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OPTIMAL SUBSTITUTION OF RENEWABLE AND NONRENEWABLE NATURAL
RESOURCES IN PRODUCTION

Francisco J. André-Garcia and Emilio Cerda-Tena

ABSTRACT

A theoretical model is presented in order to study the optimal combination of natural resources, used
as inputs, taking into account their natural growth ability and the technical possibilities of input substi-
tution. The model enables us to consider renewable resources, nonrenewable, or both. The relative use
of resources evolves through time according to the difference between both resources’ natural growth and
technological flexibility, as measured by the elasticity of substitution of the production function. Output
evolves according to a version of the traditional Keynes-Ramsey rule, where the marginal productivity
of capital is substituted by the ”marginal productivity of natural capital”, that is a combination of both

resources’ marginal growth weighted by each resource return in production.
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1 Introduction

This paper focuses on the optimal combination of renewable or nonrenewable natural resources, used as
inputs, taking into account their natural growth and technological substitution possibilities.

Since Hotelling (1931) first researched on the optimal use of exhaustible resources’ and the 70’s oil
crisis showed the importance of this matter, many economic research articles have addressed questions
related to natural resources. The optimal extraction patterns of an exhaustible resource have been stud-
ied by Dasgupta and Heal (1974) and Weinstein and Zeckhauser (1975), among others. The article by
Stiglitz and Dasgupta (1982) pays attention to the effect of the market structure on the extraction rate
of a nonrenewable resource. Herfindahl (1967) studies the optimal depletion on several deposits of a
nonrenewable resource without extraction costs, while the same problem is solved by Weitzman (1976)
with different extraction costs and Hartwick, Kemp and Long (1986) with set-up costs. Pyndick (1978)
analyzes a joint problem of optimal extraction and investment on exploration to find new resources. Pyn-
dick (1980) and Pyndick (1981) study the effect of different types of uncertainty on resource management.
Dasgupta and Heal (1979) present a broad discussion on the basic aspects concerning the influence of
exhaustible resources on economic theory. For a more recent survey see, for example, the chapter 7 of
Hanley et.al. (1997).

As shown in Beckman (1974, 1975) and Hartwick (1978a, 1978b, 1990), productive processes do not
usually depend on a single natural resource, but it is possible to choose among several resources or com-
binations of resources. So, apart from the whole quantity of resources employed, it is also interesting to
determine the optimal substitution among them. Hartwick (1978a) obtains some results regarding sub-
stitution among nonrenewable resources. The growing awareness and interest about renewable resources
suggest the need for study the substitution among renewable and nonrenewable resources.

Given that renewable and nonrenewable resources give rise to qualitatively different economic matters,
the research efforts related to both kinds of resources have largely evolved as two separate branches in the
economic literature. As a consequence, most economic articles about natural resource economics focus
on just renewable or just nonrenewable resources?, depending on the specific research purposes of each
paper. In order to the address the matter of substitution among renewable and nonrenewable resources,
we need to model explicitly the possibility of different combinations of renewable (RR) and nonrenewable
(NR) resources to manage situations such as the following:

NR: Energy generation from oil or coal. Manufacturing cars from different metal combinations.

RR: Energy generation from different renewable (such as hydraulic or solar) sources. Making furniture

from different types of wood. Different fishing species.

IDevarajan and Fisher (1981) remark that «there are only a few fields in economics whose antecedents can be traced to
a single, seminal article. One such field is natural resource economics, which is currently experiencing an explosive revival
of interest; its origin is widely recognized as Harold Hotelling’s 1931 paper».

20f course, there are several economic articles which include several types of resources in order to discuss some specific
issue. For example, Swallow (1990) studies the joint exploitation of a renewable and a nonrenewable resource when the
interaction between both resources happens through the natural growth rate of the renewable resource. To the best of our
knowledge, there is not any economic paper addressing the matter of combining renewable and nonrenewable resources as

inputs for production in an economically optimal way.



NR and RR: renewable versus nonrenewable energy sources. Combining some metals (NR) with wood
(RR). Making packages from paper (made from wood, RR) and plastic (obtained from oil, NR).

The results show that, when both resources are nonrenewable, it is optimal to use them in a constant
proportion to each other, depending on their scarcity and their weight in production, while output de-
creases along time. When production depends on a renewable and a nonrenewable resource, the renewable
resource tends to be more and more intensively used through time with respect to the nonrenewable re-
source and output is more sustainable when production rests more intensively on the renewable resource.
In the two-renewable-resources case, it is possible to obtain a sustainable solution, represented by an
interior steady state, whose uniqueness and saddlepoint stability are proved.

The remainder has the following structure: section 2 presents a theoretical model in which production
depends on two natural resources, including the possibility of employing renewable or nonrenewable
resources. In section 3, the solution is discussed stressing the time properties of the resource substitution,
the output path and the existence of an interior steady state. The particular cases (NR,NR); (NR,
RR) and (RR, RR) possess specific economic features which are presented in subsections 3.1, 3.2 and
3.3 respectively. In order to obtain some further insight about the results and to compare the solution
corresponding to different combinations of resources, section 4 presents and analyzes in detail an example
with a Cobb-Douglas production function. Section 5 shows the main conclusions and section 6 is a

mathematical appendix.



2 Model, solution and economic interpretation

From a general equilibrium viewpoint, suppose an economy with a single consumption good, whose
quantity is denoted by Y > 0, obtained from two natural resources used as inputs in quantities X; > 0
and X, > 0, according to the production function Y = F(X1, X5), which is assumed to be of class C(?),
homogeneous of degree 1, and verify® Fy, Fy > 0, Fi1, Fys < 0, F11Fae — F2 > 0. In order to focus the
attention on natural resources, we take as exogenously given the quantities of any other input, such as
capital and labor. Furthermore, a model with two resources is rich enough to address the questions raised
in this paper. The solution provides simple and economically meaningful results which can be useful to
manage any arbitrary number of resources.

S; (t) measures the stock of resource ¢ (i = 1,2) at instant ¢ and the time evolution of S; is given by

the following differential equation:

5= B0 g (5,0 - X0, m

where g; (S;) is the natural growth function of resource i, which is concave, of class C®) and verifies

9: (0) = 0. As noted for example in Smith (1968), the nonrenewable case is a particular one with
9i (S;) =0V S;. X, (¢) is the instantaneous extraction rate of resource i at instant ¢.

The whole output Y is consumed by a single consumer in the economy, whose preferences are rep-
resented by the utility function U(Y"), which we assume is of class C®) and verifies U’ > 0, U” < 0. A
social planner has the objective of maximizing the consumer total discounted utility, so that he solves
the problem

Max / U(Y)e 8tdt
{X1,X2}

0
s.t.:
Y = F (X1, X>), (P)
S = () - X
5,(0) = S, i=1,2,
0<X; <85,

5 being the time discount rate and S the initial stock of resource i, which is exogenously given. To
simplify the notation, the time variable ¢ is omitted when there is no ambiguity.

(P) is an infinite horizon, continuous time, optimal control problem with two state variables and two
control variables. If there is a time T' € [0,00) in which both resource stocks are depleted under the
optimal solution?, then from T' on, we necessarily have X; = X5 = 0, in such a way that the objective
functional of problem (P) can be written as

&S] T 00 T 1
UY)e ®dt= | U )e % dt + e Otodt = | UY)e dt + e Ty,
0
0 0 T 0
where Uy = U (F'(0,0)) is a constant representing the utility obtained without resource extraction.

Because T is not given a priori, but is a decision variable, (P) becomes a free time horizon problem.

8’F
X, and Fj; denotes m

4The question of resource stock depletion is usually addressed in nonrenewable resource rather than renewable resource

3 F; denotes the partial derivative

literature. Nevertheless, renewable resources are in fact subject to the possibility of depletion and, in many cases, this is

an important concern in practice.



Note that problem (P) resembles a neoclassical optimal economic growth model with two activity
sectors, each one exploiting a different natural resource, where the stocks of both resources play the role
of productive capital stocks and the natural growth functions g; play the role of two sector production
functions®.

Substituting the production function in the objective functional of problem (P), the current value

Hamiltonian and the current value Lagrangian are defined as

2
H(Sl,SQ,Xl,XQ,)\l,)\Q) = U[F(Xl,XQ)]—‘rZ{)\Z [gz(SZ)—XJ}, and
=1
2
5(517527X17X2aA17>\2) - H(Sl,SQ,Xl,XQ,Al,)\Q)+Z{,uiXi+\Ili(5i*Xi)},
i=1

where )\; is the costate variable related to resource 7, which can be interpreted as the social valuation
of a further unit of stock of the resource i or, equivalently, the social cost of extracting a unit of such a
resource, and p; and ¥, are the multipliers related to constraints X; > 0 and X; < S;.

From the optimal conditions for problem (P), which are discussed in section 6.1 of the appendix, we
obtain that, if at a certain time t, U "By < N\ holds, that is, the marginal utility of using the resource %
(defined as its marginal productivity F; times the marginal utility of consumption) is smaller than the
social valuation of maintaining such a resource for its future use (measured by its shadow price), then
X; =0, so that it is optimal not to employ any amount of resource i at all. If the resource i is essential
for production®, then the output Y has also a value of zero at instant ¢. Conversely, if U 'F, > i, then
under the optimal solution X; = S;. The marginal utility of employing resource i being larger than
the social valuation of keeping that resource unextracted, it is optimal to extract the whole available
quantity of such a resource. This paper mainly focuses on the third case, that of interior solutions, with

0 < X; < S;. In such a case, from the first order conditions, we obtain U 'F, = A;, which is the usual

equality between marginal utility and marginal cost for each resource, and ﬁ =6—¢i(S;), 1= 1,2, which
is a usual condition in renewable resource models. For nonrenewable resour::es, it becomes the Hotelling
rule \; /A; = 6, according to which, the shadow price of resource ¢ grows at a constant rate equal to 6. The
second order sufficient conditions for the maximization of the Hamiltonian are U’ F;; +U" Ff <0,:=1,2
and

B U'Fy1 +U"F? UFi+U'F1Fy

= 0, 2
U/F12+UHF1F2 U/F22+U//F22 - ( )

|-| denoting the determinant of the matrix. The assumptions on U and F guarantee U'F;; + U"F? <0,

henceforth the second order conditions reduce to (2).

X
Let us define the relative use of resources as the ratio x = Yl The main results of this paper,
2

concerning the optimal path of relative resource employ (as measured by x) and output production (as

measured by Y'), are discussed in sections 2.1 and 2.2.

>There is a wide literature related to economic growth with renewable (Tahvonen and Kuuluvainen (1991, 1993)) and

nonrenewable resources (Dasgupta and Heal (1974), Stiglitz (1974a, 1974b, 1976)).
6In chapter 8 of Dasgupta and Heal (1979) the concepts of essential and nonessential resource are discussed. In

the present article, as in Hartwick (1978a), resource 4 is said to be essential for production if X; = 0 = F (X1, X2) =
0 VXj, j # i, ie., if it is not possible to obtain any output with no resource i. This happens, for example, with a
Cobb-Douglas production function F (X1, X2) = Xf‘ngQ or a Leontieff function F' (X1, X2) = min {a1X1,a2X2}. It does
not happen with a linear function F' (X1, X2) = a1 X1 + a2X2.



2.1 Relative use of resources

Proposition 1 In an interior solution of problem (P), x evolves according to the following differential

equation:
T
— =0 [01(51) = 92(S2)], (3)
d(X1/X2) MRTS . L )
h = t t F MRTS =
where 0 = = rems X1/ %) represents the elasticity of substitution of the function F and M RTS
v

T the Marginal Rate of Technical Substitution between both resources.
1

Proof: see section 6.2g

Proposition 1 has the following economic interpretation: throughout the optimal (interior) solution
of problem (P), the evolution of x is determined by an environmental component -the difference between
the marginal growth of both resources- and a technological component -the elasticity of substitution of
the production function-. Given that o > 0, (3) states that = increases (decreases), or equivalently, that
X1 (X3) grows faster than X, (X;)7, if the marginal growth of resource 1 is larger (smaller) than that
of resource 2. If we draw an analogy between a natural resource stock and a physical capital stock, the
resource with a higher marginal productivity always tends to be more intensively employed.

In addition, the higher the elasticity of substitution, the faster the response of x to a difference between
g1 and g5. Remember that the elasticity of substitution is a measure of the technical flexibility to substi-
tute inputs while keeping the output unchanged. As an extreme case, if F' (X1, X2) = min {a; X1, @2 Xo},
so that both resources are perfect complements and o = 0%, then the production technology is so rigid that
x remains at a constant value given by the technological component, whatever the natural growth of re-
sources are. For a linear production function F' (X7, X5) = a1 X7 + a2 X5, with o0 = oo, if g1 (S1) # g5 (S2)
a corner solution is obtained with a full instantaneous adjustment towards the use of one of both re-
sources. If g] (S1) = ¢5(S2) an indeterminacy occurs. In the intermediate case of a Cobb-Douglas
p_roduction function, with ¢ = 1, which is usual in the economic literature, equation (3) simplifies to
2 = ¢} (S1) — g5 (S2) .The Cobb-Douglas case is studied in section 4. See chapter 2 of André (2000) for

an in-depth analysis of the extreme cases.

2.2 Optimal output path and extraction rates

Proposition 2 In an interior solution for problem (P), the optimal output path is given by the following

differential equation:

Y 1
Y=o €191 (S1) + €295(S2) — 0], (4)
where &, and &5 are the returns to the i-th input, given by’
X F; )
= >0 =1.2
61 F(Xl,XQ) — ) 4 ) ) (5)
7Notcthatz=£7&andso—jc>0<i>ﬁ>ﬁ.

x X1 X T X3 X2
8Note that this function is not differentiable so that the results shown do not directly apply. Nevertheless, the perfect

complements case can be regarded as an extreme case of the general result, taking limits when o tends to 0 in a production
a=1715Z

o=1 o115
function of the CES type F'(X1,X2) = |onX; ° +a2X,° , with 0<ai,az <1.
9See, for example, Nadiri (1982).



—U" (Y)Y

andn (Y) is the intertemporal substitution elasticity of the utility function U, given byn(Y') = ) >
0.
Proof: see section 6.3g
The equation (4) is a generalization of a single renewable resource extraction rule, given by
Y 1,
—=——19"(5)—4]. 6
F=ayle )-8 (©)

Condition (6) can be interpreted as a version of the Keynes-Ramsey rule of a standard neoclassical
optimal economic growth model, where the marginal growth of the natural resource plays the role of the
marginal capital productivity. Using this analogy, the stock of a natural resource S can be called natural
capital and its marginal growth ¢’ (S) can be called the marginal productivity of natural capital. Using
the same analogy, (4) can also be interpreted as a version of the Keynes-Ramsey rule, where the stock
of natural capital is given by the linear convex combination £; 57 + £,52 and the marginal productivity
of natural capital is given by &g} (S1) + €595 (S2), where each resource is weighted by its return &,. If,
at any instant of the solution, both marginal growths coincide, ¢ = g5 = ¢/, (4) simplifies to (6), given
that §; +&, = 1.

Given the strict concavity assumption on U, n(Y') is positive for any positive value of Y and equations
(4) and (6) state that, throughout the optimal solution, the output path grows with the difference between
the marginal productivity of natural capital and the discount rate 6. This growth is smoother when U is

more concave, as measured by n(Y).

Y X X
Deriving F' (X7, X2) with respect to t and dividing by F' (X7, X3), we obtain v = §1Y1 + 52%.
. . ) i 1 X2
X X X Y i X
R.earranging this equation and using % = Yi — fz’ we have the identities fi =7 + 525 and fz =
v .
=—-¢ z which, after using (3) and (4) and rearranging, become
% 17 g ging
X, 1
X, ) (Y1191 (S1) + 71295 (S2) — 6], (7)
X, 1
X, () (Y2191 (1) + 72295 (S2) — 4], (8)
where
Y11 =& +&n(Y)o, Y2 =& 1 —n(Y)o),
Yo =& (L =n(Y)o), Va2 =& +&n(Y)o

and 717 + Y12 = Y21 + Y22 = 1. Note that (7) and (8) are similar to (4), in such a way that X7 and X»
evolve depending on the difference between a linear convex combination of both resources growth and the

discount rate, and their evolution is smoother when the intertemporal substitution elasticity is higher.



3 Production with renewable and/or nonrenewable resources

The general solution takes different particular forms depending on the grow ability of both resources. The
following table summarizes the main differences and commonalities among the different situations: two
nonrenewable resources (NR) a nonrenewable and a renewable resource (NR and RR) and two renewable

resources (RR)

case Resource Intensity Output Steady State
=0 .
Y <0 . .
Constant throughout . No interior
) ) Decreasing
NR the solution depending steady state
) throughout )
on technical return and exists

. the solution
resource scarcity

&<0 Y <0 o
NR . No interior
renewable resource May increase or decrease
and ) ] ) steady state
substitutes depending on the properties of )
RR exists
renewable resource the renewable resource
Interior ss.
may exist.
RR £SO Y <0 If "1, g”2 <0,

then it is unique and

saddlepoint stable

Some different economic conclusions can be drawn for each situation. In the following subsections, each

case is studied with further detail.

3.1 Production with two nonrenewable resources

The case with two nonrenewable resources has already been addressed in the literature (see Beckman
(1974, 1975) and Hartwick (1978a)) from slightly different perspectives!’. Given that our purpose is to
offer a unified framework to study all the possible renewable and nonrenewable resources, let us consider
this case as a comparison pattern for more complex models with one or two renewable resources. Equation
(3) shows that, if both resources are nonrenewable, & = 0 so that = remains constant throughout the
solution, or equivalently, the use of both resources increases (or decreases) at the same rate. The specific
value of x is given by lemma 3 and proposition 4.

Lemma 3 Let A be defined as the ratio of the shadow price of both resources, A = % If both resources

1
are nonrenewable, in an interior solution for problem (P), this ratio remains constant throughout the

F:
Az (0) Furthermore, =2 = A holds throughout the solution.
A1 (0) P

Proof: Readily obtained from the Maximum Principle first order conditions (see section 6.1) with
g1 (51) = g2 (S2) = Om

10Beckman studies a particular case with Cobb-Douglas production function and logarithmic utility function, instead of

solution, so that, A =

generic functions F and U. Hartwick focuses on efficient, not necessarily optimal paths.



The ratio A can be interpreted as a non-dimensional measure of both resources relative valuation
and, given that economic valuation is linked to scarcity, A can also be interpreted as a measure of both
resources relative scarcity. Lemma 3 states that, for two nonrenewable resources, this measure remains
constant throughout the solution. Furthermore, X; and X, are used in such a way that the Marginal

Rate of Technical Substitution is also constant and equals A.

Proposition 4 In an interior solution for problem (P), if both resources are nonrenewable, the relative
use of resources is given by
T = éA, 9)
13

where £, and &5 were defined in (5) and A was defined in lemma 3.

Proof: see section 6.4g

Given that F' is homogeneous of degree 1, we know that &; + {5 = 1. The homogeneity assumption

also implies that, if X; and Xy grow at the same rate, then £; and &, | and hence 2—1> remain constant!!.
2

According to equation (9), the ratio x is given by the product of 5—1, which is a measure of resource’s

2
relative technical weight, and A, which is a measure of relative scarcity. The greater the weight of resource
1 in production with respect to 2, and the scarcer resource 2 with respect to 1, the higher the optimal

value of x.
When ¢ (S1) = g2 (S2) =0, from (4), (7) and (8) we know

P N R a0
Y Xi X n(Y)

so that the output and both resources extraction rate decrease at the same rate. Such reduction is faster

the higher the discount rate and the smaller the elasticity of temporal substitution. For high values of 6,

present and near future weigh very strongly with respect to the distant future in the objective function,

so that it is optimal to extract resources very intensively at the beginning of the time horizon. For high

values of 1 (Y'), the utility function is very concave and smooth consumption paths are preferred.

3.2 Production with renewable and nonrenewable resources

Assume that resource 2 is renewable and resource 1 is nonrenewable!?; so that g1 (S1) = 0. Given that
the natural growth is the only intrinsic property of resources we are interested in, from a macroeconomic
point of view, we can interpret resource 1(2) as an aggregate of all the nonrenewable (renewable) resources

existing in the economy which are relevant for production. Then equation (3) becomes

% = —o4(52), (1)

1T Assume that X7 and X2 are multiplied by a positive constant . For homogeneity of F' we know that F (aX1,aXs2) =
aF (X1,X2). The first derivatives of a degree one homogeneous function are degree zero homogeneous, so that
F; (aX1,aX2) = F; (X1,X2) ¢ = 1,2 and &; becomes
aX,F; (X1, X2)

(aX1,aXs) =
£ (aX1,aXs) oF (X1, X2)

= fi (X17X2)~

12Given the symmetry of the model, this distinction is arbitrary.

10



and the sign of the time evolution of x is given just by the marginal growth of resource 2. The speed of
such evolution is also affected by the elasticity of substitution of the technology. Provided that g5(Ss) > 0,
x decreases, so it is optimal for the renewable resource to be more and more intensively used with respect
to the nonrenewable resource.
If resource 1 is nonrenewable and resource 2 is renewable, equation (4) becomes
¥ = oy s (52) — ). (12)

In this case, the output path may be time increasing or decreasing, depending on the sign of the
difference €595 (S2) — §. Such a path would be more increasing (or less decreasing) when the marginal
growth of the renewable resource is larger and such a resource has a greater weight on the production
technology. Note the economic meaning of this result. The existence of a renewable resource makes it
possible to maintain the production through time; when the marginal growth of resource 2 and its weight
on technology is smaller this case becomes more similar to the one with two nonrenewable resources.

Equations (11) and (12) express, in a mathematical way, the interest (and, in the long run, the need)
to promote the research and use of renewable energy sources, such as solar, hydraulic or wind energy
to substitute nonrenewable energies, such as oil, coal and atomic energy. A production process is more
sustainable the more it depends on renewable resources instead of nonrenewable resources'?.

As for resource extraction rates, equations (7) and (8), take the form

X, 1 Xy 1

X, = m [v1295 (S2) — 6], X, = m [¥2295 (52) — ],

being v15 =& (1 —n(Y) o) and v =5+ & (V) 0.

3.3 Two renewable resources: steady state analysis

The most interesting issue concerning the two renewable resource cases is the possibility of obtaining an
interior steady state (that is, one in which control and state variables have a strictly positive value). A
steady state of problem (P) is defined as a set of sustainable values for state, control and costate variables
(A1, A2) such that, if those values are simultaneously reached at a certain point of the optimal solution,
they keep indefinitely constant, that is, Xl = Xg =Y = Sl = Sg = ).\1 = ).\2 =0.

Given the structure of problem (P), note that the only possibility of obtaining an interior steady state
requires that both resources are renewable, given that if a resource 7 is nonrenewable, X; > 0 is not
compatible with S; = 0.

Using the definition of steady state in (1) and (29), an interior steady state is given by

gz(Sz) = Xi, i:1,2, (13)
g = g=90 (14)

The existence of an interior steady state is guaranteed if there exist a pair of positive values S; > 0
and So > 0 such that S; > ¢ (51) >0, Sy > go (5’2) > 0 and ¢ (51) = g} (52) = §. Those values,

130f course, a further reason for this substitution is the fact that nonrenewable energy sources are, in general, more
intensively polluting than renewable sources. The extreme case is that of atomic power, whose potential consequences for

health and life are known.

11



if they exist, can be obtained from equations (14) and, using them in (13), they allow us to obtain the
steady state controls X; and X». By substitution in the production function we have Y, and from (28),
we obtain A; and \o. If a steady state exists, a sufficient condition for it to be unique is g7, g4 < 0.

In a steady state of (P), global stability is discarded!* and the only possibilities are instability and
saddlepoint stability. The following proposition states necessary and sufficient conditions for local sad-

dlepoint stability:

Proposition 5 If second order conditions (2) hold with strict inequality, an interior steady state for
problem (P) is saddlepoint stable if and only if g7 (51), 94 (52) < 0.

Proof: see section 6.5g
Next, a sensitivity analysis exercise is developed with respect to the only parameter of problem (P):

the discount rate 6. Deriving (13) and (14) with respect to §, we obtain
98 0X;

QQ’% =1, =12 (16)

Rearranging (15) and (16), using (14) and assuming g (S1), g4 (S2) < 0, we obtain

dé g/ (5;) ’ i=1.2
dXiigg( 1)7 (5 e

= = — <0
B G  gG)

Observe that this result is economically meaningful: the higher the value of §, the higher the weight of
the present moment in the objective function with respect to future. So, for high values of 6, it becomes
optimal to extract both resources intensively in the early stage of the solution, reducing the available
long run stock, and hence the steady state stock. To make this stock sustainable, the resource extraction

rates must also be smaller.

M Kurz (1968).

12



4 Example: Cobb-Douglas production function

For a further study of the solution, a particular case with Cobb-Douglas production function is pre-
sented!®. Assume that the production function is F (X1, X2) = X X5?, with o + @ = 1. As-

sume also that the utility function is of the constant temporal substitution elasticity type U (Y) =
Yl—n
L=mn

with 0<n <L

4.1 Two nonrenewable resources

As obtained in section 6.6 of the appendix, the optimal extraction rate of each resource is given by

X; = Aje™  i=1,2, where A;—= 050 o = 1,2. (17)
As a consequence, Y and x take the expressions
—se 659 (S9N Sl
Y = A{PALMew = 72 <S—§> e M, (18)
0
r = % = g—é. (19)

Note that 2 only depends on S and S§. We obtain that % > 0,7 = 1,2, so that increasing the initial
stock S? of any resource leads to augmenting that resource elxtraction rate and hence to shift upwards
the whole output path. The more intense the weight of such resource in production (as measured by «;),
the larger the shift. The remaining parameters affect X7 and X, in the same direction and intensity, so
that it is enough to study their aggregate influence on Y. We obtain that % > 0 if and only if Sy > S9,
implying that an increment in the weight of the most abundant (scarce) resource, causes the output to
increase (decrease) throughout the whole optimal path, implying that technologies intensively depending
on abundant resources allow us to obtain more output than technologies mainly depending on scarce
resources. We also obtain that %—}g > 0 and g—}; < 0if and only if ¢ < g, so that, an increment of the
discount rate leads to increase the resource extraction and output for low values of ¢ and to reduce them
for the distant future, whereas increasing parameter 7 causes the utility function to be more concave so
that, under the optimal solution, it is preferable to smooth the output path, increasing long term with

respect to short term consumption.

4.2 A renewable and a nonrenewable resource

Assume that resource 1 is nonrenewable (g; (S1) = 0) and resource 2 is renewable with a constant growth
rate, so that, go (S2) = 75592. Make also the technical assumption § > a7y, to ensure solution existence.

As shown in section 6.7 the solution for X; and Xs is given by
X, = Klsge_Kit > O, (20)

§-ammp(=m) _, K, = 0=zl —a (= n)]
U ’ U

15n the chapter 2 of André (2000) a similar analysis is developed with other technologies: perfect complements and

where K; =

<0.

perfect substitutes.
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From (20) we obtain

—7at
b

)1—061 [6_ (1_041)72 (1_77)]6(1;‘1]77)—72;‘51‘, _ X1 _ S_?e

Therefore X tends asymptotically to zero, whereas X3 may increase or decrease depending on the sign

of K. We can also conclude that % = l [aays — 6] < 0, showing that the output decreases more slowly
than in the two nonrenewable resources case. The output reduces faster for lower values of the growth
rate 5, the renewable resource returns Qg, the temporal substitution elasticity 1, and for higher values
of the discount rate §. In a similar way r_ —74, showing that, throughout the solution, = decreases at
a constant rate vy,. !

The effect of the parameters SY, S9, § and n on the solution are similar to those shown in section 4.1.

The effect of the parameter a; (measuring the nonrenewable resource elasticity) is given by

n(l—mn)
5—01272(1_77)7

v 0
6_2()<:>t§t*, wheret*ilog(51>+
Y2

80[1 S_S (21)

so that, short term output increases with o if resource 1 is initially abundant enough with respect to
0

. .S . . "
216 The larger the proportion S—é, the more intensive and the longer term the positive effect of a; on
2
9 . o . L
output. Nevertheless, 50 and hence t*, is always finite, in such a way that, in the long run, increasing
2

a1 reduces output.

The following table shows the effect of 4 on variables X;, X2 and Y:

0<t<tx, |tx, <t <ty |ty <t<tx, |tx, <t<o0
X1 — — - +
X - + + +
Y — — + +
asm (1 —
27 ( n) >0,

ix, = [1—ay (1—=n)][6—axys (1—n)]

tx, <ty < tx, being given by
__n(l-mn) _ n

6 —az, (1—-n) 6 — vy (1 =)
Increasing v, leads to reducing short term, and to increasing long term resource extraction and output,

by >0, tx, > 0.

in order to take long term advantage from the larger natural growth ability. Nevertheless, the effect of
v, has a different timing on each variable. The extraction rate of resource 2 begins to increase at instant
tx,, whereas resource 1 extraction begins to increase later, at instant tx,. In the interval (fx,,ty) the
X5 increment does not suffice to compensate the X; drop, causing output to diminish. From ty to tx,,
although X7 is still lower than initially, the compensation by larger value of X5 allows output to increase.

From tx,on, both resources extraction rate (and, of course, output) is larger.

S0 —v2(1—m)
161f S_(l) < e®—@272(1-m" then t* < 0, meaning that an increment on a; reduces the value of Y throughout the whole
2
solution.

14



4.3 Two renewable resources

Assume that the stocks of both resources grow according to the usual logistic function

2
g (SZ) :Gi (Szfz> 7= 1,2,

#; and K; being two positive parameters known as intrinsic growth rate and carrying capacity. According

to equations (13) and (14), the steady state is given by

52 28; .

As for the problem of steady state existence, the condition for equations (22) having an interior
solution is 07, #5 > 6. If this condition holds, we can solve (22) for X; and S; to obtain

_ K S _ 6% — 82 .
L i =1,2. 23
S’L 2 <1 91> 9 X’L 1 491 ) ’L ( )

Note that S; and X; do not depend on the specific utility and production functions, but the transition
to steady state depends on such functions according to equations (3) and (4). The utility and production
functions also have influence on the steady state value for costate variables A\; and s, according to

Yl—'r]
equations (28). Given F (X1, X0) = X{"X5? and U (V) = o such values are given by

1 —
~ 2 . 2 Déi(lf’n)fl 92 _ 62 04.7‘(1*77) s 1 2
N\ = aiX?i(l—n)—levj(1—"1) — o (K 0i -6 K2 bJ ’ 45
. " 20; . . .
Provided that g/ (S;) = — e < 0, i = 1,2, both growth functions are strictly concave and, as a

consequence, if a 61, 83 > 6 > 0, then a unique steady state exists and i tis local saddlepoint stabile. As

shown in section 6.8, we have the following staeady state sensitivity analysis results:

0 1,7 =1,2

9606~ 0K, 00; 0K, 00; | =0  ifi;

As discussed in section 3.3 for the general case, the larger 6, the smaller the steady state value for
both resources stock and extraction rate. Parameters 6; and K; do not affect the steady state value for
resource j when i # j, because no natural interaction exists between both resources. Note, however, that
according to equations (7) and (8) both growth functions are relevant for determining both resources
optimal extraction path. Increasing resource ¢’s intrinsic growth rate or carrying capacity makes such

resource steady state stock and extraction rate increase.
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5 Conclusions and extensions

A theoretical model has been presented in order to study the optimal combination of natural resources
used as inputs, taking into account their natural growth ability and the technical substitution possibilities.
The model allows us to include either renewable, nonrenewable resources or both, connecting renewable
and nonrenewable resources economics.

The relative use of resources evolves according to two factors: the difference between both resources’
natural growth and technical flexibility, as measured by the production elasticity of substitution. Resource
1 proportion with respect to 2 increases (decreases) when resource 1’s marginal growth is greater (smaller)
than that of resource 2. This adjustment is faster when the production elasticity of substitution is higher.

The optimal output path obtained from two natural resources follows an equation similar to the
classical Keynes-Ramsey rule of economic growth models, where the role of physical capital productivity
is played by the marginal productivity of natural capital, which is formed as a linear convex combination
of both resources’ marginal growth, using returns to i-th input as weight in the combination. Output
grows (drops) through time when natural capital marginal productivity is greater (smaller) than the
temporal discount rate. This adjustment is slower when the temporal substitution elasticity of the utility
function is higher.

When both resources are nonrenewable, they are used at a constant proportion determined as the
product of a relative production weight measure and a relative scarcity measure. Output and both
resources extraction rate decrease at a rate that is greater in absolute value when the temporal discount
rate is larger and the temporal substitution elasticity is smaller.

When production depends on a renewable and a nonrenewable resource, the natural capital marginal
productivity is formed by the renewable resource marginal growth times such resource return. If the
marginal growth is positive, the renewable resource is more and more intensively used through time with
respect to the nonrenewable resource. Output is more sustainable when the return to the renewable
resource and its marginal growth are higher.

The case with two renewable resources is the only one in which a sustainable solution, represented by
an interior steady state can exist. If such a steady state exists, its uniqueness and saddlepoint stability
are guaranteed if both resources natural growth functions are strictly concave.

Some plausible ways to extend the results obtained in this paper are the following: first, take into
account some further features of the natural resources which are relevant for their optimal use, such
as their recycling ability and their impact on environmental quality. Second, include some additional
elements in the theoretical model, such as physical capital accumulation and technical change. From a
market equilibrium point of view, it would be relevant to model the interaction among different economic

agents with decision capacity on resources management.
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6 Appendix : Mathematical results

6.1 Solution to problem (P)

Together with the state equations (SZ = ¢;(S;) — X;, with S;(0) = S?), The Pontryagin Maximum

Principle conditions for problem (P) are

Xi =i (6— g5 (Si) — ¥, i=1,2. (24)

UF—Xi+p,—% = 0, i=1,2, (25)

WX, = 0, i=1,2, (26)

USi—-X)] = 0, i=12, (27)
Xtalszv\:[}wst_Xt Z 0, Z:].,Q

The transversality conditions for the terminal value of A\; and T are

Jim e %N\, > 0  with Jim e % (\S;) =0, i=1,2,
B o (1 _ _
e TH(T) = ~o7 (56 5TU0> =e Uy & H(T) = Uy,

H (T') being the current value Hamiltonian at T'.

Mangasarian global maximum sufficient conditions hold!”, given that U, F and g; are assumed to be
concave functions and A; > 0 throughout the solution. To prove the latter statement, note that (25) can
be expressed as \; = U F; + ju; — ¥, and, by (27), we obtained that, if S; > X;'8, then ¥; = 0 holds and
A; is nonnegative because U’, F; and p, are nonnegative.

Whenever U F; < ); holds, from (25) we know that u; > 0, and because of (26), X; = 0. If UF; >\,
then because of (25), ¥; > 0 and, from (27), we know that X; = S;. As for interior solutions, from (26)
and (27), we have u; = ¥; = 0, so that (25) and (29) become

N = UF, and (28)
2= sogs), =12 (29)

6.2 Proof of proposition 1

Deriving (28) with respect to time and dividing by (28) we obtain

)‘i:U/ 7 _E v _ Tt L :1,2
@ "a TN Ra va (30)
Using (29) to substitute T, and rearranging,
LdFy  1dF _ /
it S _ B ' 1
a2l als) (31)

I"Mangasarian (1966).
181f at a certain instant Z, we have X; = S;, the whole quantity of resource i is extracted. Given that g; (0) = 0, from £

on, resource ¢ ceases to be available for production.
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Using the definition of z and the homogeneity assumption for F', f(x) is defined as

POX) _p (%11) < P = st o

and we know that

dF’ . dF. .
F = f'(z), F=f(x) —z f(x), d—tl = f"(z)z, d—t2 = —x f"(z)x. (33)
F: F:
Using (33) to substitute Fy, Fy, % and % in (31), and rearranging,
oz f(x) f'(x
BT i) — gh(s). (39

z f'(@) [f(z) — 2 f'(2)]
F being homogeneous of degree one, its elasticity of substitution may be expressed as'?
g 2@ f (@) —z [ ()]
x f(x) f"(x)
Using (35) in (34) and rearranging, we obtain (3)m

> 0. (35)

6.3 Proof of proposition 2

Adding th ions for ) ) ' have — B A S e elt B i)
dding the equations for A;/A; and Aa/A2 in (30), we have T 5 % + N T dl =l

14U 1 [A o 1dF 1 dR
and, using (29), becomes
a1
Uodt 2
Using (33) and (3), we know that
dadb  1dB _ f@)[fle) —22 @), (@) [f(@) = 22 f2)]
Fyodt  Fy dt f(@) [f (@) = zf' ()] (@) [f(x) = zf'(z)]
Substituting in (37) the value of o given by (35), rearranging and using (33) again,

(
L L sy - s L2

26— g1(S1) — 95(52) — (i@ iﬁ)] '

Fyodt EFy dt

o[g91(S1) — 9/2(52)]~ (37)

X1, Xo) - 2X 1 F

= —[g1(51) — g5(52)] i F(X1,X>)

(38)
Substituting (38) in (36), using the definition of §; given in (5) and the Euler theorem for homogeneous
functions, according to which X1F; + XoFy = F (X3, X2), we have

1 dut X, P o F(X1, X)) - XoFy , ,
U dt =6 gl(Sl)F(Xl,Xg) g5(52) F (X1, X2) =0 —£191(51) — £295(52),
. lav 1. Y
that becomes (4) after using T = EU Y = —n(Y)?.

6.4 Proof of proposition 4

Using lemma 3 and (33), we have A = B f@) —af' (@) _ f@)

— z, and using (32) and (33),

Fy f@) @
f (ZU) F(X17X2) F(XlaXQ) T
T = ~A=——+"7""_  A=p—"—""_ —A=——A.
[ (@) XoFy (X1, X2) X1Fy (X3, X3) &
Rearranging, we obtain z = 1 515 A, and using &; + &5, =1, (9) is obtainedg
—&

198ee, for example, Dasgupta and Heal (1974).
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6.5 Proof of proposition 5

First, we need to express the optimal value of the control variables as a function of the state and costate

variables. Taking the total differential in the two-equations system (28) we obtain

A B :[dAll, (39)

B C

dX,

dXs dXo

where A=UF, +U F2<0, B=UFu+U FiF,s0, C=U Fy+U F2?<0. If(2)holds with
strict inequality, then D = AC'—B? > 0 and the Implicit Function Theorem guarantees the local existence
of the C® functions

X; = Xi(A1, Xo), i=1,2, (40)

implicitly defined in (28). By Cramer’s rule, we obtain

0x, C X, A 0X, 00X, -B

=/ _ = e — - ___ <. 41
on " Db " an T anw Do (4D
Substituting (40) in (1) we have

Si=gi(Si) — Xi(M\, Xe),  i=1,2 (42)

which, together with (29), form the canonical or modified Hamiltonian dynamical system. Following
Dockner (1985), we make a first order approximation at a steady state. Deriving (29) and (42) with

respect to S; and Aq, the Jacobian matrix of the canonical system, evaluated at a steady state, is defined

as
981 0% O\ O 6 0 —% —%
0S5y 0SSy 0S5y 05 8)>\(1 83\(2
= =2 -2 2 0%, 09X
J=| 95 0% O\ 0) — 0 6 . aw |- (43)
Do Ny Oy O 0 ) 0 0

95 98, O\ 0\ lss

Following Dockner (1985) and Tahvonen (1989) the necessary and sufficient conditions for local saddle-
point stability are |J| > 0 and K < 0, being |J| the determinant of J and K defined as

— 951 O\ 085y O\ 082 O)a
" o o [Tl ok o | TPl on ok
051 O\ 082 O\ 08> 9X2 Ilg
5 _0Xy 5 00X 0 _0X,y
= oM |+ Ol | +2 O
~Agi 0 —X2gy O 0 0
/! /! X X
After some operations, we obtain |J| = M1 Az93 and K = — Algﬂ’% +Agg§’%}, where D is
1 2
defined in (2) and has a positive value if the second order conditions hold with strict inequality.
X X
In an interior solution, because of (28), A1, A2 > 0 holds and, as shown in (41), %, % < 0.
1 2

|J| > 0 requires that g{ and ¢4 are different from zero and have the same sign, whereas K < 0 requires

such a sign to be negative. Hence, a steady state is saddlepoint stable if and only if g7, g5 < Om
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6.6 Example with two nonrenewable resources (section 4.1)

The problem to solve is
* 1— 1—
{%,%{3;} /0 ﬁ (Xin( ")X§‘2( r/)) o0t dt
s.t.:
S =—-X;
S;(0) = SY, i=1,2.
0<X; <85,

We will find an interior solution, and tlhen check that the constraints 0 < X; < S; are nonbinding. The
current-value Hamiltonian is H = - (Xf”(l_")X?(l_")) — M X1 — X Xs. Apart from the state

equations and the initial conditions, the Pontryagin Maximum Principle conditions are

8H ai(l—n)— a;(1— .o . .
v = ok m=tx 0o =0, i,j=12 i#j] (44)
)‘t 6t .
We check that the second order sufficient conditions for the maximization of H hold:
62H i 1—-n)—2 Qi 1— ..
—axgzai[ai(l—n)—l]Xf( D=2 < iji=1,2,

Hes(H)| = aqan |1 — (a1 + ) (1 — x2aa(=m=2 y2aa(l=m=2
| ( n 1 2

Solving (44) for A\; and Ag, deriving with respect to ¢ and dividing the result by (44) we obtain

by X; X
S (l—n) -1 =L ta; (1—n) =L, =12 46
. : . Xy Xy =6
Equating (46) and (45), using oy + a2 = 1 and rearranging, we obtain X =X = o whose
1 2
solution is X; = X; (O)e?t. Substituting in the state equation for S; and solving we obtain S; =
0

X; = . . . .
S9 + 7‘ (1 —e nét). Using the solution for A;, the transversality conditions become

. —6t1 _ v, . 99 s : . .
lim [)\ie t] =X (0)>0 (w1th =7if tlggoSZ > O) , 1=1,2.

t—o0

From (28) we know that Ay (0), A2 (0) > 0, so that tlim S; = 0 and both resources get exhausted.

A simple argument shows that they get exhausted at the same time, T < oo?’. Using the terminal
559
conditions S; (T") = 0 in the solution for S;, we obtain X; (0) = —L*"T Using (44) to substitute A;
)
. . . .. =0 —m)p
and employing the solution for X;, the transversality condition for T becomes H (T) = J -e™ =0,
1-n
(0% — « — 6 .
where J = —1— (59) 1(1=m) (59) 2(1=) _ > 0, so that the condition reduces to
ey

20 Assume that S; (T;) = 0, S;j (T;) > 0 for j # i. Given that both resources are essential for production, it is clear that
Y =0 from T; on. Then, it is possible to increase the extraction of resource j in some subinterval [t1,t2] C [0, T3] so that
S; (Tj) = 0, and keeping unchanged the rest of the solution. In the interval [t1,¢2] a strictly larger output is obtained, and

so, the production function has a larger value.
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== p . . . . .
e 7 = 0, which holds when T" = co and both resources exhaust asymptotically. Using this result in

the expression for X;, we obtain (17).

To do comparative static exercises, derive (18) with respect to as, 6, S{ and S9, obtaining

—6t
oY 689 [ SO\ — 59 S7
2 - 22 (2 N log(ZL) >0 =+ >1 S >89
day 7 (58 © s sy) st T s T ey
. . —6t
oY Sl>°” SQ[ 6t] — 5t n
- _ =L = |l—-—|eM >0<=1-—>0<=t< -,
96 <53 7 7 - n - —6
. . — 6t
oY SO\ 689 Tt — ot n
e i I N L T P ——-1>0 t> =
on <58> 7? [n ]e Uy T et
Ot s ( ) /80 —6t
oY  bay —(Sl>‘)‘ oY  s(1—ay <51>°“ —
—=—cec (= > 0, —co=——"—\|a) ¢ >0
as? S3 053 " S9

6.7 A renewable and a nonrenewable resource (section 4.2)

As in section 6.6, the problem
Mazx /OO _1 (Xal(lfn)XOQ(l*n)) e_‘%dt
{X1’X2} 0 1=n ! 2
s.t.:
Sl = 7X17
Sy =,5 — Xz,

1 =1,2

is solved assuming that an interior solution exists. Together with state equations and initial conditions,
the Maximum Principle conditions are

OH

_ yai(l=m)—1yo;(1-n) y _ s
X, a; X; X; Ai=0, i,7=1,2, (47)
M A
/\1 ) /\2 Y25 ( 8)

and solving the equations for A\; and Ay, we obtain A\; = A; (0) e, Ay = Ay (0) e(®=72)2,
The second order sufficient conditions for the maximization of H, which are identical to that of

example 4.1 (see solution in section 6.6), hold. Solving (47) for A; and A2, deriving with respect to ¢ and

Ai

X X

and rearranging, we obtain 21 = —Kq, 22 = — K5, with
X1 X9
Samon) g d-ml-alon]
n n

from which X; = X; (0)e 51t Xy = X, (0) e~ %2t Substituting in the equations for Sy and Sy and
solving with initial conditions S; (0) = S? we have

X1(0) X2(0) _ Xz (0)
S =8+ —— (e7F1t 1 , Sp = 2 Kot L 160 T2 | et
! 1 Kl ( ) 2 Yo + KQ 2 Yo + K2

X; X; :
dividing by A; and Ay we have — = [a; (1 — ) — 1] < +a;(1—n) y{, i,j = 1,2. Equating to (48)
i j

K, =

)
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Using the solutions for A\; and A, the transversality conditions become

Jim [ne] = A (0) 20 (with "="if lim $ > 0),
: —ot _ : —vat : w_» L 3
tlir(r)lo [A2e™] = tlg&& (0)e 2" >0 (w1th =" if tlirgloSg > O) .

From (28) we know that A; (0), Az (0) > 0. Transversality conditions guarantee that the stock of the

resource 1 depletes: tlim S1 = 0. A simple argument allows us to assure that the resource 2 exhausts too,
—00

and furthermore, both resources exhaust simultaneously?!. Using the terminal conditions S; (T') = 0 and

Ky + v, = K12, we obtain the initial values for X; and Xo:

__KSY _ (Ko+99)83  KiS9
Xl (O) - 1 _ eleT’ XQ (0) - 1— ef(Kz+’Y2)T - 1— 67K1T’
. KIS? Kt . . .
and the solution for X; becomes X; = me it, Using (47) to substitute A;, employing the

solution for X; and the condition S (T)) = 0, the transversality condition for T becomes H (1) =

J . e—(a1K1+a2K2)T — 0, Where J — 77 (S](?>Oél(1—7]) (Sg>062(1—7]) K::l[_ry] |: ].

1—n
-7 16—K1T:| > 0, so that

‘H = 0 collapses to
o~ (=) (a1 Kitaz Ko)T _ e(l—rr,)%ﬂ:r —0

that, under agy, < 6, implies T'= oo and the solution for X; and X5 becomes (20).

Substituting in the production function, we obtain the expression for Y,

« a aq « - 1 - Q272
Y = Ky (S9) (89)" e-(enkiazka _ (g9)r () L0202 12 1) ’m;( e e
Deriving (49) with respect to SY, SS9, 8, n and o we obtain
24 oyai—1 (qoyes O — Yo (1 —n) aznp-s ,
O e (i oy
oY @ as 1 6 —agyy (1—1m) agy—b n
9 (50 (0 2—{1+t6 S e — 1
96 (07 (52)7 5 1 - T 6 —axyy (1)
oYy a2Y9 — 6/ onar /ooy o2 [ 8 — asyy (1 —n) } @2v9-8, n
— = == (9 S. l1l——==  —tle =n >0s=t> —mm—,
an 1) (5 1 § —azyy (1—1)
)% SONY o azva=s, [y 8 — oy, (1 —1) 8 — agys (1 —n) 59
oF _ (2L) o=t ) (g 2 ' 2 loo [ 21
o (58) 2 { 1 ! n " n ®\sg) )
so that

Y n(1—mn) n <5?>
— > 0e=t< ———2 4 Tlog|=).
Oay — To—ay (1=n) v 8 SS

Finally, deriving (20) and (49) with respect to v,,

00X, az (1—mn) 4 {6 — a9y, (1 =) } az12(-m)-5,
- Sl t—1|e n s
972 U U
0X. SO T6—a 1-— Yoll—ag(1—n)]—6
T2 = B[l oy - ap (1) S
Y2 n n
24 a1 az @2 [0 —azyy, (1 —1) 22v9-8
= (89" (89 —2{—“ t—(1—=n)e 7 1
7, ( 1) ( 2) n n ( n)

218ee footnote 20.
b—(1—-a)v,(1—m)
n

22GQubstituting the value for K2 and operating we have Kz + o = and, using the assumption

a1 + a2 =1, we obtain K + v, = K1.
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so that

X,
872
0,
872

oY
— > 0&=t>
074

Vv

O<=1t>

Vv

O<=1t>

V

U
5—04272@_77)’
az(1=m)n
[1—ai(1=n)][6—asy, (1—n)]
n(l—n)
6 —azyy (L—n)

6.8 Two renewable resources (section 4.3)

Deriving (23) we obtain the following comparative static results:

8SZ -K;

% 20, <
95 _0i—6_
0K;  20; ’
% _ 0K 0
00;  20? ’

8X2 B —Kié

23

2% ~ a9, O
0X; 07 — &8>

= >0,
OK; 49,
OX; 0% + 6

- K-
00; 46? >0

; 0X;
— — ii=1.2

80] 07 7’7.] )

i=1,2,

i
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