::; Xn are i.i.d. according to p(x). Then the probability

of a sequence x1; x2; :::; xn is
Qn
i=1 p(xi): Clearly, it is not true that all 2

n sequences of length n

have the same probability.

The asymptotic equipartition property is formalized in the following theorem:
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Theorem 2 (AEP): If X1; :::; Xn are i.i.d. with common distribution p(x) then

¡ 1
n
logp(X1; :::; Xn)! H(X) in probability.

De¯nition 7 The typical set A(n)± with respect to p(x1; :::; xn) is the set of sequences

(x1; :::; xn) 2 £n such that
2¡n(H(X)+±) � p(x1; :::; xn) � 2¡n(H(X)¡±)

As a consequence of the AEP, the cardinality of the set A(n)± veri¯es that

(1 ¡ ±)2n(H(X)+±) �
¯̄
¯A(n)±

¯̄
¯ � 2n(H(X)¡±); for su±ciently large n.

Thus, the typical set has probability nearly 1, all typical sequences have about the same

probability 2¡nH(X) and by indexing the typical set has short descriptions of length ¼ nH:

5.3 Information Properties of the Type Set

The essential properties of the method of types arise from the following theorem, which states

that all sequences with the same type have the same probability and that the size of a type

class T(P ) is related with the type entropy.

These expressions make it possible to compute the behavior of long sequences drawn i:i:d.

according to some distribution based on the properties of the type of the sequence. Then, if

X1;X2; :::; Xn are drawn i:i:d: according to q(x); the typical set associated with q(x) can be

considered as the Type Set of the empirical distribution associated with X1;X2; :::; Xn; where

the Kullback distance between the type P and q is small.

Theorem 3 a) If X1;X2; :::; Xn are i:i:d: according to q; then the probability of x depends on

its type and is given by qn(x) = 2¡n(H(Px)+D(Pxkq)):

b) 1
(n+1)j£j2

nH(P ) � jT(P )j � 2nH(P )

For the binary case we can write a better bound of the cardinality of T(P ) by Stirling's

formula4. Speci¯cally, jT (P )j = ®n 22n

(¼n)
1
2
for P = ( 12;

1
2 ) and length 2n with 1 ¡ 1

22n � ®n �
1 + 1

22n:

4Stirling's formula says that:

n! = nn exp(¡n)
p

2¼n(1 + "n)

with 1 � "n � 1
11n

.
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5.4 Codi¯cation and data compression

Given a random variable X over a ¯nite set £, we are interested in generating a one-to-one map

(the source code) between the range of X and a ¯nite set with speci¯c properties. The most

important property among them is that the expected length of the source code of the random

variable is as short as possible. With this requirement we achieve an optimal data compression

which is important to identify a variable with a lower complexity.

Our purpose is to de¯ne a code from the support of the random variable distributed uni-

formly over sequences of length n (where n is even) with parity of ones and zeros in each of

them and with a ¯xed last component equal to one, into the sequences belonging to the minimal

Type Set of length m. The input sequences are played in the veri¯cation phase and an optimal

codi¯cation of these sequences is used for the communication phase.

Known results in Information Theory relate the expected length of the code with the entropy

of the random variable to code. For instance, Shannon (1948) establishes that the length of

the code of each element of the range of the random variable is the logarithm of the inverse

of its associated probability. Then the expected length of the code is lower than the entropy

of the random variable. Also, Hu®man (see Cover and Thomas, 1991) constructs an algorithm

where the expected length of any source code is minimized and thus he provides with optimal

coding5. Next we present formally the de¯nitions of codi¯cation and data compression.

De¯nition 8 A source code C from a random variable X is a mapping from £, the range of

X, to D¤ the set of ¯nite length strings of symbols from a D-ary alphabet. Let C(x) denote the

codeword corresponding to x and let l(x) denote the length of C(x):

De¯nition 9 The expected length L(C) of a source C(x) for a random variable X with prob-

ability mass function p(x) is given by L(C) =
P

x2£ p(x)l(x), where l(x) is the length of the

codeword associated with x:

De¯nition 10 A code is said to be non-singular if every element of the range of X maps into

a di®erent string in D¤, i.e., xi 6= xj ) C(xi) 6= C(xj):

Non-singularity su±ces for an unambiguous description of a single value of X:

De¯nition 11 A codeword x is a pre¯x in a codeword y if there is a codeword z such that

xz = y.

5Hu®man also establishes an inverse ranking between the probabilities and the length of the codes of each

element. Elements with higher probability have an associated code of a shorter length and viceversa.
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De¯nition 12 A code c is called a pre¯x code or an instantaneous code if no codeword is a

pre¯x of any other codeword.

An instantaneous code can be decoded without reference to the future codewords since the

end of a codeword is immediately recognizable. The above property justi¯es the pre¯x code

as a good codes since there is no pre¯x part such that the end of each code is unique. The

su±cient condition to construct instantaneous code of minimum expected length is known as

the Kraft inequality. Formally:

Theorem 4 (Kraft inequality): For any instantaneous code over an alphabet of size D, the

codeword lengths l1; l2; :::; lm must satisfy the inequality §D¡li � 1:

By the above de¯nitions we have to consider the coding of a source from a random variable

such that the expected length L(C) is as short as possible. This is equivalent to ¯nding the

instantaneous code with the minimum expected length, i,e., to minimize L =
P
pili subject

to §D¡li � 1: By the use of the Lagrangian multipliers we get that the optimal codelengths

are l¤i = ¡ logD pi: Then, the expected length is L¤ =
P
pil¤i = ¡P

pi logD pi = HD(X): Thus,

HD(X) � L¤ with equality i® D¡li = pi:

Remark 1 Consider now a source alphabet of size 2k, with equidistribution. The entropy

associated is H = ¡P2k

i=1 2
¡k log 2¡k = k. By the above bound on L¤, such a source is coded

by all codewords with length k.

In our problem we want to codify a subset of the Type Set6 Tn(
1
2;
1
2 ) of length n such that

the output of the codi¯cation veri¯es: 1) it consists of balanced sequences and 2) the last

component of each sequence is equal to 1. Notice that the set of the veri¯cation sequences V

satis¯es: 1) V ½ TPn¡1( n¡22n¡2;
n

2n¡2) £ f1g and 2)
¡
n¡3
n¡2
2

¢
< jV j �

¡
n¡1
n
2

¢
or 2n¡3

n < jV j < 2n¡1
n

and 3) V ½ f0; 1gm such that m is odd. Each sequence s 2 TPn¡1( n¡22n¡2;
n

2n¡2) £ f1g has an
associated probability of 1

jV j : The next result establishes that these sequences have optimal

descriptions of length about n.

Proposition 2 Let C be a source code from TPn¡1( n¡22n¡2;
n

2n¡2 ) £ f1g ; uniformly distributed,
to the set of ¯nite length strings of a binary alphabet. Then the expected length of C is greater

than n¡ 3 ¡ logn and smaller than n¡ 1¡ log n:
6Assume that the ¯rst component refers to the frequency of ones and then the second component to that of

zeros.
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Proof:

By de¯nition L(C) =
P

s2TPn¡1( n¡22n¡2 ;
n

2n¡2 )£f1g
p(s) log 1

p(s)
=

=
P
s2TPn¡1( n¡22n¡2 ;

n
2n¡2 )£f1g

1

jTPn¡1( n¡22n¡2 ;
n

2n¡2 )£f1gj log
¯̄
TPn¡1(

n¡2
2n¡2;

n
2n¡2) £ f1g

¯̄
=

log
¯̄
TPn¡1( n¡22n¡2;

n
2n¡2) £ f1g

¯̄

As 2
n¡3
n <

¯̄
TPn¡1( n¡22n¡2;

n
2n¡2 )£ f1g

¯̄
< 2n¡1

n then

n¡ 3 ¡ logn < L(C) < n¡ 1 ¡ log n ¤

Formal statement of Result 1: Let V ½ TPn¡1( n¡22n¡2;
n

2n¡2)£f1g and Q = C(V ), where
C is a source code with minimal expected length and with a balanced output. Then Q = V

and C is a bijective map.

Proof of Result 1: Let Q be the set of communication messages with Q = C(V ); where

V is the set of veri¯cation sequences. We prove here that Q= V .

Let m be the smallest odd integer such that jQj <
¯̄
TPm(m¡12m

; m+1
2m
)
¯̄
: By the above theorem

it is clear that m > n¡ 3: Recall that n is even and then such a smallest odd integer m is

n¡3+2 = n¡1: Then the communication phase consists of sequences in TPn¡1( n¡22n¡2;
n

2n¡2)£f1g
which already was the set V . Then the source code C is the identity7. ¤

The nature of the veri¯cation sequences which we want to codify is not a relevant infor-

mation to ¯nd the optimal set for the communication phase. We present next an alternative

approach for the construction of the set of veri¯cation sequences which allow us to relate our

communication scheme under strategic complexity (¯nite automata) with those in repeated

games with communication and full rationality (Lehrer, 1996; Lehrer and Sorin, 1997; Forges,

1990; Gossner, 1998; Gossner and Viellie, 1999 and Ben-Porath, 1998, among others).

To this end, recall that the entropy of sequences of i.i.d. random variables is a key concept to

describe such sequences. Also, in the framework of ¯nite automata, it measures howmany states

are needed to describe sequences and thus it is a good measure for communication schemes,

since their required "good properties" (better payo®s, no deviations from the equilibrium path,

7Notice that the cardinality of the set of veri¯cation sequences in Neyman (1998) is 2n¡1 < jV j � 2n , and

then his optimal codi¯cation corresponds with a communication set equal to T Pn0¡1(
n0¡2
2n0¡2 ; n0

2n0¡2 ) £ f1g where

n0 is the smallest even integer which satis¯es 2n0¡3
p

¼n0 > 2n . Then the optimal codī cation length of the sequences

belonging to this set is about n, instead of 2n which is Neyman's length for the communication sequences.
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etc.) are given with the minimal number of states. This minimality condition on the number

of states together with that of sequence-independent payo®s drive us to choose as the set of

veri¯cation sequences that of random variables with maximal entropy. Thus, we can consider

the set of veri¯cation sequences as a subset of a Typical set of length n given a random variable

X. A consequence of the AEP is that all sequences of the typical set of length n, A(n)± have about

the same probability 2¡nH(X) and by using the above remark 1 they have also short descriptions

of length ¼ nH: Obviously the random variable X has to be close to the empirical distribution

of the chosen Type set. The next lemma establishes the condition on the random variable X

such that the Typical Set of length n associated to X contains the type set TPn¡1(
n¡2
2n¡2 ;

n
2n¡2 ) :

the distribution of X has to be close enough to the uniform distribution. This condition allow

us to give an alternative proof of the result 1.

Lemma 7 Let X be a random variable with distribution q and
¯̄
¯
P

i2f0;1g(q(i)¡ 1
2) log q(i)

¯̄
¯ < ±

then TPn¡1( n¡22n¡2;
n

2n¡2) £ f1g ½ A(n)±

Proof:

Let x = (x1; ::; xn¡1; 1) 2 TPn¡1( n¡22n¡2;
n

2n¡2 )£ f1g.

Let q = ­i2f1;::;ngq be the distribution induced by a sequence of i.i.d. variables X1; ::::; Xn.

It su±ces to prove that the probability of x = (x1; ::; xn¡1; 1) veri¯es that 2¡n(H(X)+±) �
q(x) � 2¡n(H(X)¡±):

By the relationship between the type of x and that of q then q(x) = 2¡n(H(Px)+D(Pxkq))

Notice that (H(Px) +D(Px k q)) = H(q) +H(Px)¡H(q) +D(Px k q) =

H (q) +
P

i2f0;1g(¡1
2
log 1

2
+ q(i) log q(i) + 1

2
log 1=2

q(i)
) =

= H(q) +
P

i2f0;1g(q(i)¡ 1
2) log q(i) < H (q) + ±

Then q(x) = 2¡n(H(Px)+D(Pxkq)) ¸ 2¡n(H(q)+±):

Hence 2¡n(H(X)+±) � 2¡n(H(Px)+D(Pxkq)) � 2¡n(H(X)¡±) and we conclude that

x = (x1; ::; xn¡1; 1) 2 A(n)± : ¤

Alternative proof of Result 1: By the above lemma we can consider that the set of

veri¯cation sequences is a subset of the typical set A
(n)
± associated to a sequence of i.i.d of

random variables with common distribution q: By the AEP the probability of each sequence

is about 2¡n(H(Px)+D(Pxkq)) . Then, by remark 1, the shortest description of each sequence is n
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. The image of the source code corresponds with the sequences used in the communication

phase. The coding map is singular and then for any sequence in the veri¯cation phase there

exists a unique element (signal or message) in the type set of length n with corresponds with

the communication phase. ¤

6 PROOF OF THE MAIN RESULT

Let GT (m1;m2) be the ¯nite repetition played by ¯nite automata of the two-player game in

strategic form G = (f1; 2g ;A; r) and let x 2 co(r(A)) such that xi > ui(G); i = 1; 2: Without
loss of generality, x can be expressed as x =

P3
i=1 ¸ir(a

1
i ; a

2
i ) where

P3
i=1 ¸i = 1. Consider the

following three cases, according to the number of player 1's di®erent actions to obtain x:

1. jfa11; a12; a13gj = 1;

2. jfa11; a12; a13gj = 2;

3. jfa11; a12; a13gj = 3:

The proof of the main result in the ¯rst case is a subcase of the proof of the second one.

A proof can be found in Neyman(1998); alternative proofs are provided by Papadimitriou and

Yannakakis (1994) and by Hernandez and Urbano (2000).

We construct a mixed strategy equilibrium for the second case, i.e., when jfa11; a12; a13gj = 2,
since it is rich enough to show the main features of the more general construction of the third

one yet it is easier to deal with. Thus, assume without loss of generality that a11 = a
1
2 6= a13;

and that a22 = a23 and denote a
1
1 and a

2
1 by 0 and a

2
2 and a

1
3 by 1 and assume that x =

¸0r(0; 0) + ¸1r(1; 1) + ¸2r(0; 1); with ¸i > 0, i = 0; 1; 2 and where
P2

i=0 ¸i = 1: Then, either

¸0r2(0; 0)+ ¸2r2(0; 1) > (u2(G)+2")(¸0+ ¸2), or r2(1; 1) > u2(G) +2" and we assume this last

inequality. The other subcase, i.e., when a11 = a
1
2 6= a13 and a21 6= a22 6= a23 and the third case,

i.e., when jfa11; a12; a13gj = 3; is analyzed at the end of the paper.

Set

l =
£
T
L+±

¤

d1 = [¸1l]

d = L4

d2 =
£
l 2̧
d

¤
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d3 =

�
l¸0(1¡ 1

L
)

d

¸

d0 = l¡ d1 ¡ dd2 ¡ d(d + 1)=2 ¡ dd3
l1 = d0 + d1

Now, we de¯ne the play by means of a communication phase and a regular phase. This last

phase consists of a cycle with two parts. The ¯rst one is a veri¯cation phase which is related

with the communication phase. The second one starts with the action pairs (0; 0) and also

includes all the required actions pairs (0; 1) to achieve the payo® x in the cycle. The third part

is the remainder of the action pairs (0; 0) and then all action pairs (1; 1): The cycle is repeated

until the end of the game.

More speci¯cally, the number l above is the length of the cycle that both players repeat

until the end of the game. The cycle consists of playing the actions pairs (0; 0), (1; 1), (0; 1)

in such a way that the payo® x is obtained, i.e., the number of times that each action pair

is played is approximately l¸i; i = 0; 1; 2; respectively. For every T (the length of the game),

the cycle has to be repeated a large number of times, L where
£
3K
"

¤
� L < 1

"2
: To ensure that

at the end of the repeated game player 1 is in the regular play where the action pair (1; 1) is

played, we choose l = [ T
L+±
] where 1

2
< ± < 1 and (L + 1)l ¡ T << l and (L+ 1)l > T . To

deter deviations it is enough to assume that L =
£
3K
"

¤
. The number of times that the action

pair (1; 1) is played is about ¸1l and then d1 is the integer part. The action pairs (0; 0) and

(0; 1) are not played consecutively. The number of times that the action pair (0; 0) is played is

d0 plus dd3 which is about ¸0l and that of the action pair (0; 1) is dd2: The integer number d

is su±ciently large to accommodate all pair actions in such a way that the number of reused

states in the player 1's automaton is relatively small.

6.1 Equilibrium play

The following is a construction of an equilibrium point (¾¤; ¿ ¤) of GT (m1;m2) with associated

equilibrium vector payo® (y1; y2) with jyi ¡ xij < ".

The mixed equilibrium strategy of player 2, ¿¤, chooses randomly a pure strategy ¿² where

² is an element of the message space Q. The message space Q is a set of sequences of length

2k, where k depends on the parameters of the game, T and m1. Moreover it veri¯es several

conditions: every message is a sequence with the same number of ones and zeros and the last

component is 1. Thus Q is a subset of T(P ) with P = (1
2
; 1
2
) and with sequences of length 2k.
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Each pure strategy ¾ in the support of ¾¤ of player 1 and the pure strategy ¿ ² of player 2

induce a play !(¾; ¿ ²) = (!1(¾; ¿
²); :::; !T (¾; ¿

²)) that depends on ², and therefore we denote

it by !(²) = (!1(²); :::;!T (²)) and call it the proposed play. The payo® associated to !(¾; ¿
²)

does not depend on the selected message ².

Player 2 communicates his choice of ² in Q at the beginning of the play to player 1, who

processes this information. The action of player 1 in the communication phase is independent

of ² and player 2 speci¯es the proposed play !(²) with his message. After the communication

phase, the proposed play enters in a cycle of length l. First, players verify the proposed play by

following the veri¯cation play for 2k stages. It consists of a coordinated play of actions pairs

(0; 0) and (1; 1). Then, both players play the regular play consisting of the action pairs (0; 0);

(0; 1) and (1; 1) for the remaining stages until l:

The strategy of player 1 will detect with positive probability any deviation of player 2. Some

deviation of this player will be detected immediately with positive probability, and others will

lead to a detection with positive probability in a future stage. The strategy of player 1 triggers

to punishing (playing the strategy that holds player 2 down to u2(G); denoted by Di ) forever

once he detects a deviation by player 2. We turn now to the formal construction of the proposed

play and the associated equilibrium strategies.

The set of messages

We start with the construction of the set Q, and the integers k and l1. First, let k = k(m1; l1),

be the smallest integer such that
¡2k
k

¢
l1
2 >m1¡l1. We will see that the number of pure strategies

for player 2 is at most
¡2k¡1

k

¢
and by Lemma 6 the complexity of each pure strategy is at least

l1, ¯lling up, in this way, player 1's complexity. It follows that
¡
2(k¡1)
k¡1

¢
1
2 � [m1¡l1

l1
] <

¡
2k
k

¢
1
2:

Recall that l is the length of the cycle. For every T (the length of the game), the cycle has

to be repeated a large number of times, L. Also, recall that l1 = d0+ d1 where d1 is the number

of action pairs (1; 1) along the cycle of length l, i.e., l¸1 and d0 is approximately
l¸1
L
: Then l1

is a function of O("T ):

To build the set of messages, consider the set of equidistributed sequences of zeros and ones

of length 2k and such that the last component of each of them is a 1. These sequences have the

property that their empirical distribution correspond with the type ( 12;
1
2) of length 2k: Recall

that T( 1
2
; 1
2
) =

n
x 2 f0; 1g2k : Px = P

o
=

n
x 2 f0; 1g2k : N(ajx)

n
= 1

2
for all a 2 f0; 1g

o
: Then,

the set that we consider is a subset of T(12 ;
1
2 ) of length 2k and where the last component of

each sequence is a 1 to mark the end of both the communication phase and the veri¯cation play.
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Thus,Q is a subset of T( k¡1
2k¡1 ;

k
2k¡1)£f1g ½ T (1

2
; 1
2
) and with cardinality

¯̄
T( k¡1

2k¡1;
k

2k¡1) £ f1g
¯̄
=

jT(12 ;12 )j
2 =

¡
2k
k

¢
1
2:

The associated play to a given message

For every ² we de¯ne the associated play !(²) of GT, i.e., a sequence !(²) = (!1(²); :::; !T (²))

with !t(²) = (!1t (²); !
2
t (²)) in A. As noted above, the play consists of a communication phase

followed by a play phase. We set µ(²) as the communication phase. The play phase, denoted

by c(²), is a cycle which is repeated until the end of the game except for the last stage T: This

phase consists of the veri¯cation play µ¤(²) and the regular play ec.

The purpose of the regular play ec is twofold: to achieve the payo® x and with the lowest
complexity8. Since x = ¸0r(0; 0) + ¸1r(1; 1) + ¸2r(0;1), an easy way to reach x would be to

play l¸0 times (0; 0), followed by l¸2 times (0; 1) and by l¸1 times (1; 1), with an associated

complexity for player 1 of l. By lemma 6, x could even be achieved with a complexity of

l(¸0+ ¸1): However, it is possible to reduce the above complexity by repeating the action pairs

in a di®erent way while keeping the same proportion than above. For instance, the action pair

(0; 0) could be played a number of times and then introduce subplays of appropriated length

of the other action pairs (0; 1) and (1; 1). The connection among di®erent subplays is marked

by the action pair (0; 1). Speci¯cally, the play of the action pair (0; 0) consists of its \shortest"

repetition such that player 1 can safely accept the remaining action pairs (0; 0) and (0; 1) (by

using his reused states). To this end ec is composed of three di®erent parts: The play c¤, plus
the play of d0¡ k times of (0; 0)0s and the play of d1¡ k times of (1; 1)0s. In this way, player 1
can insert the l¸2 repetitions of (0; 1)0s in the states with a 0 as the action function and thus the

play c¤ consists of action pairs (0; 0) and (0; 1), while the second play is just (0; 0) action pairs,

and the third one represents about l¸1 times (1; 1) action pairs. The regular play is common

for every signal.

Let

µ(²) = ((0; ²1); : : : ; (0; ²2k))

µ¤(²) = ((²1; ²1); :::; (²2k; ²2k))

8Notice that we look for a construction which can be implemented by the player with the lowest complexity.

In this way we achieve the less restrictive equilibrium conditions.
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The construction of the cycle is as follows. Let

ec = c¤+ (d0 ¡ k) ¤ (0; 0) + (d1 ¡ k) ¤ (1; 1)

De¯ne the play c¤ by,

c¤ =
dX

i=1

(d3 ¤ (0; 0) + (d2 ¡ 1) ¤ (0; 1) + (i¡ 1) ¤ (0; 0) + (0; 1))

Notice that j(d3 ¤ (0; 0) + d2 ¤ (0; 1) + (i¡ 1) ¤ (0; 0) + (0; 1))j = d3+ d2+ i; which does not
follow a cyclical pattern. Also, observe that the di®erence between the payo® of a run of c¤

and that of the corresponding part of (0; 0)0s and (0; 1)0s of x is su±ciently small, i.e.,
°°°R(d3 ¤ (0; 0) + d2 ¤ (0; 1) + (i¡ 1) ¤ (0; 0) + (0; 1))¡ 0̧r(0;0)+¸2r(0;1)

¸0+¸2

°°° < O( 1L).

The play c¤ is designed such that the action pair (0; 1) is played about l¸2 times and the

complexity of the regular play is minimized. To this end, player 1 uses the same action pair

(0; 1) as a signal or marker to change from a subplay to another in each run of c¤. In this

way, the complexity of ec decreases from l(¸0 + ¸1) to d0 + d1 (see lemma 10). Notice that the

above upper bound is the number of action pairs (0; 0) and (1; 1) which are needed (to reach

the payo® x) in a cycle of length l, where the pair (0; 1) is used as a signal for player 1. The last

i-(0; 0) action pairs are used as a counting device to assure that the number of runs is exactly

d. Notice that the regular play is designed to compress the actions pairs (0; 0) by means of the

action pairs (0; 1) included in c¤.

Recall that the veri¯cation play µ¤(²) and the regular play ec form the cycle c(²) that is

repeated until the end of the game except the last stage T: Then, de¯ne this cycle c = c(²) of

length l by:

c = c(²) = µ¤(²) + ec = µ¤(²) + c¤ + (d0 ¡ k) ¤ (0; 0) + (d1¡ k) ¤ (1; 1).

Also, recall that comp1(ec) ¸ (d0 ¡ k) + (d1 ¡ k) and then comp1(c) = comp1(µ¤(²) + (d0 ¡
k)¤ (0; 0)+(d1¡k)¤ (1; 1)) = d0+d1 = l1. The play c¤ allows player 1 to reduce his complexity
of ec and then the complexity of c(²).

In the last stage of the game player 2 plays the best response to the action 1 of player 1,

denoted by b2. Then !T (²) = (1; b
2).
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The associated play to a given ² in Q is given by:

!(²) = µ(²) + L(µ¤(²) + c¤ + (d0 ¡ k) ¤ (0; 0) + (d1 ¡ k) ¤ (1; 1)) +
µ¤(²) + c¤+ (d0 ¡ k) ¤ (0; 0) +
(T ¡ 2k ¡ lL¡ (l ¡ (d1 ¡ k)) ¡ 1) ¤ (1; 1) + (1; b2):

To summarize, a play !(²) = (!1(²); :::; !T(²)) with !t(²) = (!
1
t (²); !

2
t (²)) in A is as follows:

!t(²) =

8
>>>>>>><
>>>>>>>:

(0; ²t) if 0 � t � 2k

µ¤(²) if 2k < t mod l � 4k

c¤ if 4k < t mod l � 4k + l¡ d1 ¡ do
(0; 0) if 4k + l ¡ d1 ¡ do < t mod l � 3k + l¡ d1
(1; 1) if 3k + l ¡ d1 < t mod l � 2k + l

9
>>>>>>>=
>>>>>>>;

!T (²) = (1; b
2)

The ¯rst row corresponds with the communication phase where player 2 sends the message

² and player 1 plays 0. The veri¯cation phase is represented by the second row. The third,

fourth and ¯fth rows coincide with the rest of the cycle of length l. The cycle is repeated until

the end of the game.

Properties of the associated play

In this section we study ¯rst how close to x is the payo® induced by the cycle c(²) and by its

associated play !(²); and second, the complexity of player 1 associated to both the play !(²)

and the set of plays Q. The ¯rst two lemmae assert that for T su±ciently large, the payo®

induced by c(²) and by the proposed play !(²) is "-close to the equilibrium payo® x and it is

independent of the signal. The last lemma of this section establishes a lower bound for the

di®erent plays to measure player 1's complexity on the set of plays Q:

Lemma 8 The vector payo® R(c(²)) is independent of ², and for su±ciently large values of T,

jRi(c(²))¡ xij < "

2
:
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Proof:

The number of action pairs (0; 0), (1; 1) and (0; 1) has to be approximately l¸0, l¸1 and l¸2

(respectively). The number of times of (0; 0)0s; (1; 1)0s and (0; 1)0s in the play c is k + dd3 +

d(d ¡ 1)=2 + d0¡ k, k + d1 ¡ k, and dd2 + d respectively.

Since d0 = l¡ d1 ¡ dd2 ¡ d(d +1)=2 ¡ dd3 then

k + dd3+ d(d ¡ 1)=2 + d0¡ k = l ¡ dd2 ¡ d¡ d1.

Notice that jl¸0 ¡ k + dd3+ d(d ¡ 1)=2 + d0 ¡ kj = jl¸0 ¡ l¡ dd2 ¡ d ¡ d1j =
= jl¸1¡ d1 + l¸2 ¡ dd2 ¡ dj � jl¸1 ¡ d1j+ jl¸2¡ dd2¡ dj < 1 + d

Then for su±ciently large values of T , jRi(c(²))¡ xij< "
2
. ¤

Lemma 9 The vector payo®
PT

t=1 r(!t(²)) is independent of ², and for su±ciently large values

of T,

jRi(!(²)) ¡ xij < ":

Proof:

Clearly
PT

t=1 r(!t(²)) is independent of ² because the communication and the veri¯cation

plays consist of balanced sequences. Then, both phases are independent of the chosen sequence.

Notice that jRi(!t(²)) ¡Ri(c(²))j< K
L .

By the above lemma jRi(!(²)) ¡ xij = jRi(!(²)) ¡Ri(c(²)) + Ri(c(²)) ¡ xij
� jRi(!(²)) ¡Ri(c(²))j+ jRi(c(²)) ¡ xij < K

L
+ "

2
= "

3
+ "

2
< "

¤

Both players' complexity give us the equilibrium conditions on the automaton sizes. Player

2's complexity on a given play !(²);i.e., comp2(!(²)); is equal to T + 1: To ¯nd out a lower

bound of player 1's complexity, we study his play complexity associated to ², i.e., comp1(!(²)).

Player 1 has to respond correctly to each signal and thus we compute his complexity on the

set of plays !(²) for ² 2 Q, comp1(Q); where Q is the set of plays. Recall that a player's

complexity of a set of plays Q is de¯ned as the smallest complexity of a strategy ¾ which is

conformable to Q:

To compute comp1(Q), we have to consider the coordinated and the non-coordinated plays.

The coordinated plays consist of the play of both the veri¯cation phase of length 2k and the

last action pairs (d1 ¡ k )(1; 1). Hence, a lower bound of player 1's complexity is the number

of di®erent coordinated plays in the play phase. Their complexity is exactly their length which
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coincides with the number of the action pairs in the veri¯cation play plus the number of (1; 1)0s

after c¤. Notice that the play of c¤, i.e., (!d3++2k+1(²); :::!l¡d1¡d0+k(²)), is not a coordinated

play: its play complexity is obtained by lemma 6. Then, to bound player 1's complexity on

the set of plays !(²); ² 2 Q, we ¯nd lower bounds of both the two coordinated plays in !(²)
and the non-coordinated part of !(²). With them, it is shown that a lower bound of player 1's

complexity, comp1(Q); is jQj l1:

Lemma 10 1)For every (²; t); (²0; t0) 2 Q£ (f1; :::; 2k + d3g [ fl¡ d1 + k + 1; :::; l ¡ 1g) with
(²; t) 6= (²0; t0)
(!t(²); :::!t+l1¡1(²)) 6= (!t0 (²0); :::; !t0+l1¡1(²0))
2) Let ! = (!d0+1(²); :::!l¡d1+k(²)), a lower bound of player 1's complexity of ! is comp

1(!) ¸
d0

3) By 1) and 2) comp1(Q) ¸ jQj l1

Proof:

1) To bound player 1's complexity on !(²); ² 2 Q, we ¯nd ¯rst lower bounds of both the
two coordinated plays in !(²) and the non-coordinated part of it.

After the communication phase for 2k < tmod l � 4k + d3 and l ¡ d1 + k < tmod l � l

both players follow a coordinated play. We have to prove that for every (²; t); (²0; t0) 2 Q £
(f1; :::; 2k + d3g [fl¡ d1 + k; :::; lg) with (²; t) 6= (²0; t0), then
(!t(²); :::!t+l1¡1(²)) 6= (!t0 (²0); :::; !t0+l1¡1(²0)).
It su±ces to show that for any pair (²; t) 6= (²0; t) and 2k < tmod l � 4k+d3 and l¡d1+k <

tmod l � l either there exists 0 � s � l with (!t(²); :::; !t+s(²)) 6= (!t0(²0); :::; !t0+s(²0)); or there
exists 0 � s � l with !t+s(²) 6= !t0+s(²0):
Suppose that t = t0 and thus ² 6= ²0. Therefore there exists 0 � s0 < 2k with ²s0 6= ²0s0. Let

s = l ¡ t+ s0 such that 0 � s � l:We conclude that !t+s(²) 6= !t+s(²0):
Next, suppose that t 6= t0. We can always choose one s such that the !t+s(²) is in the regular

part and !t0+s = !l+2k. With that we conclude that !t+s(²) = (0; 0) and !t0+2k(²
0) = (1; 1):

More speci¯cally, suppose that t < t0. If t0 ¡ t > l ¡ d1 ¡ 2k, and t0 + 2k + 1 < l setting

s = 2k + l ¡ t + 1; t0 + s = l + 2k + 1 + t0 ¡ t then !t0+s(²) = (1; 1) and !t+s(²) = (0; 0): If

t0¡ t � d1¡ k as d1 > 2k setting s = 2k + l¡ t0 +1; then !t+s(²) = (1; 1) and !t0+s(²0) = (0; 0).
Note that this choice is independent of ²; ²0 2 Q.
2) To bound the complexity of the non-coordinated part, i.e., ! = (!d3+2k+1(²); :::!l¡d1+k(²))

we use lemma 6 where B1 = f0g and k(0) = d0. Then comp1(!) ¸ d0:
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3) By adding the above complexity bounds then comp1(Q) ¸ jQj l1: ¤

6.2 Construction of the equilibrium strategy of player 2

We now describe player2's equilibrium strategy. It consists of a mixed strategy supported by

j Q j pure strategies. For every ² 2 Q, a proposed play !(²) is associated to a pure strategy
in the support of ¿ ¤; the equilibrium mixed strategy. Player 2 follows the proposed play and

punishes forever as soon as he detects a deviation. Thus, for any ² 2 Q , ¿² = (¿ ²t )Tt=1 is the
pure strategy of player 2 de¯ned by,

(
¿ ²t (s1; :::; st¡1) = !

2
t (²) if (s1; :::; st¡1) = (!1(²); :::; !t¡1(²));

D2 otherwise

The pure strategy ¿ ² 2 §2(T; T+1), i.e., ¿ ² is implemented by an automaton< f1; :::; T ; T +1g ; 1
f2² ; g

2
² > of size T +1 where:

² f1; :::; T; T + 1g is the set of states.

² 1 is the initial state.

² The action function f2² de¯ned by f 2² (t) = !2t(²) if t � T; f2² (T + 1) = D
2.

² The transition function g2² ; de¯ned by g2² (t; a) = t + 1 if a = !1t (²) and t � T , and

g2² (t; a) = T + 1 otherwise, i.e., if a 6= !1t (²), or if t = T + 1.

6.3 Construction of the equilibrium strategy of player 1

Player 1's equilibrium strategy is a mixed strategy. Player 1 has to answer correctly to any signal

sent by player 2. Hence, each pure strategy that belongs to the mixed equilibrium strategy must

be conformable with the set of plays f!(²) : ² 2 Qg : In the communication phase player 1 has
to process the information sent by player 2 and he does it by using the same states than those

for the regular play. The veri¯cation play consists of a coordinated play where both players

play the same action at the same time. The regular play is composed of two di®erent parts. In

the ¯rst one c¤ is played. The second part consists of a coordinated play with d0 ¡ k action

pairs of (0; 0)0s followed by d1¡ k action pairs of (1; 1)0s. To reduce the associated complexity

player 1 reuses states with action function 0 to implement both action pairs (0; 0) and (0; 1):
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Recall that in these states player 1 cannot punish deviations since both action are admitted

and thus he construct an equilibrium mixed strategy that conceals the disposition of his reused

states in the regular play. The di®erence among player 1's pure strategies in the support of

the equilibrium strategy is the location of these states for the communication phase and for

the play of c¤ in the regular play. Player 1's mixed strategy is a uniform distribution over the

minimal subset of pure strategy ¾ 2 §1(m1) where ¾ is conformable with f!(²) : ² 2 Qg : The
minimal set is understood as the minimal set with enough uncertainly about the true locations

of his reused states.

6.3.1 The Automaton of player 1

The mixed equilibrium strategy of player 1, ¾¤ 2 ¢(§(m1; T)); is a mixture of pure strategies,

each one being implemented by an automaton conformable with Q: Each automaton has to

implement the communication phase and the play phase. We de¯ne ¯rst, the state space

and the action function which implement !(²); for all ² 2 Q. Second, we present the transition
function for the play phase, i.e., the veri¯cation play and the regular play. Finally, we construct

the transition function for the communication phase which determines the initial state.

The state space is

M 1 = f®g [ Q£ f1; :::; l1g

The action function of the automaton is given by,

f1(®) = D1;

and

f i(²; j) =

8
>><
>>:

µj(²) if 1 � j � 2k
0 if 2k < j � d0 + k

1 if d0 + k < j � d0 + d1 = l1

The play phase: The play phase is a cycle which is composed of the veri¯cation play and

the regular play. The ¯rst one is a coordinated play of length 2k and it is independent of the

pure strategy selected by player 1. The regular play consists of a play which is independent, or

deterministic part, and another play which depends on the pure strategy selected by player 1.

We start with the description of the deterministic part which is quite similar to that of Neyman

(1998).
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We visualize the states of the automaton of the form (²; j) as arranged in a rectangular

array with jQj rows and l1 columns. Recall that l1 = 2k + d0 ¡ k + d1 ¡ k: The rows are

indexed by the di®erent elements ² in Q and the columns are indexed by 1; :::; l1:We may think

that every row corresponds to a pure strategy of player 2. Given ² in Q, in the ¯rst 2k states

the action function assigns an action ²j if 1 � j � 2k which depends on the row (veri¯cation

phase). Then, the action is 0 in each state whose column is between 2k + 1 to l1 ¡ d1 ¡ k.

For the last d1 ¡ k columns, the action function assigns the action 1. The number of columns
coincides with the complexity of player 1's cycle.

Figure 1 illustrates the automaton of player 1 for k = 3; and j Q j=
¡
2k¡1
k

¢
=

¡
5
3

¢
= 10:

Suppose that the regular play has 67 columns, where d0 = 33 and d1 = 40 and that the

veri¯cation play has 6 associated columns. The ¯lled disks (²) represent states of the automaton
whose action function is a 0, when player 2 plays a 0 as well. The small disks (±) represent
states that play the action 1 when player 2 plays a 1. The big disks (°) mean the ¯nal states
of the regular play where both players have to play 1 at the same time. The transition function

in these last states goes to the ¯rst state in the same row. The horizontal arrows indicate the

transition of the automaton when player 1 follows a coordinated play.

± ! ± ! ² ! ² ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J
± ! ² ! ± ! ² ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J
± ! ² ! ² ! ± ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J
± ! ² ! ² ! ² ! ± ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J
² ! ² ! ² ! ± ! ± ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J
² ! ² ! ± ! ² ! ± ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J
² ! ² ! ± ! ± ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J
² ! ± ! ² ! ² ! ± ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J
² ! ± ! ² ! ± ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J
² ! ± ! ± ! ² ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J

± ! ² ! ± ! ² ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J± ! ² ! ± ! ² ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J± ! ² ! ± ! ² ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J± ! ² ! ± ! ² ! ² ! ± ! ² ! ² ! ¢ ¢ ¢ ! ² ! ± ! ± ! ¢ ¢ ¢ ! J

Veri¯cation Play Regular Play

Figure 1.
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Next we de¯ne the transition function for the play phase. According to the di®erent nature

of the plays in this phase (deterministic and random) the transition function is designed such

that it allows both punishing deviations immediately in the deterministic part and precluding

deviations in the random one.

The transition of the automaton is de¯ned such that for each ¯xed ² 2 Q, player 1 remains
in the same row and goes to the next column in case player 2 plays correctly in the veri¯cation

phase and for states (²; j) with 2k < j � d0+k if player 2 plays a 0 and for states d0+k � j < l1

when player 1 plays a 1. For the state (²; l1); if player 2 plays 1 then the transition function

goes to the ¯rst column in this row, i.e., player 1 starts another repetition of the cycle if player

2 plays a 1 in this stage. This leads to the following transitions:

g1((²; j); 0) =

(
(²; j + 1) if 1 � j < 2k and ²j = 0

(²; j + 1) if 2k < j � l1 ¡ d1 + k

g1((²; j); 1) =

8
>><
>>:

(²; j +1) if 1 � j < 2k and ²j = 1

(²; j +1) if l1 ¡ d1 + k � j < l1
(²; 1) if j = l1

The states of the automaton of the form (²; j) such that 1 � j � 2k or d0 + k � j � l1

implement a coordinated play. Any deviation from this play at these states results in punishing

forever.

g1((²; j); e) = ® if 1 � j � 2k and ²j 6= e
g1((²; j); 1) = ® if d0 + k � j � l1

The state ® is an absorbing state and then player 1 punishes forever after the ¯rst deviation

is detected. The transition function is as follows:

g1(f®g; ¤) = ®:

Up to now, we have de¯ned the deterministic part of the regular phase. To reduce the

complexity of the cycle, player 1 reuses states whose action function is a 0 and he uses the

action 1 of player 2 as a signal to start another run of c¤. These states are of the form (²; j)

with 2k < j � d0 ¡ 5k with no reused state following c¤ and processing the signal in the

communication phase. There are dd2 states that tolerate both actions 0 and 1: To conceal the
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location of these states we add a random procedure to implement the action pairs (0; 1) which

are played in the play c¤: This random procedure is de¯ned by the following random integers:

Let z be an integer number such that 1 � z � 2 and L = 2d2+d3+d . Set a random increasing

function ½ : f1; :::; Lg !
©
2k + d3 + 1; :::;d0¡ 4k ¡ L

ª
with ½(i+1) > ½(i) +Ld2+ d3+ d, and

consider a random sequence of elements i1; ::; id of f1; :::; Lg :

Recall that c¤ =
Pd

i=1(d3 ¤ (0; 0) + (d2 ¡ 1) ¤ (0; 1) + (i¡ 1) ¤ (0; 0) + (0; 1)). Now, we can
de¯ne the transition function of player 1's automaton implementing c¤ :

We start with the de¯nition of the transition function of the state (²; 2k), i.e., when the

veri¯cation play ¯nishes. Player 2 has to play the action 1 and then player 1 jumps to the

column ½(i1)¡ d3 which it is unknown to player 2. In this way player 2 is uncertain about the
¯rst reused states in c¤. The transition function is de¯ned by:

g1((²; 2k); 1) = (²; ½(i1)¡ d3):

For every 1 � t � d we de¯ne the transition function for the states whose action function

is a 0 but accept the action 1 of player 2, i.e., these states implement the action pairs (0; 1) in

c¤ as:

g1((²; ½(it) + zs); 1) = (²; ½(it) + zs+ s) if 0 � s < d2

and

g1((²; ½(it) + s); 1) =

(
(²; ½(it+1) ¡ d3) if s = ½(it) + zd2 + t and t < d

(²; 2k + 1) if s = ½(it) + zd2 + t and t = d

The ¯rst row is the transition function for every d2 stages of (0; 1) in c
¤ given it, for 0 < t � d:

The second one de¯nes the transition function for the last (0; 1); for every repetition t < d.

Notice that the assumptions on the random sequence i1; ::; id, imply that for 1 � t < t0,

½(it)+ t 6= ½(it0 )+ t0: Finally, the last row is the transition function for the last (0; 1) for the last
repetition of c¤. The states that admit both actions are properly located in the ¯rst d0 states.

The next ¯gure illustrates the transition function in the regular phase implementing c¤:

We consider two cases: 1) assume that L = 2 then d = 24 = 16 and d3 = 3 = d2. Let

i1; ::; i16 = 1; 2; 1; ::: and ½(1) = 14 and ½(2) = 58 ; 2) assume now that L = 2 then d = 24 = 16

and d3 = 3 = d2. Let i1; ::; i16 = 2; 1; 1; ::: and ½(1) = 14 and ½(2) = 58:
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¯!²!²!²!²!²!¦!²!¦!²!¦!²!¦!²!²!¦¢ ¢ ¢ ¢ ¢ ¢ ! ²!²!²!¦!²!¦!²!¦!²!¦

1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23! ¢ ¢ ¢! 55 56 57 58 59 60 61 62 63 64 65

Case 2:

¯! !²!²!²!¦!²!¦!²!¦!²!¦!²!²!² ¢ ¢ ¢ ¢ ¢ ¢ ! ²!²!²!¦!²!¦!²!¦!²!²!¦

1 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23! ¢ ¢ ¢! 55 56 57 58 59 60 61 62 63 64 65

Case 1:

? ? ? ? ? ? ?? ??

? ? ? ? ? ? ???

Figure 2.

The communication phase: In the communication phase player 1 has to process the in-

formation sent by player 2. He uses the same states to be used in the regular play. We design

the transition function for the ¯rst 2k stages such that player 1 follows a speci¯c play after

the communication phase and he conceals his reused states by changing their locations in his

pure strategies. In other words, each pure strategy in the support of player 1's mixed strategy

is designed such that it selects the right row along the communication phase and it does not

reveal which states admit both actions.

The transition function of player 1's automaton in this phase depends on the pure strategy

selected. Each pure strategy is given by two random numbers p and n. The ¯rst of them

determines the initial state of the automaton. We denote this initial state by (1; p). Thus, p is

the column where player 1 processes the signal sent by player 2 and it veri¯es that d0 ¡ 5k �
p � d0 ¡ 3k.

Given ² = (²1; :::; ²i; :::; ²2k¡1; 1) 2 Q let k² be the smallest integer such that
Pk²

i=1 ²i = k or

k² ¡ Pk²
i=1 ²i = k: The random integer n 2 f1; 2g determines the jumps in the columns ( along

the same row) that player 1 follows in the communication phase when player 2 sends a 1 after

k² stages.

The transition function of the communication phase consists of three parts: the ¯rst one

corresponds to the ¯rst stages until k²; the second to k² until 2k ¡ 1, and ¯nally the third part
refers to the last stage of the communication.

Thus, to select the right row during the ¯rst stages, the transition function jumps among

the di®erent rows guarantying that when the number of either ones or zeros is greater or equal
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than k the state of the automaton is in the row that corresponds to player 2's sequence of

actions in the ¯rst k² stages of the game. This row is the one where the ¯rst components are

the corresponding to the signal sent by player 2, followed by the maximal number of zeros.

Thus, player 2's signals are ranked in this way. This is achieved through the following partial

transition function:

If ² = (²1; :::; ²2k¡1; 1) 2 Q and Pj¡p
i=1 ²i < k and (j ¡ p) ¡ Pj¡p

i=1 ²i < k and

h = k ¡ (j ¡ p)¡ Pj¡p
i=1 ²i then

g1((²; j);1) = ((²1; :::; ²j¡p; 1; 0; :::; 0; ²j¡p+1+h; :::; 1); j + 1) if p � j � p+ 2k

If ² = (²1; :::; ²2k¡1; 1) 2 Q and Pj¡p
i=1 ²i = k or (j ¡ p)¡ Pj¡p

i=1 ²i = k and

h = k ¡ (j ¡ p) ¡ Pj¡p
i=1 ²i then g1((²; j); 1) = (²; j + n) if p � j � p+ 2k

g1((²; j); 0) = (²; j + 1) if p � j � p +2k

In second place, we design the transition function9 when player 2 is sending the last part

of the signal except for the last stage, i.e., for t : k² > t > 2k. Here, the randomness of the

jumps, n, allows player 1 to hide his reused states. Recall that n 2 f1; 2g, then:

If ² = (²1; :::; ²2k¡1; 1) 2 Q andPj¡p
i=1 ²i = k or (j ¡ p)¡ Pj¡p

i=1 ²i = k and n = 1; then

g1((²; j); 1) = (²; j +1) if p+ k² � j < p+ 2k

If ² = (²1; :::; ²2k¡1; 1) 2 Q and
Pj¡p

i=1 ²i = k or (j ¡ p) ¡ Pj¡p
i=1 ²i = k and k² = 2 £ (k ¡

Pk²
i=1 ²i ¡ 1) + (k ¡ k² +

Pk²
i=1 ²i) and n = 2, then

g1((²; j); 1) = (²; j + 2) if p + k² � j < p + k²

Finally, the last state in the communication phase is not in the same column for every row.

It depends on ², n, p, i.e., on where the communication starts, on the distribution of ones in ²

and on the number of jumps.

Let ev be a function
ev :

Q ¡! [p; :::; p+ 3k]

² ¡! ev(²) = p+ 3k ¡
k²X

i=1

²i ¡ 2

9Notice that we do not use a distribution over transition functions, but we produce enough uncertainty on

the ¯nal states of the transition function to deter deviations.
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Notice that the max ev(²) is when ² = (0; :::; 0; 1; :::; 1) 2 Q and then ev(²) = p +3k ¡ 2.
Now it is possible to de¯ne the ¯nal state's transition function for every row: g1((²;ev(²)); 1) =

(²; 1):

This is equivalent to: g1((1; p); ²) = (²; 1):

In all other cases the value of g1 equals ®.

Figure 3 illustrates the communication phase associated to the veri¯cation play in the above

example for k = 3 and n = 2. The star (? ) is the initial state. The diamonds (¦) represent
those states in the regular play that are used to process the information sent by player 2 in

the communication phase, and thus admit both actions 0 and 1 from player 2. The big states

with a dot are the states in the regular play that player 1 uses to determine the end of the

communication phase. These states also admit both actions, 0 and 1.

² ! ² ! ² ! ² ! J
1 1 0 0 0 1

² ! ² ! ² ! ² ! J
1 0 1 0 0 1

² ! ² ! ² ! ² ! J
1 0 0 1 0 1

¦ ! ¦ ! ¦ ! ¦ ! ² ! J
1 0 0 0 1 1

¤ ! ¦ ! ¦ ! ¦ ! ² ! ² ! ² ! J
0 0 0 1 1 1

² ! ² ! ¦ ! ¦ ! ² ! J
0 0 1 0 1 1

² ! ² ! ² ! ² ! J
0 0 1 1 0 1

² ! ¦ ! ¦ ! ¦ ! ² ! J
0 1 0 0 1 1

² ! ² ! ² ! ² ! J
0 1 0 1 0 1

² ! ² ! ² ! ² ! J
0 1 1 0 0 1

@@R

@@R

¡¡µ

¡¡µ

¡¡µ

¢
¢
¢¢̧

A
A
AAU

£
£
£
£
££±

B
B
B
B
BBN

? ?

?

?

?

Figure 3.

As noted above, player 1's automaton is a matrix with l columns and
¡
2k¡1
k

¢
rows. Thus,

the communication phase starts in the p column that player 1 has chosen randomly. Hence,

the states used to process the signal are located in a submatrix with 2k rows and a number of

columns which depends on n and ².

Finally, we note that the conditions to ¯nd out player 1's bounds come from

² jRi(!(²))¡ xij < ":
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² The relationship between the number of reused states and the number of states with
action function 0 is approximately 1

L
:

² ¡2(k¡1)
k¡1

¢
1
2

� [m1¡l1
l1
] <

¡2k
k

¢
1
2

With the ¯rst and the second condition we obtain a bound on k with respect to T and " by

counting the number of action pairs played when the game is repeated until T and the maximal

number of reused states: Then, with the last condition we obtain the upper bound of player 1's

complexity.

6.4 Equilibrium conditions:

We check here that the constructed strategies are indeed an equilibrium. We show ¯rst that

any pro¯table deviation by player 1 cannot be implemented by a ¯nite automata of complexity

m1: We study the complexity of a strategy of player 1 which yields a higher payo® when

playing against ¿¤, i.e. comp1(¾) where r1T (¾; ¿
¤) ¸ PT

t=1
r1(!(²))
T : Secondly, we show that with

a probability close to 1 there is no pro¯table deviation from player 2.

Let ¾ be a strategy of player 1 and let ² 2 Q, with r1T (¾; ¿²) ¸ PT
t=1

r1(!(²))
T : Then, !t(¾; ¿ ²) =

!(²) for any t � T
z where z is a ¯xed number that depends on the action pair (1,1), with payo®s

x, and on the other payo®s of the stage game G. Therefore, for any strategy ¾ of player 1,

r1T (¾; ¿
²) � PT

t=1
r1(!(²))
T + C

T where C depends on the game G.

Let ¾ be a pure strategy of player 1 with r1T (¾; ¿
¤) ¸ PT

t=1
r1(!(²))

T and such that ¾ is

implemented by an automaton of size m1.

In order to characterize the size of the automaton which implements a pro¯table deviation,

consider the following partition of the set of messages.

Let

Q(1; ¾) =
n
² 2 Q such that r1T (¾; ¿ ²) >

PT
t=1

r1(!(²))
T

o

Q(2; ¾) =
n
² 2 Q such that r1T (¾; ¿ ²) =

PT
t=1

r1(!(²))
T

o

Q(3; ¾) =
n
² 2 Q such that r1T (¾; ¿²) <

PT
t=1

r1(!(²))
T

o

To study the complexity of ¾ we must know the one of !(²) for every ² 2 Q, hence we

analyze the complexity of every set of the partition of Q. De¯ne Q1 = f!(¾; ¿ ²) : ² 2 Q(1; ¾)g ;
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Q2 = f!(¾; ¿²) : ² 2 Q(2; ¾)g ; and Q3 = f!(¾; ¿²) : ² 2 Q(3; ¾)g : Notice that comp1(Q2) ¸
l1 jQ(2; ¾)j by lemma 10.

As ¾ veri¯es that r1T (¾; ¿
¤) ¸ PT

t=1
r1(!(²))
T

then r1T (¾; ¿
¤) ¸ 1

jQj
P

²2Q
PT
t=1

r1(!(²))
T

: Hence,

r1T (¾; ¿
¤) =

P
²2Q

1
jQjr

1
T (¾; ¿

²) =
1
jQj

£
§²2Q(1;¾)r

1
T (¾; ¿

²) + §²2Q(2;¾)r
1
T (¾; ¿

²) + §²2Q(3;¾)r
1
T (¾; ¿

²)
¤

Now, since any strategy ¾ of player 1, r1T (¾; ¿
²) � PT

t=1
r1(!(²))
T

+ C
T
and by the de¯nition of

Q(3; ¾); then

jQ(1; ¾)j
³PT

t=1
r1(!(²))

T
+ C

T

´
+ jQ(3; ¾)j

³PT
t=1

r1(!(²))
T

´
¸

jQ(1; ¾) + Q(3; ¾)j
³PT

t=1
r1(!(²))

T

´

Thus C
T

jQ(1; ¾)j ¸ jQ(3; ¾)j and for T large enough jQ(1; ¾)j ¸ 2 jQ(3; ¾)j

In the next lemma we study the least complexity of a strategy of player 1 which can give

him more that
PT

t=1
r1(!t(²))

T
.

Lemma 11 The complexity of ¾ such that r1T (¾; ¿
¤) ¸ PT

t=1
r1(!(²))
T is

comp1(¾) ¸ (L¡ 1)l1 jQ(1; ¾)j+ l1 jQ(2; ¾)j

Proof:

By the de¯nition of complexity, comp1(¾) = comp1 f!(¾; ¿ ²) : ² 2 Qg ¸
comp1 f!(¾; ¿ ²) : ² 2 Q(1; ¾) [Q(2;¾)g = comp1(Q1) + comp1(Q2):

Notice that comp1(Q2) ¸ l1 jQ(2; ¾)j by lemma 10. Let us bound the complexity of Q1:
By the de¯nition of Q(1; ¾), for every ² 2 Q(1; ¾), r1T(¾; ¿

²) > R1(!(²)): Therefore there

exists a deviation from the proposed play at the end of the game i.e., for every t � 4k + Ll;

!t(¾; ¿
²) = !t(²): Now by lemma 4, a deviation takes place after 4k + Ll. By the de¯nition

of complexity with ¯nite automata it su±ces to prove that for every pair (²; t); (²0; t0) with

(²; t) 6= (²0; t0) and t ¸ t0 in

Q(1; ¾)£f4k+ jc¤j ; :::; 4k+ l¡1; 4k+ jc¤j+ l¡1; :::; 4k+2l¡1; 4k+ jc¤j+2l; :::; 4k+(L¡1)l¡1g

there exists s < T ¡ t such that

(!2t (²); :::; !
2
t+s(²)) = (!

2
t0 (²

0); :::; !2t0+s(²
0))
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and

¾(!1(²); ::; !t+s(²)) 6= ¾(!1(²0); ::; !t0+s(²¶))

First, we study the coordinated plays. The play (!4k+1+jc¤j(²); :::; !4k+l+d3(²)) is a coordi-

nated play with the ¯rst d0 ¡ k and the last d3 actions pairs being (0; 0) and !0k+l(²) = (1; 1).
As d3 > 2k, the string (1; 1) + d3 ¤ (0; 0) only appears at the end of the play and then if
4k + jc¤j � t0 < t < 4k + l;

(!t+1(²); ::; !4k+l(²)) 6= (!1(²0); ::; !t0+4k+l¡t0(²¶))

and

(¾ j !t+1(²); ::; !4k+l(²)) 6= (¾ j !1(²0); ::; !t0+s(²¶)) because each one of these two plays is a
coordinated play.

We just consider the case where t 6= t(mod l). Notice that the play c¤ is independent of
the signal ²: Moreover (!4k+jc¤j+l+1(²); ::; !4k+2l(²)) is a coordinated play. Then, if t = t

0mod(l)

and ² 6= ²0

(!t(²); ::; !t+l(²)) 6= (!t0(²0); ::; !t0+l(²¶))

Let s be the largest positive integer such that

(!t(²); ::; !t+s(²)) 6= (!t0(²0); ::; !t0+s(²¶))

then, it follows that !1t+s(²) 6= !1t0+s(²¶).
Suppose now that t > t0; t = t0 mod (l) and ² 2 Q(1; ¾):
Let s be the largest positive integer such that !1t+s(²) 6= !1t0+s(¾; ¿ ²).

As r1T(¾; ¿
²) ¸ PT

t=1
r1(!(²))
T ) s < T ¡ t and ¾(!t(²); :::; !t+s(²)) 6= ¾(!t0(²0); :::; !t0+s(²0):

¤

Lemma 12 For any strategy ¾ 2 §1(m1)

r1T (¾; ¿
¤) � 1

jQj
X

Q

R1(!(²))
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Proof:

Suppose that r1T (¾; ¿
¤) ¸ PT

t=1
r1(!(²))

T
:

Consider the partition of Q = Q(1; ¾) [Q(2; ¾)[Q(3; ¾):

First, if jQ(3; ¾)j = ; then jQj = jQ(1;¾)j+ jQ(2; ¾)j: By the above lemma the complexity
of ¾ is greater than or equal to 3l1 jQ(1; ¾)j+ l jQ(2; ¾)j :

As m1 ¸ (L ¡ 1)l1jQ(1; ¾)j + l1jQ(2; ¾)j = l1jQj + (L ¡ 2)l1jQ(1; ¾)j and since
¡
2(k¡1)
k¡1

¢
�£

m1¡l
l

¤
<

¡
2k
k

¢
; then

m1 ¸ m1 ¡ 2l1+ (L¡ 2)l1jQ(1; ¾)j , jQ(1; ¾)j= ;

We conclude that r1T (¾; ¿
¤) � PT

t=1
r1(!(²))
T

:

Next, if jQ(3; ¾)j 6= ;; as already noted, we can assume that for T large enough jQ(1; ¾)j ¸
2 jQ(3; ¾)j. Then,

m1 ¸ (L¡ 1)l1jQ(1; ¾)j+ l1jQ(2; ¾)j = l1
2
jQ(1; ¾)j+ (2L¡1)l1

2
jQ(1; ¾)j+ l1jQ(2; ¾)j > l1jQj+

(2L¡3)l1
2

l1jQ(1; ¾)j >m1, which is a contradiction. ¤

Lemma 13 For any strategy ¿ 2 §2 and every ² 2 Q
r2T (¾

¤; ¿ ) � r2T (¾
¤; ¿ ²):

Proof:

Let ¿ be a pure strategy of player 2 such that for some ² 2 Q, !t(¾¤; ¿) = !t(²) for every
1 � t � 2k and r2(¾¤; ¿) ¸ r2(¾; ¿²).

Let s0 be the smallest integer such that 2k < s0 � T with !s(¾¤; ¿) 6= !s0 (²) and !t(¾¤; ¿ ) =
!t(²) for 1 < t < s

0.

If !t(²) = (1; 1); player 1 punishes immediately forever, since when player 1 plays the action

1 he uses states which do not tolerate both actions. Recall that r2(1; 1) ¸ u2(G) + 2": Then

player 2 will lose about 2"(¸1 ¡ "2)l. Then r2T (¾¤; ¿ ) � r2T (¾
¤; ¿ ¤):

If !t(²) = (1; 1) then t � T ¡ ¸1l=3 and with a probability close to one player1 punishes in
the next d0 ¡ 2k ¡ 1 stages. Then, r2T (¾¤; ¿) � r2T (¾

¤; ¿ ¤):

If !t(²) = (0; 1) then player 2 deviates in c¤ and with a probability close to one player 1

punishes in the next d0 ¡ 2k ¡ 1 stages. Then r2T(¾¤; ¿ ) � r2T (¾
¤; ¿¤):
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Finally if player 2 deviates in the communication phase, i.e.: if (!21(¾
¤; ¿ ); :::; !22k(¾

¤; ¿)) is

not in Q, then with a probability of at least 1
2
player 1 will detect the deviation in one of the

next 5k stages.

Therefore ¿ ¤ is a best reply against ¾¤. ¤

We ¯nish by giving some details of the above equilibrium construction for the remaining

cases: when the payo® x is obtained by three di®erent actions of player 2 and two of player 1

(the other subcase of case 2) and when it is obtained by three di®erent actions of both players

(case 3).

Subcase 2.2: Assume that a11 = a
1
2 6= a13, and that a21 6= a22 6= a23 and denote a11, a12 and a21

by 0; a13 and a
2
2 by 1 and a

2
3 by 2;and assume that x = ¸0r(0; 0) + ¸1r(0; 1) + ¸2r(1; 2), with

¸i > 0, i = 0; 1; 2 and where
P2

i=0 ¸i = 1:

Here the communication phase entails using the action pairs (0; 0) and (0; 2); while those

of the veri¯cation play are (0; 0) and (1; 2), where the ¯rst one is played whenever player 2

sends a 0 in the communication phase and the second whenever he sends the action 2. By the

de¯nition of x, the regular play consists of the three pair of actions (0; 0), (0; 1) and (1; 2):

Case 3: jfa11; a12; a13gj = 3
Subcase 3.1: Assume that a11 6= a12 6= a13, and that a

2
1 = a22 6= a23 and without loss of

generality denote a11, a
2
1 and a

2
3 by 0; a

1
2 and a

2
2 by 1 and a

1
3 by 2; and assume that x =

¸0r(0; 0) + ¸1r(1; 1) + ¸2r(2; 0), with ¸i > 0, i = 0; 1; 2 and where
P2

i=0 ¸i = 1:

Now the communication phase consists of the action pairs (0; 0) and (0; 1); while the pairs

(0; 0) and (1; 1) are for the veri¯cation play, where the ¯rst one is played whenever player 2

sends a 0 in the communication phase and the second whenever he sends the action 1.

Subcase 3.2: Finally, assume that a11 6= a12 6= a13, and that a21 = a22 = a23 and denote a11 and a21
and by 0; a12 and a

2
2 by 1 and a

1
3 and a

2
3 by 2; and assume that x = ¸0r(0; 0)+¸1r(1; 1)+¸2r(2; 2),

with ¸i > 0, i = 0; 1; 2 and where
P2

i=0 ¸i = 1:

The communication phase consists now of the action pairs (0; 0), (0; 1) and (0; 2) while the

veri¯cation play of the pairs (0; 0), (1; 1) and (2; 2). Here the veri¯cation set is bigger since the

cardinality of the veri¯cation sequences' alphabet is three.
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7 CONCLUDING REMARKS

We conclude by summarizing the main features of our construction. Let GT (m1;m2) be the

¯nite repetition played by ¯nite automata of the two-player game in strategic form G =

(f1; 2g ;A; r) and let x 2 co(r(A)) such that xi > ui(G) with x =
P

a2A¸ar(a
1
i ; a

2
i ), and

a 2 A, where P
a2A ¸a = 1; and ¸a > 0.

The equilibrium play to achieve x as the equilibrium outcome follows a communication

phase and a speci¯c cycle of action pairs play which depends on this communication phase,

and whose frequencies are approximately ¸a. The cycle play consists of two parts. One is

independent of the communication, the regular play where the payo® x is obtained, while the

other, the veri¯cation play, is uniquely determined by the message sent in the communication

phase. Each part of the cycle play is codi¯ed taking into account that the action pairs in the

regular play have increasing payo®s for the stronger player, which precludes his deviations as

the cycle goes on. In order to keep the distortion from x as small as possible, i.e. " small, the

action pairs used in the veri¯cation play should be also used in the regular play (although, this

is not always possible). Finally the communication scheme is designed such that the sender

player uses di®erent actions to this end while the receiver uses just one action.

The above features establish the codi¯cation alphabet for the equilibrium play. Also the

communication and veri¯cation sequences satisfy an entropy condition to ensure a ¯xed com-

plexity. In particular, e±cient veri¯cation to ¯ll up the weaker player's complexity, translates

to sequences of maximal entropy, since the number of veri¯cation sequences determines this

player's complexity.

The construction of the equilibrium play can be understood as a codi¯cation problem where

what is being codi¯ed is the game parameters: the complexity of the weaker player and the

targeted payo® x. The inter-play communication phenomenon allows to connect the notion of

automaton complexity with that of communication entropy.

Finally, notice that when the players' automata have the same number of states, i.e. m1 =

m2, the above construction remains the same: players could °ip up a coin to decide the one

who undertakes the communication. Alternatively, other constructions with the °avor of the

one presented above could be designed. For instance, players could both send a message in the

communication phase, follow a regular play and then verify through the following construction.

Let Q and Q0 be the communication set of messages of players 1 and 2, respectively. Recall

that Q and Q0 are subsets of TPk¡1( k¡22k¡2 ,
k

2k¡2)£f1g: Let k0 be the smallest even integer such
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that
¡
k0

k0
2 ¡1

¢
> 2k and let c be an element of the following typical set TPk0¡1( k

0¡2
2k0¡2 ,

k0

2k0¡2)£f1g:
Let a 2 Q be a message of Player 1 and consider a biyective map a £ TPk¡1 ! TPk0¡1: The

veri¯cation consists of a subset of TPk0¡1 via the above biyective mapping, denoted by (±), such
that each sequence c = a± b, for a given message b of Player 2. Notice that both players' signals
are balanced and the sequence used in the veri¯cation phase is balanced as well. The length of

the communication is two times the one in the asymmetric case, while that of the veri¯cation

play is about the same than in the previous case. Nevertheless, the number of possible plays

does not vary. With this new construction the rate of distortion, "; is about the same than

above. Notice that here, the number of players' messages has to be the same to ¯ll up the their

automata capacity, and that each player's pure strategy consists of a part related with it signal

(sent in the communication phase) and of a second part related with all possible messages of

the other player.
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