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INTERNATIONAL COOPERATION IN POLLUTION
CONTROL

Santiago J. Rubio and Begona Casino

ABSTRACT

In this paper the profitability and stability of an International Environ-
mental Agreement among N identical countries that emit a pollutant are
studied using a standard quadratic net benefit function. The static analysis
shows that only a bilateral agreement could be self-enforcing independently
of the number of countries affected by the externality and the gains coming
from cooperation. It is also shown that this result occurs both when the
coalition takes as given the emissions of nonsignatories and when it acts as
the leader of the game. In the second part of the paper a differential game is
proposed in order to analyze the stock externality due to accumulated emis-
sions. Similar results to the ones obtained for the static model are derived
both for an open-loop Nash equilibrium and for a feedback Nash equilibrium
in linear strategies.

KEYWORDS: International Environmental Agreements; Flow and Stock
Externalities; Differential Games; Open-Loop Nash Equilibrium; Feedback
Nash Equilibrium; Linear Strategies.



1 INTRODUCTION

The increasing social and political interest in global environmental problems
is only one of the aspects of the increasing interdependence among coun-
tries in recent years. Global warming, depletion of the ozone layer and loss
of biological diversity are examples of environmental problems related with
global commons that require policy coordination. The Framework Conven-
tion on Climate Change, the Montreal Protocol on Substances that Deplete
the Ozone Layer and the Convention on Biodiversity are the most impor-
tant International Environmental Agreements (IEA) signed to date. There
are two main issues related to international environmental cooperation: the
profitability and the stability of the agreements. The profitability refers to
the potential gains coming from the cooperation among countries when re-
ciprocal negative externalities exist. The question regarding the stability of
an agreement arises due to the absence of an international authority or an
international law that compels countries to take part in or respect the agree-
ment. Thus, countries may face a prisoner’s dilemma whereby, although
there are greater benefits to be gained through full cooperation, each one has
incentives to unilaterally defect from the agreement.!

Different papers have been published in recent years on these issues.
Among them we would like to highlight the ones written by Heal (1992),
Hoel (1992), Carraro and Siniscalco (1993), Barrett (1994, 1997b), Sandler
and Sargent (1995) and Na and Shin (1998). In all these papers a nonco-
operative game-theory analysis of coalition formation among two or more
countries is presented assuming that environmental damages are associated
with flow externalities and that all the players move only once.? From these
papers we are interested in the results obtained by Hoel (1992) and Bar-
rett (1994). In these two papers the number of signatories, the terms of the
self-enforcing agreement and the actions of nonsignatories are all determined
endogenously using numerical examples. Hoel finds for a model of constant
marginal environmental cost that only two countries cooperate in equilibrium

1Good surveys on global environmental problems and international environmental
agreements are Barrett (1997a), Carraro and Siniscalco (1998), Swanson and Johnston
(1999) and Finus (2000).

2For a cooperative approach see Chander and Tulkens (1992, 1997) and van Egteren
and Tang (1997). In Barrett (1994) and Finus and Rundshagen (1998) the stability of the
agreement is studied in the framework of an infinitely repeated game applying the concept
of renegotiation-proofness.



almost independently of the total number of countries, and that this equilib-
rium is for all practical purposes equal to the noncooperative equilibrium. In
his model it is assumed that the agreement among countries with a different
marginal environmental cost consists of a uniform percentage reduction of
their emissions which is determined by the most preferred reduction for the
median country (among the signatories countries).? In Barrett (1994) it is
assumed that all the countries are identical and that the signatories act as
the leader of the game, i.e. they choose their level of abatement to maximize
their collective net benefits subject to the reaction functions of nonsignato-
ries. His results show for the case of linear marginal abatement benefits and
costs that, when cooperation can increase net benefits substantially, the self-
enforcing IEA cannot sustain a large number of signatories. However, when
the gains from cooperation are low, a lot of countries would be interested in
signing the agreement. Finally, we want to mention that the profitability of
the cooperation among countries suffering a negative stock externality has
been analyzed by Long (1992), van der Ploeg and de Zeeuw (1992), Dockner
and Long (1993), Xepapadeas (1995) and Dockner and Nishimura (1999).1
In these papers, the interdependence among countries is modeled as a dif-
ferential game or as a difference game, and the noncooperative outcome as
a feedback Nash equilibrium. The study developed by these authors focuses
on the comparison between the efficient solution and the noncooperative so-
lution of the game but does not address the analysis of the stability of the
agreements.’

Our paper has two parts. In the first part, we present a full character-
ization of the self-enforcing agreement obtained analytically for a model of

3Petrakis and Xepapapadeas (1996) extends, using also a model with constant marginal
environmental cost, Carraro and Siniscalco’s (1993) results to the case in which the par-
ticipating countries are not identical. They show that if a group of countries commits to
cooperation, there exists a system of self-financed side payments, such that the rest of
countries involved in the environmental externality enter the coalition and reduce emis-
sions.

4See Kaitala, Pohjola and Tahvonen (1992), Tahvonen (1994), Escapa and Gutiérrez
(1997) and Méler and de Zeeuw (1998) for simulations, in a dynamic framework, on how the
potential gains derived from cooperation would be distributed among countries. Tahvonen
(1994) and Escapa and Gutiérrez (1997) focus on the global warming problem whereas
Kaitala, Pohjola and Tahvonen (1992) and Miler and de Zeeuw (1998) address the acid
rain problem.

In Dockner and Nishimura (1999) the dynamics of the feedback Nash equilibrium for
the case of one-sided transboundary pollution is analyzed.



emission control with a standard quadratic net benefit function and identical
countries. We also study the importance of the equilibrium concept used
to solve the game considering, firstly, that the signatories take as given the
emissions of the nonsignatories countries, and, secondly, that the coalition
of signatories behaves as a leader. Our results show that in both cases the
unique self-enforcing IEA consists only of two countries independently of the
scope of the gains and the number of the countries involved in the externality.
This result generalizes for a model with linear marginal environmental costs
the findings obtained by Hoel (1992). Moreover, our analysis shows that
the model of emissions used in our paper is not completely symmetric to
the model of abatement developed by Barrett as long as we obtain different
conclusions.® We find that the net benefits of signatories and nonsignatories
increase with cooperation. However, the incentive for a country to act as a
free rider is big enough as if to prevent cooperation once a coalition of two
countries has been reached. In the second part of the paper we extend the
analysis of the agreement stability to the case of a stock externality, thus
advancing the analysis developed in the papers just quoted. Following van
der Ploeg and de Zeeuw (1992) and Dockner and Long (1993), we develop an
international pollution control model with N identical countries where the
interactions between signatory and nonsignatory countries are represented
by a differential game. In a first approximation of the problem of stability
using open-loop strategies, we find that, for any size of coalition, countries
get smaller payoffs if they cooperate. A numerical example confirms that,
in a dynamic framework, the scope of the agreement is also limited. Our
results show that a bilateral coalition is the unique self-enforcing IEA in-
dependently of the gains coming from cooperation. In the last part of the
paper, we calculate the feedback Nash equilibrium in linear strategies for the
same numerical example and we find again the same result. The sensitivity
analysis shows that this result is robust. The intuition is that agents do not
find it profitable to select punishment strategies if these are not credible. In
other words, if they have a negative effect on their own payoffs higher than
the negative effect of accommodating to the exit of one of the countries in

6The difference in the results is explained by the different modelling of the environ-
mental externalities. Thus, whereas Barrett uses a model of abatement where the interde-
pendence among countries occurs through the benefit function, we work with a model of
emissions where the interdependence passes through the environmental damage function
and this difference is relevant in the analysis of the stability of the agreements as our
results show.



the agreement. Then, given that the incentive to act as a free rider is suffi-
ciently large and that the payoffs of the signatories increase with respect to
the number of countries belonging to the agreement, the result is that only
a bilateral agreement can be self-enforcing.

In Section 2 the static model is presented and the efficient equilibrium and
the Cournot equilibrium are calculated. In Section 3 the stability analysis
is developed, assuming firstly, Subsection 3.1, that the signatories countries
take as given the emissions of the nonsignatory countries, to study, secondly,
Subsection 3.2, the Stackelberg equilibrium. The dynamic model is studied
in Section 4. In this Section the efficient equilibrium, the open-loop Nash
equilibrium and the feedback Nash equilibrium are calculated and compared.
In Section 5 the stability of an IEA is analyzed using a numerical example
both for an open-loop Nash equilibrium, Subsection 5.2, and for a feedback
Nash equilibrium, Subsection 5.4. Some concluding remarks end the paper.

2 THE STATIC MODEL

A pollutant is emitted by N identical countries that share a natural resource
as the environment. Define ¢; as emissions by country ¢. These emissions are
associated with some natural resource, say oil, whose consumption provides,
directly or indirectly, some utility. Therefore, each country gets some benefits
from its emissions and suffers a damage due to aggregate emissions, ) =
> G-

Let’s assume a quadratic benefit function for each country

b
B; (¢;) = ag; — §qf, a>0, b>0, (1)

a quadratic damage function

Ci=5Q% >0, 2)

and denote country is net benefits by

b c

Ty = ag; — 5%2 - §Q2-



2.1 Full-cooperation versus non-cooperation

The gains coming from full-cooperation will be given by the difference be-
tween net benefits under cooperation and net benefits got by countries when
they do not cooperate. The level of emissions that maximizes aggregate net
benefits IT = ). m; is found by setting each country’s marginal benefits of
emissions equal to global marginal costs. Thus the full cooperative level of
emissions, ¢;, and net benefits, 7}, for each country are given by

a . a?

" b+ N2 7T":Q(ZH—NQC)' ®)

*

q;

The noncooperative outcome arises when each country chooses its level of
emissions taking as given the level of emissions from all the other countries.
The optimal solution consists of setting each country’s marginal benefit of
emissions equal to its own marginal cost. This Cournot equilibrium is given
by the following level of emissions, ¢f, and net benefits, 7§ :

a . a*b— (N —2)N
= —, ™, = 3
b+ Nc 2(b+ Nc)

C

q;

(4)

Since we are analyzing a model of partial equilibrium, it is possible to
find some substitute for the resource so that this will be exploited only if net
benefits are strictly positive. This occurs when b/c > N(N — 2). That is,
when the rate of decrease of marginal benefits relative to the rate of increase
of marginal costs is enough large. We assume in the rest of the paper that
this inequality is satisfied.

The gains to cooperation for each country are given by the following
expression:

T — me (N —1)* N2

7 (bJet N2)[bfc— (N —2)N|’

Thus, full-cooperation is more profitable when b/c takes a small value and
we can state the following:

Proposition 1 The gains to cooperation depend positively on the slope of
the marginal cost function and negatively on (the absolute value of ) the slope
of the marginal benefit function.



Nevertheless, the optimality of full-cooperation is not enough to guaran-
tee a stable coalition including the N countries because each one may have
incentives to unilaterally defect from the agreement. For this reason, it is
also necessary to study the stability of a coalition.

3 STABILITY OF AN INTERNATIONAL
ENVIROMENTAL AGRREMENT

Suppose that n countries negotiate an IEA and the other N — n countries
decide to be outside the coalition. The number of signatories that sustains a
stable agreement will be obtained by using the concept of stability developed
by d’Aspremont et al. (1983) for the analysis of a cartel. This stability
concept has already been used by Hoel (1992) and Barrett (1994) to analyze
the self-enforcement of an IEA. Let 7; be net benefits of a country j that
does not belong to the coalition of countries that sign the IEA and m; net
benefits of a signatory country. According to Barrett (1994) a self-enforcing
agreement can be defined as follows.

Definition 1 An IEA consisting of n signatories is self-enforcing if m; (n) >
mj(n—1) and wj (n) > m (n+1), wherei=1,...,n and j=1,..,N —n.

The first inequality holds if signatory countries have no incentives to with-
draw from the coalition because the increase in the costs due to the increase
in aggregate emissions would be higher than the benefit provided by an in-
crease in their emissions. The second inequality requires that nonsignatories
do not want to accede to the coalition because the decrease in the costs due
to a reduction in aggregate emissions would be smaller than the decrease in
their benefits resulting from the reduction of their emissions.

Net benefits of a nonsignatory country j are given by the following ex-
pression

n N—n 2
b, c
WjZGQj—§Qj—§(;%+;Qj> :

The level of emissions for which marginal benefits are equal to marginal
costs provides the maximum benefit of each country j. Under the assumption
of symmetry this condition is:



a—bgj=cng+(N—-n)gl, 7=1,...N —n. (5)

This equation implicitly defines the reaction function for the N —n countries
that are outside the coalition. Thus, the optimal level of ¢; depends on
emissions by signatories.

3.1 Cournot conjecture

Signatories are assumed to coordinate for the same level of emissions in order
to maximize their collective net benefits taking as given the emissions of
nonsignatories. Then, the reaction functions of countries belonging to the
coalition are given by the following expression

a—bg =ncng;+(N—n)g;], i=1,..,n (6)

The intersection between the two best replay functions defined by Egs.
(5) and (6) determines the optimal levels of emissions

e_alb—(N-n)(n—-1)d

T A (N+n2—n)d

i=1,..n, (7)

e ab+nn-1)d .
qj_b[b+(N+n2—n)c]"7_1’”"N_n’ (8)

and, then, aggregate emissions are

B Na
b+ (N+n2—n)c

Q° (9)
It is easy to verify that the full cooperative (n = N) and noncooperative
solutions (n =0 or n = 1), given by Egs. (3) and (4), are special cases of
Egs. (7) and (8).
Notice that ¢f could take negative values. However, it is immediate to
check that for b/c > N(N — 2) the expression (7) is positive for all n €



[2, N—1]." Moreover, aggregate emissions decrease as the size of the coalition
increases and, if we take the derivative of the expressions (7) and (8) with
respect to n, we have, respectively,

g5 (2n — 1) Nc2a =0
o blb+(N+n2—n)d®

¢ [(n* = N)c—bNca

on  bb+ (N+n2—n)d*

Thus, emissions by nonsignatory countries increase with the size of the coali-
tion and the condition b/c > N (NN — 2) guarantees that emissions by signa-
tories decrease.®

Comparing the level of emissions given by Eqgs. (7) and (8) we get

(n—1)Nca
bb+ (N +n?—n)c

C_

4G —q; =—

<0 forall n > 2.

Therefore, signatory countries emit less pollutants than nonsignatories. Since
the benefit and cost functions are identical for both types of countries and the
costs depend on aggregate emissions, a country that emits more than other
has higher net benefits. Consequently, we can conclude that 77(n) < 75(n)
for n € [2, N — 1]. Moreover, it is easy to show that both net benefits are
increasing with respect to the number of signatories. Using (7) and (8) we
can write the net benefits as

. a? NZ%ca® (b+ n’c
5 (n) == — ( ) 5 (10)
20 2b[b+ (N +n?—n)

"The optimal level of emissions of signatories is positive for b/c > (N —n) (n — 1) but
as N(N—2) > (N —n)(n—1) for n € [2, N—1], we have that, if the condition for positive
net benefits, b/c > N(N — 2), is satisfied, b/c > (N —n) (n — 1) is also satisfied and ¢f is
positive.

8The partial derivative d¢5/On is negative for b/c > n? — N. From
b/c > (N — 2)N we have that (n?> — N) — b/c < (n?> — N) — (N — 2)N
= n?—N(N—1). This expression increases with n and takes a negative value for n = N —1.
Consequently, (n? — N) —b/c < 0 for all n € [2, N — 1], and 9¢¢/On must be negative in
this case.

10



 (n) a’ NZ2ca® (b+ c)

fir =—— :
’ 2b Qb[b+(N—|—n2—n)c]2

It is immediate from this last expression that the net benefits of nonsigna-

tories increase as the number of countries that sign the agreement increases.
For the signatories, the derivative of net benefits with respect to n is

omi  4a’DN?[b+ (N +n? —n)d [en(N —n?) —b(n —1)]

]

(11)

on 462 b+ (N +n? —n) c]4
where cn(N — n?) — b(n — 1) is negative if b/c > N(N — 2). In this case, the
net benefits of signatories also increase with the number of countries in the
agreement.

However, as our definition of stability depends on the comparison between
mi(n) and 7§(n — 1), we start at n = 2 comparing 7§(2) with 7§(1) in order
to solve for the stable number of signatories. This difference is given by the
following expression

C

_ N2Pa? [ —2(N —4)bc — (3N? — AN —4) (]
B 2 [b+ (N +2) )’ b+ N

The sign of this difference depends on the sign of the expression into
square brackets in the numerator. It is easy to show that this expression
is positive for b/c > N(N — 2) so that we can conclude that 7§(2) > m§(1)
for this case.” This means that at least two countries could improve by
cooperating. Now, according to our definition of stability, we have to check
if there are incentives for a nonsignatory country to cooperate with this
coalition. Thus, if we compare 7$(2) with 7§(3) we have that

5 (2) — 75(1)

? J

_AN?2Aa?[(N—1)b+ N (N +3) (]
bbb+ (N+2) b+ (N +6)c

m5(2) =i (3)

9The expression into square brackets is positive for b/c > N — 4+ 2 (N2 — 3N + 3)1/2.

Let’s suppose that N(N—2) < N—4+2 (N? — 3N + 3) /2 which implies that N2—3N+4 <
2 (N2 —3N + 3) Y2 Then the square on the left-hand side must be smaller than the square
on the right-hand side which yields the following contradiction: N2 (N — 3)> + 4N(N —

3)+4 < 0for N > 2, and we can write that b/c > N(N—2) > N—4+42(N? —3N + 3)1/2
and conclude that the expression into brackets is positive.

11



Therefore, a bilateral coalition satisfies the stability condition stated in
Definition 1 because 7§(2) > 7$(1) and 7%(2) > 7(3). On the contrary, a
coalition of three countries violates the inequality 77 (n) > 7§ (n —1).

In general, from Eqgs. (10) and (11) we can get the difference between
75 (n — 1) and 7§ (n) for any size of the coalition as

7¢(n — 1) — 7% (n) = (n—1) N*a?[(n — 3) b + Abe + BE’]
j TR (N - D (- 2) Pt (N -

A = 2[(n—1)N+n®—4n”+3n-2],
B = (n+1)N?*+2n(n*—2n—1)N+n?(n—1)°(n—3),

where A and B are positive for n > 3. Thus, if we start at n = N we find
that the incentives to form a coalition arise only for n = 2. Therefore, we
can conclude the following:

Proposition 2 A Cournot-IEA consisting of two countries is the unique
self-enforcing IEA, independently of the scope of the gains to full-cooperation
and the number of countries.

This results can be better understood by considering an example. Ta-
ble 1 shows the net benefit and emissions corresponding to each possible
agreement, and Fig. 1 illustrates the example.

To solve for n*, start at n = 1 and compare 7;(1) with 7;(2). Clearly, 3306
< 3418, and hence it will play a nonsignatory to enter into the agreement.
Now compare 7;(2) with 7;(3). In this case, 3897 > 3799, and it will not pay
a nonsignatory to cooperate. Likewise, starting at n = 10, one finds that
signatories always do better by withdrawing from the agreement whenever
n > 2. Hence, a bilateral agreement is the only self-enforcing IEA. In Fig. 1
we represent the net benefits obtained by a country that belongs to a coalition
of size n, 7¢(n) and the net benefits that the country could get by leaving
the coalition, 7§(n — 1). These two functions intersect each other between
n = 2 and n = 3, so that a nonsignatory has no incentives to join a bilateral
coalition. Similarly, starting at n = 10, signatories have an strong incentive
to unilaterally defect from the great coalition and this happens for every
coalition greater than two.

12



Table 1: Stability analysis for the numerical example. Static

model.*

n q; q; Q TT; Uy M

1 36.3636 363.636 3306 33060
2 32.8571 36.4286 357.143 3418 3897 38012
3 29.6552  36.5517 344 .828 3799 4988 46313
4 26.8852  36.7213 327.869 4413 6428 56220
5 24.6154 36.9231 307.692 5207 8047 66270
6 22.8571 37.1429 285.714 6122 9694 75508
7 21.5789  37.3684 263.158 7102 11257 83485
8 20.7229  37.5904 240.964 8097 12669 90114
9 20.2198  37.8022 219.780 9071 13902 95541
10 20.0000 200.000 10000 100000

*Assumes N=10, a=1000, b=25 and c=0.25

The agreement involving two countries only causes a small reduction in
aggregate emissions of about a 1.8 % and an increase in aggregate net benefits
of 15 %. These gains are small regarding the gains to full cooperation that
represents a 202.5%. In other words, this equilibrium is for all practical
purposes almost identical to the noncooperative equilibrium.

Next, in order to see the implications of the concept of equilibrium used
to solve the game, we analyze the Stackelberg equilibrium.

13



Figure 1: Stable coalition under Cournot conjecture.

13306 -

11306 -

9306 -

—e— Serie1

—m— Serie2

7306 -

5306 -

3306

N=10, a=1000, b=25 and ¢=0.25

Serie 1: m; (n) =net benefits of signatory countries for a coalition of size n.

Serie 2: 7; (n — 1) =net benefits of nonsignatory countries for a coalition of
size n-1.
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3.2 Leadership

Let’s now assume that the coalition acts as a leader. From (5) we get the
reaction function of nonsignatories

a — neg;
- 12
% b+ (N —n)c (12)

The countries that belong to the coalition choose ¢; to maximize their
collective net benefits, with ¢; being identical for all of them, subject to (12).
The solution is

[(b+ (N —n) ¢)’ — (N —n) nbc| a
b[(b+ (N —n) ) + n2be]

q; =

Substituting into (12) yields

[(b—nc) (b+ (N —n)c)+n?bc|a
b[(b+ (N —n) )’ + n2be]

S

q = ,7=1,..., N —n. (14)

Accordingly, aggregated emissions are

b+ (N —n)c Na
(b+ (N —n)c)® +n2bc

Q =

Notice that the noncooperative Stackelberg equilibrium is given by Egs.
(13) and (14) for n = 1 and the noncooperative Cournot equilibrium by Eq.
(14) for n = 0.

It is also possible to prove (see Appendix A) that, as happened under
Cournot conjecture, if the condition for positive net benefits is satisfied,
emissions by signatory countries decrease with the size of the coalition while
emissions by nonsignatories increase.

dg¢  [n*(b+c)c—(b+ Ne)’] Nea
O (b+ (N —n)c)® +n2bc

(15)

15



Og; _ [n*(b+c)e—2n(b+Ne)(b+c)+ (b+ NoJ'] Nea (16)
on b[(0+ (N —n)c)’ +nb] |

The effect on aggregate emissions is given by the following expression that
takes a negative value.!”

0Q° _ [n2(b+c)e—2n(b+ Ne) (b+c) + (b+ Nc)*] Nea
on [(b+ (N —n) o)’ + n?bc}2

<0

That is, the increase of emissions by nonsignatory countries is compensated
by the decrease of emissions by signatories. If we compare the emissions of
both types of countries we have

[(N—=n)c— (n—1)b Nca
b[(b+ (N —n) ¢)’ + n2be]

S S

4, —q; =

>From this difference a critical value for n is obtained: n™ = (N +b/c) /
(1+0b/c), so that if n < n* then ¢} < ¢ and consequently 7%(n) < 77(n) and
if n > n* then ¢7 > ¢f and 7%(n) > m7(n). Thus, if condition b/c > N(N —2)
is satisfied, n™ presents an upper bound equal to N/(N — 1). As this value
is lower than two, we have that 1 < n™ < 2 for any value of b/c higher than
(N —=2)N, and then 7 (1) > 75 (1) whereas 7} (n) < 75 (n) for n > 2. Using
(13) and (14) we can write the net benefit functions as

‘(1) a? N2ca?
m(n)=— — :
' 20 2[(b+ (N —n)c)® + n2b]
. a®>  (b+c)[b+ (N —n)c® N2ca?
- A e

2b [(b+ (N —n) )’ + n?bc}2 7

which, as it occurred under Cournot conjecture, are increasing with respect
to the number of countries that join in the agreement.!!

10Notice that the numerator in dQ*/dn is equal to the numerator in (16).
1 Again the only condition we need to obtain this result is that b/c > N(N — 2).
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Next, we investigate whether the unique self-enforcing IEA is also, for the
leadership case, a coalition consisting of two countries. For n = 2, we get

N2a?[b*c? + 2Nb*c® + Cb?c* + Dbe® + Ec®]
20 [(b+ (N —1)¢)* +bc]* [(b+ (N = 2) ¢)* + 4be]

C = 2N*—1, D=(N—-1)(2N* - 5N +5),
E = (N-23*N-1>2

This difference takes positive values for N > 2. This means that a country
that cooperates with another country has no incentives to exit from the
coalition. To check if a bilateral coalition is stable we also have to prove
whether a third country has incentives to join the coalition and increase its
size to three. Then, for n = 3 we have

B N2a? [8b3c® — Fb*c* — Gbe® — HcY)
26 [(b+ (N = 2) ¢)® +4bc]” [(b+ (N — 3) ¢)? + 9bc]

(17)

F = (N?+10N-23), G=2(N-2)(N-1)°,
H = (N-3)7(N-2),

where the term into square brackets in the numerator can be written as
a function of v = b/c : b [8y® — Fy? — Gy — H|. It is easy to prove that
this function decreases first until reaching a minimum and then it becomes
increasing and convex. It is also easy to show that for v = N(N — 2) the
value of this function is positive, so that, if the condition b/c > N(N — 2) is
satisfied, the function of 7 into square brackets in the numerator of (17) is
positive and, consequently, 75 (2) > 77 (3). Therefore, an IEA consisting of
two countries satisfies the stability condition established in Definition 1.

In Fig. 2, built from the numerical example of the previous section, we
can see that starting from the great coalition, each country has incentives to
exit from the agreement and this happens for any size of the coalition larger
than two. Then we can conclude the following:

17



Proposition 3 A Stackelberg-IEA consisting of two countries is the unique
self-enforcing IEA, independently of the scope of the gains to full-cooperation
and the number of countries.

Again we find that a bilateral agreement causes a small reduction in
aggregate emissions of 1.6% and a small increase in aggregate net benefits
of 13.7% taking into account that full-cooperation represents an increase of
204.57% in net benefits. The countries belonging to the coalition are slightly
better off than in the Cournot equilibrium since their net benefits are higher
in a 0.1%.

Finally, we compare the two stable agreements obtained in this section.
For emissions of signatories we have that

2N (N =2)[b+ (N —2)d c*a

4 —q = 5 >0, for N > 2,
b(b+ (N —2)¢)"+4bc] [b+ (N +2)]
and, for nonsignatory countries
4N (N - 2)¢
4 —q;=— ( Jca <0for N > 2.

b[(b+ (N —2)c)*+4bc] [b+ (N +2)
If we compare aggregate emissions
4N (N —2) a?

O T TNy adpr (g N

Thus, we can conclude the following:

Proposition 4 Emissions by signatories are greater under leadership than
under Cournot conjecture. FEmissions by nonsignatories are smaller when
they are followers. Aggregate emissions are greater in the Stackelberg equi-
librium than in the Cournot equilibrium.

It is clear from the above results that the net benefits of nonsignatory
countries are greater in the Cournot equilibrium because these countries emit
more whereas aggregate emissions and, consequently costs, are smaller than
in the Stackelberg equilibrium. Regarding signatory countries we have that
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AN? (N —2)* ¢ta?
T — T = (2 ) ca 5 >0, for N > 2
2b [(b+ (N —2)¢)” + 4bc] [b+ (N +2) ]

and, then, we can state:

Proposition 5 The net benefits of signatories are greater in the Stackelberg
equilibrium than in the Cournot equilibrium.

Although signatory countries face greater costs in the Stackelberg equilib-
rium than in the Cournot equilibrium, they obtain greater benefits because
they emit more so that the total effect is an increase in net benefits. Thus,
leadership favors to the countries that cooperate but generates a higher level
of aggregate emissions and, consequently, a smaller level of environmental
quality.
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Figure 2: Stable coalition under leadership.
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4 THE DYNAMIC MODEL

The main difference regarding the static model is that now the damage func-
tion depends on accumulated emissions, z,

Ci(z) = 522. (18)

Then, net benefits for each country are

b

T (Qi, Z) = ag; — 5(]@'2 -

€2
2

Moreover, for a positive rate of natural decay k, the dynamic of accumu-
lated emissions is given by the following differential equation

N

z= Z% — kz. (19)

i=1

4.1 Full-cooperation

The cooperative outcome arises if all countries choose a level of emissions
such that aggregate net benefits are maximized. Then, the coalition faces
the following optimal control problem assuming the same emissions for all
countries

o b c
—6t 2 2
max e Nlag —=q —=2")dt
{ai} /0 ( 1 2@1 2 )
st. 2 = Ng—kz, z(0)=2z >0, (20)
where 6 is the discount rate. We implicitly assume the non-negativity con-
straint on the control variables and we do not impose z > 0 as a state

constraint but as a terminal condition, lim; .., z > 0, for simplicity.
Defining the current value Hamiltonian in the standard way,

b
H(z,q,\) =N (CL% — §qf - 522) + A (Ng; — k=2),
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the necessary conditions for an interior solution are

a—bqi—i—)\:(), (21)

A= (0+k)\+ Nez, (22)

the transversality conditions being

lim e '\ > 0, lim e Az = 0. (23)
t—o0 t—o0

The condition (21) establishes that the marginal benefit of emissions must
be equal to the marginal user cost, A. Using this condition to eliminate
the marginal user cost from the Euler equation, we obtain the following
differential equation for emissions

PP PR L Ch L
b b
that together with the dynamic constraint of accumulated emissions allows
us to obtain the optimal path of the variables of the problem if the transver-
sality conditions hold. Among all the particular solutions of the system of
differential equations z and ¢, we have the steady-state levels of the control
and state variables

. E(b+k)a o N((+k)a ‘ (24)

Goe = LB+ )b+ N2 °° k(6 + k)bt Nec

Now, in order to determine the stability features of the steady state we ex-
amine the characteristic roots of the system and obtain that the determinant
of the Jacobian matrix is negative

N -k

b+k 5¢
b

= — [(5+k)k+N—26} <0.
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This implies that the two roots have opposite signs, which establishes that
the steady state of the system is a saddle point. For these types of critical
points there are two stable branches in the phase diagram and there exists
an optimal path to reach the steady state as illustrated in Fig. 3.

The optimal path can be calculated through standard methods:!?

* * Nc * _r* * * r*
q; :qioo_mzooe oz :Zoo(l—e t), (25)

2
All this can be summarized in the following proposition:

where 7 = 1 [6—\/62—1—%[]4:(6—1—]{)64—1\[20” < 0.

Proposition 6 For the optimal control problem (20) : i) There ezists a
unique steady state given by (24) and the optimal path defined by (25) leads
to the steady state. ii) The steady state is a saddle point equilibrium and the
optimal path approaches it asymptotically. i) Initial emissions are higher
than the steady-state emissions and emissions are decreasing along the opti-
mal path.

Finally, we can calculate the discounted present value of the flow of net
benefits using (25).3

Wi = / e laqi‘ 2 (¢7) — 5 (%) | dt =
0 2 2

Tico c * \2
R sy LGOI (26)

It is easy to prove that K is negative which implies that the second term
on the right-hand side in (26) is positive so that if the steady-state net
benefits are positive, then, W* is also positive. However, this condition is
not necessary for getting a positive present value.

12We assume without loss of generality that zy = 0.
13See Appendix B.
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Figure 3: Phase diagram of the cooperative solution.
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4.2 Open-loop Nash equilibrium

When countries do not cooperate they choose the level of emissions that
maximizes their own net benefits. Then, each country faces the following

optimal control problem
o b
max/ e % <aqi R 222) dt
{a:} Jo 2 2

N
st.z = qu —kz, 2(0) =2 >0, (27)
j=1

so that the noncooperative equilibrium is the solution of the differential game
defined by (27) for i =1,..., N.

In this section we compute the open-loop Nash equilibrium of the game.
For the open-loop Nash equilibrium, countries commit themselves at the
moment of starting to an entire temporal path of emissions that maximizes
the present value of their stream of net benefits given the emission path of
the rival countries. Then for every given path g; of country j, 7 =1,..., N —1
country i faces the problem of maximizing (27). The other countries j face
a similar problem. An equilibrium of the game are N open-loop strategies
that solve the IV optimization problems simultaneously. Defining the current
value Hamiltonian in the standard way,

N

b c .

H(z,q1,q2, ..., qn, Ni) = ag; — §q,2 — §z2 + N ( E q;j — k:z) i0=1,...,N.
j=1

The necessary conditions for an interior open-loop equilibrium are

a—bg+N=04i=1,..N, (28)

Xi=(0+k)N+cz,i=1,..,N, (29)

the transversality conditions being
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tli)ngo e %\, >0, tliglo e %Nz =0. (30)

The condition (28) establishes that the marginal benefit of emissions must
be equal to the private marginal user cost, ;. This cost evolves according
to the Euler equation (29). If we compare the Euler equations (22) and (29),
we realize that the difference between them is given by (/N — 1) ¢z which rep-
resents the social cost of a marginal increment in accumulated emissions. In
the noncooperative equilibrium, countries do not take this cost into account.
Note that this cost varies directly with the number of countries.

Assuming symmetric countries simplifies the solution. With symmetry,
¢; = ¢j and \; = \; and, therefore, the 2V equations defined by (28) and (29)
reduces to 2. Then, using the condition (28) to eliminate the marginal user
cost from (29), we obtain the following differential equation for emissions

Gi= (5 k) + S LR
b b
that together with the dynamic constraint of accumulated emissions allows
us to calculate the optimal path of the open-loop Nash equilibrium. The
particular solution z = ¢ = 0 yields the steady-state values of the control
and state variables'*

o k(O+ka o N@+ka
k(6+k)b+ Ne k(6 +k) b+ Ne

Furthermore, the determinant of the Jacobian matrix of the system of
differential equations is negative

b+k ¢ | _ Nc
‘ N _k‘——[((s—Fk)]{I—i—T < 0.
This implies that the steady state of the system is a saddle point and that
there exists an optimal path which leads to the steady state. The phase
diagram is similar to the one of the cooperative solution, see Fig. 3. However,

4Where ol stands for open-loop Nash equilibrium.
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for the noncooperative solution the g, = 0 locus is above the ¢; = 0 locus
corresponding to the cooperative solution except for z = 0 resulting in a
steady-state equilibrium where both emissions and accumulated emissions
are higher than in the cooperative equilibrium.

The optimal path can be calculated through standard methods:

o) fo) ¢ o rOl o ol rol
q/zqiio—mzoie ! zl:zoo(l—e ’*), (32)

Wherer"l:%[é—\/52+%[/€(5+/€)6+Nc]} < 0.

All this can be summarized in the following proposition:

Proposition 7 For the differential game defined by (27) fori = 1,...,N :
i) There exists a unique steady state given by (31) and the optimal path
defined by (32) leads to the steady state. ii) The steady state is a saddle point
equilibrium and the optimal path approaches it asymptotically. iii) Initial
emisstons are higher than steady-state emissions and emissions are decreasing
along the optimal path.

Finally, we can calculate the discounted present value of the flow of net
benefits substituting (32) into (27):

VV;’Z _ / o0t {aqfl _ g (qfl)2 _ g (Zol)2 dt —
0

ico | L(22)?, (33)

where

L _eb( k) (6 + k) cHb(rt—68—k)°
RO 2 (2 = 8) (rel — 6 — k)’

The second term on the right-hand side of (33) is positive as happened in
the cooperative solution.

To end this subsection we compare the two solutions. We have already
established that the cooperative solution is characterized by a lower steady-
state stock of pollution and a lower level of emissions. Next, we compare the
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optimal paths of emissions and accumulated emissions. From (25) and (32)
we obtain that

, dz* . , dz°
Z = =25 |r*|e" " and 2% = ——
dt dt

rolt

=22 |7°0l| e

-ol .k ol *
where |r*| < |r°!|. Let’s assume that 2” < 2%, then 2% |r*| ™"t < 27 |r*| ™™
that can be rewritten as

2 [ < 2 e (34)

where r* — r°/ < 0. So that at the steady state, i.e., when ¢t — oo, (34)
implies that 2% |r°'| < 0 yielding a contradiction. Thus, we can conclude that
2 (t) < 2" () and as 2* (0) = 2° (0) = 2o = 0 we obtain that z* (t) < 2% (t)
for all t € (0, 00). In order to compare the time paths of emissions we use the

dynamic constraint of accumulated emissions. The previous result implies
that

= N — k2% > 2 = Ng© — k2",

for all t. Rearranging terms, we can write

N(¢'—q)>k(z"=2")>0

since 2 (t) > z* (t), for all ¢ € [0, 00), which implies that ¢¢' (t) > ¢} (¢) for
all t € [0,00). Consequently, we can write the following proposition:

Proposition 8 Both emissions and accumulated emissions for the open-loop
Nash equilibrium are higher than for the cooperative equilibrium for all t €
(0,00). Moreover, initial emissions for the noncooperative solution are higher
than for the cooperative solution.

Finally, we would want to point out that the difference between the coop-
erative and the noncooperative outcome decreases with respect to b/c. If we
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calculate the percentage variation of accumulated emissions we obtain the
following expression
25— 2% N(N -1)

T T GG N (35)

whose absolute value negatively depends on b/c. This result establishes that
an increase in the environmental damages results in an increase in the inef-
ficiency of the noncooperative solution, as was to be expected.

4.3 Feedback Nash equilibrium

A feedback strategy consists of a contingency plan that indicates the optimal
value of the control variable for each value of the state variable at each
point in time. Thus, feedback strategies have the property of being subgame
perfect because after each player’s actions have caused the state of the system
to evolve from its initial state to a new state, the continuation of the game
may be regarded as a subgame of the original game. Therefore, a feedback
strategy must satisfy the principle of optimality of dynamic programming

b c
SW; = max < aq; — =q¢¢ — =2* + W/
@}{q 2% 72

> g - kz] } : (36)

=1

where W (z) stands for the optimal control value function associated with the
optimization problem (27), i.e. it denotes the maximum discounted present
value of the flow of net benefits subject to the dynamic constraint of accu-
mulated emissions for the current value of the state variable, and W} is its
first derivative.

>From the first order condition for the maximization of the right-hand
side of the Bellman equation, we get

a—bg+W =0,i=1,..,N (37)

This condition is equivalent to the one obtained for the open-loop Nash
equilibrium and can be given the same interpretation. See (28). However,
now this condition defines the optimal strategy for emissions as a function
of accumulated emissions: ¢; = (a + W/ (2)) /b. Next, by incorporating this
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optimal strategy into the Bellman equation, we eliminate the maximization
and obtain, after a number of calculations, a nonlinear differential equation

1 N -1
OWi = 5 (a+ W) + ———W] (a+ W) = Wkz = 5% (39)

2b b

In order to derive the solution to this equation, we guess a quadratic
representation for the value function W;

1
Wi(z) = 5041'22 + B,z + ;.

Substituting into (38) and equating coefficients yields the following set of
equations

(2N —1)a? —2b (k + g) a;—bc = 0 (39)
Naoa; + [2N —1)a; —b(k+6)]3;, = 0 (40)
(a+p)[a+ (2N —1)8;] —2bdp; = 0 (41)

The solution to this system is given by the following values

2
“’:QNb_1 k+gi\/(k+g> +2Nb_1c : (42)
Nao;
ﬁi:b(kJré)—(QN—l)ai’ (43)
=B on - 1)) (44)
:uz_ 2[)5 1l

This solution allows us to derive the linear feedback Nash equilibrium
strategy for emissions

S|
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and to write the dynamic constraint as

fz:%(cu—ﬂi)— <k—%ai>z (46)

which can be used to calculate the optimal path of the feedback Nash equi-
librium. The particular solution z = 0 yields the steady state for the state

variable and using (45) we obtain the steady-state value for the control vari-
able:'

g Nbk+6)—(N—-1a]a (47)
*© blk(b(k+06)— (N —1)a;) + N¢]’

B Eb(k+6)—(N—-1)a4]a
oo = FRGTE) (N ey 1N (48)

Next, using the stability condition for (46) we select one of the two solu-
tions given by (42). For the differential equation (46), the stability condition

1S
dz N
a——<’f7“f) <0

The negative root of (42) satisfies this condition but not the positive root.
Using this negative root we can check that a + 3, in (45) is positive

b(k+06)—(N—-1)a]a
b(k+6)— (2N -1 o’

a+0; =

and can conclude that the linear strategy (45) defines a negative relationship
between current and accumulated emissions.

Now, solving the differential equation (46) and using (45) we obtain the
optimal path for emissions and accumulated emissions

%z{;e*(k*%“i)t, 4 = z({o 1—e*(k7%ai>t , (49)

Where f stands for the feedback Nash equilibrium. We have used (39) in order to
simplify the final expression.

d =ql. -
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Whereaizwb_l [k—i—%—\/(k—i-g)z—l—mTlc} < 0.

All this can be summarized in the following proposition:

Proposition 9 For the differential game defined by (27) for i = 1,...,N:
i) There exists a unique linear equilibrium strategy given by (45). ii) The
steady state defined by (47) and (48) is unique and the optimal path given
by (49) approaches it asymptotically. iii) The steady state is globally stable.
iv) Initial emissions are higher than steady-sate emissions and emissions are
decreasing along the optimal path.

For the feedback Nash equilibrium, the discounted present value of the
net benefits stream, if we assume that zy = 0, is directly given by u, that
can be written in terms of o

b(k+6)— (N =Da]bk+6)+ 2N -D(N-1Daja®

W-f:l/n': 2
26b[b (k4 8) — (2N — 1) o]

7

To end this section we compare the two noncooperative solutions. We
prove in Appendix C' the following proposition:

Proposition 10 Both emissions and accumulated emissions for the feedback
Nash equilibrium in linear strategies are higher than for the open-loop Nash
equilibrium for all t € (0,00). Moreover, initial emissions for the feedback
Nash equilibrium are higher than for the open-loop Nash equilibrium.

This result establishes that the noncooperative outcome is less efficient for
the feedback Nash equilibrium than for the open-loop Nash equilibrium. This
bias of the feedback Nash equilibrium in linear strategies also appears in the
papers written by van der Ploeg and de Zeeuw (1992) and Miler and de Zeeuw
(1998) and has been obtained in other applications of differential games,
see, for instance, Rubio and Casino (2001) and the literature there quoted.
The bias appears because when agents play feedback strategies they can
immediately react to any deviation or change in emissions of the other agents
as long as emissions depend on accumulated emissions and the dynamics
of this variable is determined by emissions of all agents. With feedback
strategies the strategic interdependence among the agents is stressed and the
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efficiency losses of the noncooperative outcome increase with respect to the
open-loop Nash equilibrium. The intuition, using de Zeeuw’s words, is as
follows: “Each country knows that in a feedback information structure the
other countries observe the stock of pollutants and react to higher stocks
with lower output and pollution. Therefore, each country knows that an
increase in output and pollution will then be partly offset by a decrease in all
the other countries. This implies that the feedback equilibrium will lead to
higher levels of pollution than the open-loop equilibrium, where the countries
do not observe the stock of pollutants” (de Zeeuw (1998, p. 251)).

Finally, we would want to point out that the difference between the coop-
erative and the noncooperative outcome decreases with respect to b/c. If we
calculate the percentage variation of accumulated emissions we obtain the
following expression

25— 25 o N(N —=1)[6 4+ k— N (a;/b)] (50)
A (RO RO/ + N6 +E — (N —1)(ai/b))

This expression depends on b/c since

o 1 0 k+é2+2N_1
b 2N -1 2 2 (b/c)

It is easy to show that the derivative of (50) with respect to b/c is positive,
see Appendix D. This result establishes that an increase of the environmen-
tal damages results in an increase of the inefficiency of the noncooperative
solution.

The percentage variation of steady-state accumulated emissions for the
different noncooperative solutions

wd—of, N (N = 1) (i/b) 1)
L GG R0)+ MG+ k— (N = D(ai/b)

also decreases in absolute values with respect to b/c. This means that the
open-loop Nash equilibrium is not an accurate approximation of the feedback
Nash equilibrium if the environmental damages are high enough.
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5 STABILITY OF AN IEA IN THE DYNAMIC
MODEL

The stability of an IEA in a dynamic model can be analyzed using a differ-
ential game among n signatory countries and N — n nonsignatory countries.
In this section we calculate the open-loop Nash equilibrium and the feed-
back Nash equilibrium of the game and we look for the stable coalition in a
dynamic framework.

5.1 Open-loop Nash equilibrium

We assume that each nonsignatory country chooses the level of emissions that
maximizes the present value of the stream of net benefits given the emissions
path of the rival countries including the signatories

& b c
_6t 2 2
max e aq; — —q5 — =2~ | dt. 52
{qj}/o <% 2% 73 ) (52

Signatory countries also take the emissions of nonsignatories as given and
commit to a level of emissions such that

—6t 2 2
max e 'nlag —zq; — =z | dt. 53
nax | <q 50 ~ 3 > (53)

In both cases, countries face the same dynamic constraint

n N—-n
Z:Zqi+2qj—k:z, 2(0) =29 > 0. (54)
i=1 j=1

As in the previous section, an equilibrium of the game are N open-loop
strategies that solve the N optimization problems simultaneously. Defining
the current value of the Hamiltonian in the standard way, we obtain the
following set of necessary conditions for an interior open-loop equilibrium

a—bg+XN=0,1=1..n, (55)
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Ni=0+k)N+ncz,i=1,..n,

CL—ij—F)\j:O,j:l,...,N—n,

ANi=0+k)N+ecz,j=1,...N—n

the transversality conditions being

lim e %)\, > 0, tlim e %Nz = 0,
—00

t—o00

lim e"%)\j > 0, tlim e’ét)\jz =0.
—00

t—o00

(59)

(60)

Each kind of country faces a different marginal user cost. For nonsignato-
ries, A; is the private marginal user cost, whereas for signatories, \; represents
the marginal user cost for the countries that participate in the IEA (n < N).
Obviously, for n = N, (55) and (56) are identical to the necessary conditions
of the cooperative solution, and for n = 0, (57) and (58) are identical to the

necessary conditions of the noncooperative solution.

Under the symmetry assumption the 2V equations defined by (55) — (58)
reduce to 4. Then, using (55) and (57) to eliminate the marginal user cost
from (56) and (58), we obtain the following system of differential equations

for emissions

i]i:(é—i-/f)qi—l—ncZ— ((5—1-/{:)&7
b b

: c o+k)a

qj:(5+k)qj+gz—%,

that together with the dynamic constraint of accumulated emissions allows
us to calculate the optimal path of the open-loop Nash equilibrium. The
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particular solution ¢; = ¢; = z = 0 yields the steady-state values of the
control and state variables!®

alk(6+k)b—(N—n)(n—1)

U0 = G T kbt (N T (61)
o alkG+Rb -1

Goo = 4 (61 k) b+ (N + 2 —n)d (62)
Lol _ N((+k)a (63)

k(0 +k)b+(N+n2—n)c

It is easy to see from (63) that the steady-state accumulated emissions
decrease as the number of countries that sign the agreement increases. It is
also easy to prove that the steady state emissions of nonsignatory countries
increase with the number of signatories:

g, Nac? (2n — 1)
o bk(S+k) b+ (N+n2—n)d?

> 0.

However, the steady-state emissions of signatory countries can increase or
decrease, although the aggregate state emissions always decrease with respect
to the number of countries belonging to the agreement.

Furthermore, the determinant of the Jacobian matrix of the system of
differential equations is negative

o+ k 0 e
0 d+k § |=—(0+k)|n(0+k)+
n N-n —k

(N+n?>—n)c
b

<0.

16 A necessary and sufficient condition for positive steady-state emissions of signatories
for all n in the interval [2, N — 1] is (b/c) > (N — 1)?/4k(6 + k). From (61) we obtain
that ¢2'. > 0 implies that (b/c) > (N —n)(n — 1)/k(6 + k), where (N —n)(n — 1) is a
concave function with respect to n which reaches a maximum for n = (N 4 1)/2 equal to
(N —1)?/4. By substitution of this maximum in the previous inequality we get the lower
bound for b/c which guarantees that steady-state emissions of signatories are positive for
all n.

36



This implies that the steady-state of the system is a saddle point and that
there exists an optimal path which leads to it. The optimal paths for the
different variables can be calculated through standard methods:

ol ol nc ol _rt
ol _ ol _ % 64
qz qzoo b<r_5_k)zooe Y ( )

ol ol c ol rt
ey s G — 65
q] qjoo b (,r_ _ 6 _ ]f) Zooe Y ( )

=20 (1—e"), (66)

where r = 1 [6— \/52—1—%[16(54—16)64-(N~|—n2—n)c]J < 0.

Thus, the open-loop Nash equilibrium of the game has the same features
that the solution for the differential game studied in the previous section.
For this reason, we omit to summarize them (see Proposition 7).

Next, we show that:

Proposition 11 The discounted present value of nonsignatories is higher
than the discounted present value of signatories: W (n) > W (n).

Proof. First, we compare the temporal paths of emissions given by (64)
and (65)beginning with the initial values

Nca c
(Nt —n) et k(61 R)0

ol

b(r—6—k) *|

¢ (0) =g (0) =—(n—1) |5

The first term between square brackets can be written, using (63), as
follows

Nca C

—_ ol

b[(N+n2—n)C—|—]€(5—|—k)b] b((S—{—]{;)ZOO’

which yields

q;)l (O) - Q?l (O) = _b(5 _ﬁZ)_(rl)_Cg — k_)zgé <0.
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Then, as dg"/dt = n(dg$"/dt) < 0, we can conclude that the emissions
of nonsignatory countries are higher than the emissions of signatories for all
t € [0,00), which implies, as can be easily checked from (61) and (62), that
@ < q;’f)o Another implication of this conclusion is that nonsignatories
obtain a higher payoff than signatories. Notice that both types of countries
face the same costs as long as z is a public bad and there is symmetry in the
benefit and cost functions.[]

However, in order to study the stability of the coalition we need to com-
pare W2 (n) and W' (n —1). Substituting the optimal control paths of
emissions and pollution stock, given by (64), (65) and (66) into (52) and (53)
and integrating, we obtain the discounted present value of net benefits for
the signatories and nonsignatories

ol _ oo P ol \2
L Py sy ARG
where
P_cn2—b(r—6—k)(6—|—k)+ cn®+b(r—6—k)°
B (r—20)(6+k) 202r—06)(r—6—k)
and
Wol 7'('?5)0_'_ ¢ Q( 01)2
PTTs T —6 k) O
where
Q_c—b(r—é—k)(éJrk) c+b(r—=6—k)?

(r—206)(6+k) 202r —6)(r—06—k)

5.2 A numerical example

Unfortunately, it is not possible to compare analytically W7 (n) and W/ (n — 1).
However, a numerical example shows that the discounted value of net benefits
increases with respect to n for both signatory and nonsignatory countries,
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and that only a bilateral coalition can be stable as long as W2 (2)
and W' (n — 1) > Wy (n) for any size of coalition higher than two,

Table 2.

> Wel(1)

17

see

Table 2: Stability analysis for the numerical example. Open-loop
strategies™

qioo

qjoo

z

[oe]

w.

1

W .

J

/4

23.687
21.488
19.573
17.989
16.749
15.833
15.205
14.821
14.634

S0V WN =B

26.087
26.129
26.210
26.322
26.455
26.601
26.752
26.901
27.044

52173.913
51282.051
49586.777
47244.094
44444.444
41379.310
38216.561
35087.719
32085.561
29268.293

42535812
42662880
42871247
43153388
43499700
43899272
44340702
44812801
45305098

42494805
42673667
43020919
43516977
44135677
44847225
45621198
46429025
47245665

424948050
426460960
429135073
432586850
436445325
440387100
444158498
447583666
450560874
453050980

*Assumes k=0.005, N=10, a=100000, b=3500, c=0.005 and & =0.025

Finally, in order to address the scope of this result we develop a sensitivity
analysis considering different values for the parameters of the model. Table
3 presents the values chosen.

1"Tn order to avoid a negative discounted present value of the flow of net benefits we have
had to increase substantially the ratio b/c with respect to the static model. We have not
used these new values for the static model because in that case the numerical differences
between the Cournot and Stackelberg equilibria are imperceptible.
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Table 3: Parameter values for the sensitivity analysis and
reductions in steady-state accumulated emissions (%). Open-loop
strategies.*

b c
0.0010 0.0025 0.0050 0.0075 0.0100

1500 27.69 47.37 62.07 69.23 73.47
17.56 33.96 49.31 58.07 63.72

2500 18.95 36.00 51.43 60.00 65.46
11.43 24.00 37.90 46.96 53.33

3500 14.40 29.03 43.90 52.94 59.02
8.47 18.56 30.77 39.42 45.86

4500 11.61 24.32 38.30 47.37 53.73
6.73 15.13 25.90 33.96 40.22

5500 9.73 20.93 33.96 42.86 49.31
5.58 12.77 22.36 29.83 35.82

* Assumes k=0.005, N=10 and a=100000. The top number in each cell repre-
sents the gains of cooperation for 6 = 0.025and the bottom for 6 = 0.05

In the cells of Table 3 we write the percentage reductions in steady-state
accumulated emissions given by (35) for two different discount rates. These
variations gives us an idea of the potential gains coming from cooperation in
terms of the reductions in the steady-state accumulated emissions that could
be achieved in the case of a full-cooperation. The mazimum gains of full
cooperation are obtained when ¢ = 0.01, b = 1500 and the rate of discount is
equal to 0.025. This upper bound appears because we impose the following
lower bound to the b/c ratio!®:

b (N —1)

¢ Akt k) (67)

18Notice that according to (35) the reductions in the steady-state accumulated emissions
are inversely related with b/c.
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which guarantees that ¢¢' is positive for all n, see Footnote (16).! From
this case we consider lower values for ¢ and higher values for b until reaching
a potential gains of around 10% for 6 = 0.025 assuming that the issue of
cooperation fails to be attractive below this value. This is the logic of Table
3 and the example. In this way, we think that the considered range of values
for the parameters covers all the relevant situations for the study of the
stability of the agreement. Our calculations yield the same result for the
fifty cases studied: only a bilateral IEA is self-enforcing independently of the
gains coming from cooperation. The similarity between the results obtained
in the static model and the ones obtained in the dynamic model should not
surprise us because when the open-loop Nash equilibrium concept is used
to solve the differential game, this becomes essentially a one-shot game as
long as the players commit themselves at the moment of starting to an entire
temporal path of emissions. The nature of the game, therefore, does not
change substantially and for this reason we ought not to expect qualitative
differences in our conclusions.

5.3 Feedback Nash equilibrium

As in subsection 4.3 we assume that agents play linear strategies that satisfy
the principle of optimality of dynamic programming. The Bellman’s equation
for nonsignatories is

b
5 — _ 2 !
W; I?a]?( {aqJ 2qj z + W

Zqﬂr Zq] —kz]} (68)

and the optimal value of the control variable must satisfy the necessary con-
dition

a—bg+W;=0,j=1,..,N—n. (69)

9n fact, the maximum reduction in steady-state accumulated emissions is something
higher: 74.84% for § = 0.025 if we assume that q¢!_ is zero, that happens for b/c = 135000
according to the values of NV and k that appear in Table 2. Instead of this, we have
assumed a strictly positive value for ¢¢, with b/c = 150000. Then we have chosen an
arbitrary value for ¢ equal to 0.01 which yields b = 1500.
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To calculate the linear strategies for signatories we use the following Bell-
man’s equation

Zqi—i—qu—kz]} (70)

where W,, stands for the value function of the coalition. From this equation
we obtain the following necessary condition

" b c
SW,, = max ai——2——z2]+W'
{3 o~ 3t - 5] w2

=1

a—bg+W, =0,i=1,...n. (71)

Substituting ¢; = (a + W}) /b and ¢; = (a + W}) /b in (70) and rearrang-
ing terms we find that

N —
7 r (a+W)) W, — kW, z— %22. (72)

_n 12
oW, = 5% (a+W,)" +

Now, substituting the optimal values of ¢; and ¢; in (68) we get for j =

1,.... N —n,
1 2 N c 4
SW; = %(a+wjf) +3(a+W;)W;—kWJ€z—§z
N-n—1
Y (a+W) W (73)

b

In order to derive the solution to the differential equation system (72)
and (73) we guess quadratic representations for the value functions W, and

W;

1 1
Wa = Son2® + B2 + i, Wy = 5052° + Bz + ;. (74)

Using (74) to eliminate W,,, W, W; and W/ from Eqgs. (72) and (73) and
equating yields the following system of equations for the coefficients of the
value functions.
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nai—i—Q[(N—n)aj—b(k—i-g)] a, —nbc =

0
Naay, + (N —n) anB; + [nan + (N —n)a; —b(k+06)|8, = 0 (76)
n(a+ pn)® +2(N —n) (a+3;) B, — 2bbp,, = 0

[2(N—n)—1]0z?+2lnan—b(l{—i—g)}ozj—bc = 0 (78)

Naaj +noyB, +[2(N —n) = 1) o +na, —b(k+6)]8; = 0
(a+8;) [a+2(N—n)—1)8,] +2n(a+B,)B; —2béu; = 0 (80)

This system does not have an analytical solution. For this reason, we
use the same numerical example that the one used for the open-loop Nash
equilibrium to calculate the solution.? Egs.(75) and (78) have two pairs of
real solutions for a,, and ;. A pair of positive values and another pair of
negative values but only the negative values satisfy the stability condition.
To obtain this condition we substitute the linear strategies in the dynamic
constraint of accumulated emissions which yields the following differential
equation

p="" 4

Na nf,+ (N —n)B; noy, + (N —n) oy
b b _<k_ )Z’

and the stability condition

dz nay, + (N —n) a;
—=— k- L) <o.
dz < b )

Next, using the negative values for a, and a; we calculate 3,, and 3; from
(76) and (79) and then p, and p; from (77) and (80).

Given these values, if we assume that zy = 0, we have that Wif =W,/n=

i, /m and I/ij =, so that we are able to write the value functions in terms
of n and analyze the stability of coalitions for the feedback Nash equilibrium.

20We have computed the solution using the MAPLE program.

43



5.4 A numerical example

Our results show, as happened for the open-loop Nash equilibrium, that only
a bilateral coalition is stable as long as W/ (2) > W]f (1) and ij (n—1) >
W/ (n) for any size of coalition higher than two. See Table 4.

Table 4: Stability analysis for the numerical example. Feedback
strategies.*

n qioo

q‘joo

z

[oe]

w.

1

w.

J

w

23.732
21.540
19.622
18.030
16.777
15.850
15.213
14.823
0 14.634

— O 0 IO\ Nk~ W —

26.114
26.161
26.252
26.377
26.527
26.691
26.859
27.025
27.183

52227.699
51351.010
49676.318
47350.254
44556.940
41485.569
38305.125
35150.249
32117.445
29268.293

42522777
42647897
42854182
43135027
43481491
43883036
44328318
44805945
45305098

42482548
42657598
42999455
43490779
44107150
44819793
45598495
46414217
47241061

424825480
426306338
428939876
432361402
436210885
440168118
443976737
447454978
450494566
453050980

*Assumes k=0.005, N=10, a=100000, b=3500, c=0.005 and & =0.025

Again the analysis of sensitivity shows that only a bilateral IEA is self-
enforcing independently of the gains coming from cooperation for the fifty

cases studied.?!

2IComplete computation of the numerical examples studied in this paper is available

upon request.
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Table 5: Parameter values for the sensitivity analysis and
reductions in steady-state accumulated emissions (%). Feedback

strategies.*
b C
0.0010 0.0025 0.0050 0.0075 0.0100

1500 27.71 47.44 62.25 69.53 73.88
17.57 33.98 49.36 58.15 63.84

2500 18.96 36.03 51.52 60.16 65.68
11.43 24.01 37.92 47.00 53.40

3500 14.40 29.05 43.96 53.04 59.17
8.47 18.56 30.78 39.44 45.90

4500 11.61 24.34 38.34 47.44 53.84
6.73 15.13 25.91 33.98 40.25

5500 9.73 20.94 33.99 4291 49.40
5.58 12.77 22.37 29.85 35.84

* Assumes k=0.005, N=10 and a=100000. The top number in each cell repre-
sents the gains of cooperation for 6 = 0.025and the bottom for 6 = 0.05

The unique difference we find with the previous example is that now
the percentage gains of cooperation are something greater than when the
countries used open-loop strategies. Compare Table 5 with Table 3. This is
a consequence of the fact that the noncooperative outcome is less efficient
for the feedback Nash equilibrium in linear strategies than for the open-loop
Nash equilibrium.??

The intuition of this result is that agents do not find it profitable to select
punishment strategies as long as they are vulnerable, using the terminology
of repeated games theory, to renegotiation. In other words, punishment

22Tn our example these differences are minimal. This is explained because we impose a
lower bound for b/c, see (67), in order to guarantee that ¢?' is positive for all n. As a
consequence of this we are implicitly defining an upper bound on (51), i.e., an upper bound
on the distance, in relative terms, between the steady-state accumulated emissions of the
open-loop Nash equilibrium and the steady-state accumulated emissions of the feedback
Nash equilibrium that in our example is very small. The result is that for this case the
open-loop Nash equilibrium is a good approximation of the feedback Nash equilibrium.
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strategies are not credible because they have a negative effect on the own
payoffs higher than the negative effect of accommodating to the exit of one
of the countries in the agreement. Thus, if we compute the optimal strategies
for our example we find that the optimal reaction of a signatory country to
an increase of accumulated emissions caused, for instance, by the exit of one
country in the agreement, is to reduce emissions and accommodate the exit.
In the example of Table 4, for the signatories dq; /92 goes from - 3.692148(10)*
for n = 10 to - 7.981728(10)° for n = 2. Then, given that the incentive to
act as a free rider is sufficiently large and that the countries in the agreement
accommodate the exit, the result is that only a bilateral agreement can be
self-enforcing. This minimal level of cooperation appears because the payoffs
of the signatories increase with respect to the number of countries belonging
to the agreement so that if there are only two countries in the agreement and
one of them withdraws from the coalition its payoffs decrease.

A final comment on the feedback Stackelberg equilibrium. For this kind
of differential game there is no difference between the Nash equilibrium and
the Stackleberg equilibrium. The explanation is very simple. If we look at
the necessary conditions (69) and (71), which we can interpret as dynamic
reaction functions, we see that the unique interdependence among the coun-
tries is through the state variable. In other words, the emissions of country
1 do not depend directly on the emissions of country j so that if we substi-
tute the reaction function of the nonsignatories in the Bellman’s equation of
signatories, we obtain the same necessary condition for signatories and the
system of differential equations (72) and (73) is also the same.

6 CONCLUDING REMARKS

This paper has focused on the analysis of stability of voluntary environmental
agreements both in a static and in a dynamic framework. Coalition formation
has been designed as a noncooperative game where some countries cooperate
and sign an agreement and the others do not cooperate. The results show
that cooperation improves welfare so that the payoffs of signatory countries
monotonically increase as the size of the coalition increases and it is also
the case for nonsignatories. However the incentive for a country to act as
a free rider is big enough as if to prevent cooperation once a coalition of
two countries has been reached. This result is independent of the concept
of equilibrium used to solve the game and the framework, static (flow exter-
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nality) or dynamic (stock externality), taken into account. For the dynamic
model the explanation of this result is that countries do not find it profitable
to select punishment strategies because they have a negative effect on their
own payoffs higher than the negative effect of accommodating to the exit of
one country in the agreement. Then, given that there exists an incentive to
act as a free rider, the countries defect from the agreement until this is only
constituted by two countries. For two countries this incentive disappears be-
cause the two countries lose if they leave the agreement since the payoffs of
signatories always increase with respect to the number of countries belonging
to the agreement.

As regards the effect of the asymmetry on the scope of the agreement
we guess that the result is not going to change very much. The intuition is
the following. Suppose that there are two types of countries: small and big.
Obviously, big countries could punish small countries without affecting very
much their own payoffs but this is not the case if a big country decides to
withdraw. Then, if the incentive for a big country to act as a free rider is
high enough the country abandons the agreement. On the other hand, an
agreement constituted only by small countries is not stable either because
again the punishment strategies are not credible. For this reason we expect
that the scope of the agreement, even under asymmetry, be limited.?3

Other issues for future research are the following. A first task could be
to consider that there exists imperfect information on benefits and cost func-
tions or uncertainty on environmental damages.?* Moreover, since emissions,
in many cases, are very difficult to monitor, another extension could be the
analysis of the profitability and stability of an IEA when the instrument of
the environmental policy is a tax on emissions.

23This intuition is supported by the results obtained by Hoel (1992) for a model with
heterogeneous countries and constant marginal environmental cost. See the Introduction.

241n this line Petrakis and Xepapadeas (1996) have addressed the problem of designing a
mechanism to enforce an IEA under moral hazard, and Na and Shin (1998) have analyzed
a game of coalition formation among three countries that are not identical when there
is uncertainty concerning the distribution of the benefits of pollution abatement activity,
and the marginal benefits are linear. Another interesting paper is Batabyal (2000). This
author focuses on the problem of designing contracts among a supra-national governmental
authority and the government and a representative polluting firm of a developing country
when there is uncertainty on the pollution abatement technology.
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A Behavior of emissions with regard to the
size of the coalition in the leadership model.

(1) Firstly, we show that emissions of signatories countries decrease with
the number of countries that sign the agreement. First, notice that in the
numerator of (15), [n2 (b+c)e—(b+ N 0)2} is an increasing function that
equals to zero for n* = (b+ Nc¢)/((b+¢) 0)1/2. Suppose now that n* <
N. This implies that b + Nc¢ < Nc'/2 (b + c)l/ 2, Squaring this expression,
simplifying and rearranging terms we get b/c < N(IN — 2), what contradicts
the condition established in the Section 2.1 to guarantee positive net benefits
for the noncooperative Cournot equilibrium. Therefore, we must conclude
that n* > N and, as a result, that [n*(b+c)c— (b+ NC)Q} is negative
so that emissions by signatory countries are decreasing with the number of
countries that sign the agreement.

(77) Secondly, we show that emissions of nonsignatories increase with the
number of countries that sign the agreement. In the numerator of (16),
[n*(b+c)ec—2n(b+ Nec)(b+c)+ (b+ NC)2] is a convex function of n that
takes its minimum value for n* = (b + N¢) /c and it is equal to zero for

b+ Nc b'/? _ b+ Nc bl/2
n= l———7 ], = Lt ———7,
c (b+0) c b+0)

so that the function takes negative values for n € (n,7). Suppose now that
m < N, what means that

1/2
b+ Nc m b ) <
c (b+¢)"

>From this inequality we get a contradiction

b1/2 b1/2
b 1+m +N0m§0,

so that we can conclude that N < n. Suppose now that n > 1, this yields

that
N 1/2
b+ Nc 1 6—1/2 > 1
c (b+c)
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Rearranging terms we obtain

1

m [(b+c)1/2 (b+ (N —1)¢) — (b+ Ne)b/?| >0,

what implies that

(b+c)"* (b+ (N —1)c) > (b+ Nc) b2,

and squaring this expression we get

(N-1)*¢*> (b+c)b. (81)

On the other hand, we have assumed in Section 2.1 that b > N(N — 2)c.
Multiplying this inequality by b+-c we have that (b +¢)b > (N—2)Nc(b+ ¢)
that in combination with (81) imposes the following condition on b : ¢/(N —
2)N > b, which is not compatible with the previous condition on b since
both conditions imply that 1 > (N — 2)2N?, which is not true for N > 3.
Therefore, we can conclude that the function of n in the denominator of (16)
takes negative values for n € (n,7), with 0 < n <1 < N < 7, so that for
n € (2, N], emissions by nonsignatory countries increase with the size of the
coalition.

B Discounted present value for the coopera-
tive solution

Substituting in the expression for the discounted present value of net benefits
we obtain



Squaring and rearranging terms we have

W =nr / e ddt — CIZZO/ e Ot — gJ(z* )2/ e =9t gy,
0 0

% 100 o)
0

N (a —bg},) NZc
= —"" -2 Jand J =1+ .
b(r —6—k) b(rs—6—k)°

Integrating we get

*

* Tico c * c * \2
W* = I EE———
e B e D YTy SR
Now, if we take into account that
cNz:
byt = —)\ = e
a qloo 100 6 + ]{: ?

we can write I as

[N =b(r—6—k)(6+F)
I_ZOO( b(r—06— k) (6+k) >

and, then, rearranging terms we obtain

* 100 K * \2
Ly Sy ey SRR
with
K_cN2—b(r*—5—k)(6+k)+ ¢N24+b(r* — 6 — k)
B (r=—06) (6 + k) 2(2r* =6) (r*—o6—k)
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C Comparison of the two noncooperative
solutions

First, we compare the steady-state values for accumulated emissions. Using
(31) and (47), we find that the difference between the two steady-state values
can be written as

oy _ NGB [N —1)af 2 (k+§) ai — be] + (N — 1) cas}
o T blk((6+k)b—(N—1)a;) + Nc|[k (6 + k) b+ N¢] ’

where the denominator is positive as long as «; is negative. Then, taking
account that (2N — 1) a?—2b (k + £) a;—bc = 0, according to (39), we obtain
a negative difference for the numerator and we can conclude that 22 is lower
than z/_. To compare the steady-state emissions we take into consideration
that ¢i0o = (k/N) 2o for the two solutions so that we can write the following
difference

which has a negative sign.

Now, in order to compare the optimal paths we define r/ as —k+(Nay) /b
and we compare it with the negative root of the open-loop Nash equilibrium,
r°!. Let’s assume that ‘rf | > |r°l|, then using (42) to eliminate a; we obtain
the following inequality

2(N—1) (, 8\, 2N . 2+2N—1
N — 1 2) ToON 1 2 b

> \/62+%[l<:(5+k)b+Nc].

Squaring and simplifying terms, we obtain that

0 §\* 2N -1 §\> 2N -1

o1




and squaring again and simplifying terms, we finally obtain the following
contradiction

N -1,
O Z b2 (& )
and we can conclude that |rf | < |r°l|. Now, from (32) and (49) we obtain
that

ol f

.ol dz ol ol| rott - f dz
= =2z2 |r”le" "and ' = —

il 7
where ‘rf ‘ < ‘r The rest of the proof follows the proof of Proposition 8

step by step. For this reason, this part has been omitted.

f
:zgo‘rf‘ert

ol‘

D Percentage variation of steady-state accu-
mulated emissions

We can rewrite (50) as

Az = % — _N(N - 1)F,
where
) (6+k = N(as/b)
(k(6+ k)(b/c) + N?)(6 + k — (N —1)(ai/b))
The derivative of the numerator is — N aa((ii//c I;), being aa((ii//c I;) =3 (b}C)z G2 >
0,G=(k+3)"+ %=L

The derivative of the denominator is k (6 + k) (6 + k — (N — 1)(a; /b)) —
(k(6+k)(b/c) + N?)((N —1)/2(b/c)?)G~'/? whose sign is ambiguous. Using
these two derivatives we can calculate the numerator of 0F/0 (b/c) :

__N -1/2 c 2 (N = 1)
2(b/c)2G (k(6+k)(b/c)+ N*)(6+k — (N —1)(a;/b))

—(6+k—N(a;/b) k(6 +k)(6+k—(N—1)(a;/b))

(K8 + B)(b/c) + Nz)%G”],
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taking common factor and simplifying we obtain a negative value?

~1/2
5+ k)[%(k’(é L k)(b/c) + N?)

+h(6 + k= N(i/0))(6 + k — (N = 1)(e/b))],

so that OF /0 (b/c) is negative and consequently 0Az/0 (b/c) is positive.

2> Remember that a;/b is negative.
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