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ADAPTIVE BEHAVIOR BY SINGLE-PRODUCT AND
MULTIPRODUCT PRICE SETTING FIRMS
IN EXPERIMENTAL MARKETS

Aurora Garcia-Gallego and Nikolaos Georgantzis

ABSTRACT

Using data obtained from experiments reported in Garcia-Gallego (1998) and Garcia-
Gallego and Georgantzis (2001), we estimate a simple model of adaptive behavior which could
describe pricing in a market whose demand conditions are unknown to the firms. Divergence
between the limit of observed prices over time and theoretical predictions concerning
multiproduct firms could be partially explained as a result of learning limitations associated with
multiple task-oriented problem solving. However, optimal multiproduct pricing requires that
subjects use two different kinds of rules: one concerning responses to prices charged by other
players and another concerning pricing of own products. Even in a simple environment like the
one studied here, subjects seem to be far more successful in learning a number than learning a

rule.

JEL: C72, C9, L1.
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1 Introduction

Learning is a complex phenomenon. Any attempt to classify or exhaustively review the
existing literature would risk being too narrowly focused on only few of a large number
of phenomena underlying learning. In this paper, we focus on the role of simple adaptive
rules on decision making by agents with minimal information on their market environment.

In economics, the interest that the issue of learning has gained over the past decade
is mainly due to the implications it has concerning an economic agent’s rationality and
behavior in a market. In fact, the most common type of learning studied by economists
concerns the case of a market in which firms ignore some important features of their
environment and/or the type of other firms they are faced with. It is commonly assumed
that, in the case of a market with these characteristics, agents use simple (or less simple)
learning strategies or rules (algorithms) which aim at both improving performance in the
future and reducing losses due to ignorance in the present.

Early studies address the issue of how to model the behavior of imperfectly informed
agents who do not hold correct beliefs concerning their environment and the type of
their competitors and whether such behavior converges to any limit point that could
be considered as an equilibrium situation consistent with the agents’ beliefs.! In more
recent literature, learning failures are explained as the result of a large number of factors.
Among such factors, we mention misperception of feedback in complex environments?,
limitations in subjects’ learning when exposed to strategic complexity®, multiproduct

activity?, market asymmetries®, vertical relations®, etc.

'The role of specific learning rules is studied by Cyert and DeGroot (1971, 1973), Kirman (1975),
Friedman (1976), Robson (1986), etc.

2Paich and Sterman (1993) and Sterman (1994).

3Richards and Hays (1998) and Garcia-Gallego et al. (2000a).
4Kelly (1995) and Garcia-Gallego and Georgantzis (2001).
Garcia-Gallego et al. (2000).

SDurham (2000).



Despite the pessimistic view that one might get from this long list of factors limiting
an agent’s ability to learn in an initially unknown environment, a number of recent stud-
ies indicate that, under certain circumstances, simple try-and-error algorithms may yield
convergence towards full-information equilibrium predictions. This fact has been mostly
confirmed in simple settings with minimal information on past actions like, for example,
the symmetric price-setting oligopoly in Garcia-Gallego (1998).” Along a similar strand
in the literature, we find a number of specific conditions and learning strategies which
may cause an agent’s performance in an unknown environment to converge towards cer-
tain points predicted as full-information equilibria. Examples include knowledge of the
maximum attainable pay off®, imitation of successful players’ and experience gained in
the past'C.

However, as the level of complexity and the degree of task multiplicity increases, pes-
simism about the ability of humans to successfully learn from past actions emerges from
the fact that optimal behavior across a number of tasks and along a number of periods,
requires the use of optimal (complex) rules which go beyond fixing a certain strategic
variable to a given optimal level. As reported by Kelly (1995) on an experimental multi-
product monopoly, subject behavior is more likely to converge to equilibrium predictions
when strategy options are simple. Theoretical work on experimentation has addressed the

issue of optimal learning on a ceteris paribus basis.!! Therefore, we know how a perfect

"In the presence of similar information on past actions, a much weaker convergence (if any) towards
static Nash equilibrium output is obtained in an experimental asymmetric quantity setting oligopoly
studied by Rassenti et al. (2000).

8Dawid (1997).

9Duffy and Feltovich (1999), Offerman and Sonnemans (1998) and Bosch and Vriend (1999).

ONagel and Vriend (1999a, 1999b)

HSee Harrington (1995) and the literature cited there. As the author points out, previous work to
his own focused mainly on experimentation in a single-agent setting. Furthermore, Harrington’s work
improves our understanding of how firms should act in the presence of an unknown degree of product

differentiation. However, real-world uninformed firms of the kind described in that article are very unlikely



learning machine would learn about one of the factors affecting its performance in an un-
known environment. However, optimal learning is such a complex task that, even in the
presence of relatively low degrees of complexity, it would be easier to defend the realism
of assuming perfect knowledge of market conditions than assuming knowledge and use of
the optimal learning rules.

2 experimentation with complex systems has been used

Along a different tradition®
to assess the performance of human subjects in unknown and relatively complex envi-
ronments. In that literature, learning failures and some of their causes are identified.
However, the results obtained cannot be used to predict to what degree certain rules
which are spontaneously used by the subjects cause strategies to converge towards a
certain limit point. Therefore, despite the insightful conclusion that performance in a
complex setting may be improved as the experimentalist introduces more (or better) in-
formation!3, systematic instruction with simulation tools'* and improvement of reasoning
capabilities '°, little has been said about which rules are spontaneously used by economic
agents in unknown environments and whether such rules yield specific predictions con-
cerning convergence to certain limit points. In order to assess the role of simple and
realistic algorithms (which are spontaneously adopted by humans) on adaptation to full
information equilibrium behavior, the distinction between adopting a strategy and using
an adaptive rule becomes necessary.'®

The analysis presented here can be seen as an extension of the experimental work

to possess perfect information on the demand intercept, own demand elasticity and the functional form

of the demand function.
12Gee, for example, Paich and Sterman (1993), Diehl and Sterman (1995) and Sterman (1994).
13Garcfa-Gallego et al. (2000).
1Sterman (1994).
5Vriend (1997) and Sterman (1994).

16In various contexts, the distinction and the relation between strategies and rules has been pro-
posed as an important feature of human learning in initially unknown market conditions (Slonim (1999),

Kirchkamp (1999)).



reported in Garcia-Gallego (1998), G-G hereforth, and Garcia-Gallego and Georgantzis
(2001), G-GG. In G-GG, it was shown that a multiproduct oligopolist would fail to
earn as high profits as predicted by the multiproduct noncooperative equilibrium be-
cause!” product-specific application of try-and-error algorithms favors convergence to a
single-product equilibrium. In G-GG, the price parallelism rule for products of the same
manufacturer is shown to be a necessary condition for convergence to a multiproduct non-
cooperative equilibrium to be observed. However, despite the simplicity of the rule, most
human subjects fail to spontaneously learn how to use it. We use data from the experi-
ments reported in G-G and G-GG to study whether convergence to a certain oligopolistic
equilibrium depends on the use of specific adaptive rules spontaneously adopted by exper-
imental subjects. We do not aim at presenting an exhaustive study on aggregate behavior
observed from all the experimental sessions reported in the two aforementioned articles.
Rather, we study individual behavior in a number of selected experimental sessions which
are interesting either because of their convergence towards specific limit points, or because
subjects seem to have been using specific types of adaptive rules.

The remaining part of the paper is organized in the following way: Section 2 briefly
reviews the framework and results obtained in G-G and in G-GG. In section 3, a model
of adaptive pricing behavior is presented and results obtained from its estimation are

discussed. Section 4 contains concluding remarks.

2 Experimental oligopolies with single-product and
multiproduct firms

We briefly review here the experimental framework proposed in G-G and G-GG. The
reader will find a detailed description of the experimental design and the results summa-
rized here in those articles.

In G-G, a number of experiments with different levels of product differentiation and

17Ag shown in G-G.



single-product firms, was found to systematically yield the same conclusion: in the absence
of any explicit agreement on pricing strategies (like, for example, price parallelism accord-
ing to a pre-game convention regarding price alignments) the single-product Bertrand
equilibrium price is the attractor of price strategies by initially uninformed subjects.'®

In the same market setup, G-GG investigate the convergence of agents’ decisions in a
multiproduct oligopoly. Different industry configurations are studied assuming different
intensities of multiproduct activity. Three groups of experiments are analyzed. First,
with single-product firms, second, with multiproduct firms acting in the absence of any
exogenously imposed pricing rule and, third, with multiproduct firms to which a specific
pricing rule is imposed: equal prices for products of the same firm. An important question
is raised. That is, whether multiproduct firms facilitate convergence to any price level
closer to the collusive than to the Bertrand-Nash outcome. Or, in any case, whether
the existence of multiproduct firms alone is a sufficient condition for the multiproduct
Bertrand-Nash to be observed.

Among a relatively small number of similar experimental studies on oligopoly behavior,
G-G and G-GG use a plausible scenario of a market with five varieties which may be
served by single-product firms or, alternatively, by combinations of multiproduct and
single-product firms. By varying the number of products per firm, the experimentalist
varies the complexity of the task faced by the subjects. The data obtained from different
treatments are totally comparable, although by increasing the number of products per firm
the number of players in each session decreases. This implies a lower degree of strategic
complexity and, at the same time, an increase in the importance of each subject’s actions
on the market outcome. Furthermore, the initially symmetric situation (five firms offering
five symmetrically differentiated varieties) contrasts with the asymmetric oligopoly in
which a more multiproduct firm competes with a less single-product one. In other words,

despite the effort to fulfil the ceteris paribus requirement, an inevitable mix of factors

18 An an experimental test of conscious parallelism is reported in Harstad et al. (1998), where the option
of price-matching behavior is explicitly offered to subjects, leading to higher than Bertrand equilibrium

price levels.



should be accounted for when assessing the effects of complexity on learning by our
experimental subjects.

In the multiproduct setting, systematic divergence between theoretical predictions
and experimental results is observed. However, it is shown that, if multiproduct firms
are restricted to apply a price parallelism rule, the observed outcome is closer to the
theoretically predicted behavior for fully informed multiproduct subjects. In very few
cases, subjects learn the optimal rule during the experiment. This is what we call learning
a rule as opposed to learning a number. The former requires an explicit understanding
by the subjects of the optimal strategy to follow. Such an understanding implies learning
a more complicated mechanism than a simple adjustment of prices near certain numbers
which, from a certain moment in each experiment, are recognized by almost everybody
as the correct ones. When subjects are interviewed at the end of each session, it is not
surprising that subjects whose performance has been closer to what could be seen as an
optimal behavior rule report perceptions which are closer to the true specification of the
model, although it is rather exceptional that their reply correctly reflects the symmetry

of cross-product demand substitutability.

2.1 Framework

There are 5 varieties of a differentiated product offered by N < 5 firms (depending
on the number of multiproduct firms in the industry) during 35 periods. Price is the
only decision variable of each firm at each period. Market structure is denoted by S =
(my,...,mj, ...,my), where m; is the number of products sold by firm i.

The market response is computer simulated. Players know own demands and profits
as well as the strategies of their rivals in the past.

Players are not aware of the demand function, which is symmetric with respect to all

varieties and, for variety ie{1,2,3,4,5} in period t, is given by:

qit = . — Bpy + 0 ijt (1)
NE



where parameters o and 3 represent, respectively, the intercept and the slope of the
demand function. Both are fixed and constant. The parameter 6 corresponds to the effect
of the other varieties’ prices on the firm’s demand with respect to variety 7. Discussion
of the properties, implications and justification for the use of this model are provided in
G-G and, especially, G-GG.

Unit costs are equal for all varieties. Unit (marginal) costs ¢; = ¢, are constant and
there are no fixed production costs. Firms are assumed to produce exactly what they can
sell.

As benchmark theoretical predictions, we use the following one-shot perfect informa-
tion equilibrium concepts:

1) SBNE (Single Bertrand-Nash Equilibrium), corresponding to S = (1,1,1,1,1),
satisfying the first order conditions: %—g; =

2) MBNE (Multiproduct Bertrand-Nash Equilibrium), corresponding to
S = (mq,...,m4...,my), satisfying that: % = 0 where k is one of the m; varieties sold
by firm i € {1,...,N}.

3) Collusive equilibrium or industry-wide cartel optimum, corresponding to S = (5),
satisfying the first order conditions: g—g =0, where T = 32°_, TI;.

Table 1 presents the resulting theoretical values of equilibrium prices and profits for
the parameter values used in the experiments: a = 500, f = 3, ¢ = 40, and two values of
parameter 6 (f = 0.14 and § = 0.4).

Equilibrium prices reflect some of the characteristics of the theoretical model. Prices
are higher the higher the number of multiproduct firms - given a number of products per
firm - and the higher the number of products per firm -, given a number of multiproduct
firms in the industry. Equilibrium prices set by a multiproduct firm are higher than those
set. by another firm, if the former produces more products than the latter. Obviously,
the same relations hold with respect to the corresponding equilibrium profits. Finally,
a higher value of § (6 = 0.4) leads to higher strategic complementarity and, therefore,
higher prices (and profits), as compared with the case in which # = 0.14. The difference

between prices corresponding to any pair of equilibria is larger the higher the value of 6.
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3 Adaptive behavior by single-product and multi-
product subjects

In G-GG we tested the whole range of possible industry configurations, as far as intensity
of multiproduct activity is concerned. In the present work, from the overall set of ex-
perimental data obtained in G-G and G-GG, we will consider just 12 individual sessions
from three treatments'®: One with 5 single-product firms (sessions 1-4), one with two
multiproduct firms selling three and two varieties each (experiment 11), and one with the
same multiproduct structure, but in the presence of the rule of equal prices for products
of the same firm (experiment 12).

From the first treatment, we have chosen experiments 1-4. Each pair of those ex-
periments consists of two replications of the same situation. The difference between
experiments 1, 2 and experiments 3, 4 is that they are run assuming different product
differentiation parameters (# = 0.14 and 6 = 0.4, respectively). The second treatment
corresponds to experiment 11 and includes the case of two multiproduct firms, suplying
three and two varieties each. In the present study, we analyze two replications of the
basic structure for each value of 6 (labeled as “11” and “11(r2)” in G-GG for 6 = 0.14,
and “11(R1)” and “11(R3)” for § = 0.4, following their original numbering). Finally, in
the third treatment which corresponds to experiment 12, two multiproduct firms supply
three and two varieties each faced with the exogenously imposed restriction of applying
a rule of pricing equally products sold by the same firm. Again, two replications for each
value of the parameter § = 0.14 are studied (labels are “12(r1)”, “12(r2)” for § = 0.14
and “12(R2)”, “12(R3)” for § = 0.14).

Prices collected from the sessions studied here are presented in figures 1-12. Note that
the joint monopoly (‘m’) and Bertrand-Nash (‘B’) prices are provided to make convergence

to a certain theoretical equilibrium easier to observe. Note, also, that, in the case of

9For comparability and ease of cross-reference, we will maintain, throughout the text, the numbering

of individual experiments’ introduced in G-GG.
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multiproduct Bertrand-Nash equilibria, there is a different equilibrium price for each type
of firm (‘B3’ for multiproduct firms with three products and ‘B2’ for firms selling two
products).

It is a general feature of the evolution of prices over time that price dispersion decreases
and that in the last 5 periods all prices are between slightly below the Bertrand-Nash
equilibrium and the joint monopoly price. This is a rough but reliable evidence of the
fact that learning takes place during each session.

Table 2 presents price averages and variances, for the first 20 and the last 15 periods,
calculated for each experiment, considering the sample obtained from collecting prices

charged by the same type of firm.

| Ex./S [ Rule | Type | Avi_so | NVi_so | Avsi_gs | NVey_gs | %I 20 [ %m> =95
1 (60 =0.14) multi. - - - - - -
S =(1,1,1,1,1) No single. 109.77 2.56 115.50 0.015 91.35 99.82
2 (6 =0.14) multi. - - - - - -
§=(1,1,1,1,1) | No single. 96.39 3.83 112.52 0.027 76.64 99.23
3 (0 =0.4) multi. - - - - - -
S =1(1,1,1,1,1) No single. 143.01 15.28 138.24 1.331 87.86 94.23
4 (0 =0.4) multi. - - - - - -
S =1(1,1,1,1,1) No single. 103.47 5.68 139.77 2.130 62.43 96.48
11 (6 = 0.14) multi3. 116.15 0.17 117.62 0.02 94.05 100.03
S =(3,2) No multi2. 120.90 0.13 117.23 0.01 95.52 99.87
11(r2) (6 = 0.14) multi3. 132.01 0.54 112.77 0.02 89.49 98.84
S =(3,2) No multi2. 207.07 1.04 111.16 0.02 76.65 98.55
11(R1) (6 = 0.4) multi3. 146.76 0.34 159.20 0.14 86.04 96.38
S =(3,2) No multi2. 148.67 0.32 149.33 0.15 84.69 96.71
11(R3) (8 = 0.4) multi3. 128.31 0.27 135.31 0.06 75.64 89.94
S =(3,2) No multi2. 121.80 0.29 132.86 0.05 72.32 87.66
12(r1) (9 = 0.14) multi3. 113.20 0.20 115.13 0.02 90.25 99.37
S =(3,2) Yes multi2. 108.80 0.08 113 0.02 96.95 99.26
12(r2) (0 = 0.14) multi3. 108.80 0.35 118.66 0.01 74.69 100.15
S =(3,2) Yes multi2. 113.60 0.14 117.46 0.01 94.03 100.07
12(R2) (9 = 0.4) multi3. 144.80 0.17 166.13 0.01 90.90 103.78
S =(3,2) Yes multi2. 139.60 0.14 166.13 0.01 90.65 100.79
12(R3) (6 = 0.4) multi3. 172.90 0.23 178.33 0.01 91.80 103.17
S =(3,2) Yes multi2. 162.05 0.15 168.40 0.02 101.22 105.90

Table 2: Observed price averages (Av), normalized variances (NV) and percentage of theoretical
(Bertrand-Nash) profits achieved by intervals of time (periods 1 to 20 and 21 to 35 respectively).
The ‘rule’ column refers to the enforcement (or not) of equal prices for products sold by the
same firm. The ‘Type’ column refers to the type of firm whose prices over the corresponding

interval have been used to calculate average and variance.
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It can be seen that an intense multiproduct activity alone (in the absence of the equal
prices for products of the same firm rule) is not sufficient a condition for higher than
the single-product non-cooperative equilibrium price levels to be observed. More detailed
analysis indicates that, in experiment 11, intense multiproduct activity (S = (2,2,1)) did
not yield prices close to the corresponding multiproduct Bertrand-Nash (MBNE) equilib-
rium price, nor did it yield significant price differences with respect to the Bertrand-Nash
equilibrium of the single-product set-up (SBNE). In fact, in session 11(R3), convergence
of the average price (139.13 for multiproduct firms and 138.44 for single-product ones)
closer to the SBNE (140.9) is obtained, not only in comparison with the corresponding
MBNE or any other theoretical candidate, but, also, as compared to convergence of prices
in experiments 3 and 4 to the SBNE.

In experiment 12, a rule according to which a multiproduct firm prices equally all the
varieties it sells, was enforced. As shown for all the results presented in G-GG, in the
absence of the aforementioned rule, it seems that some, but not intense, multiproduct
activity does not lead to any higher than the SBNE price. The application of the rule
in configurations with intense multiproduct activity, like is experiment 12, yields signif-
icantly higher than SBNE prices. Also, the prediction of the theoretical model that, in
equilibrium, multiproduct firms charge higher prices than do single-product firms is not
given any support in the absence of the rule of equal prices for products sold by the same
firm.

Among the sessions chosen, the first four exhibit typical characteristics of experiments
with single-product firms. Strong convergence towards perfect information noncoopera-
tive equilibrium is achieved by the end of almost all sessions. Evidence of a less clear
convergence result is provided only by experiment 2. It can be foreseen that, with a
longer time horizon, prices would have converged closer to Bertrand-Nash equilibrium in
this experiment too. Nevertheless, it is interesting to observe that convergence in this
session would have taken much more time than has taken in the rest of the sessions of its
type. Analysis of adaptive behavior in this and comparison with the other single-product

sessions will help us see some of the features of individual behavior which may affect the

12



accuracy and speed of convergence towards a certain equilibrium prediction.

Among the rest of the sessions on which our study of adaptive behavior is based, two
replications of experiment 11, namely 11(R1) and 11(72), offer us in an exceptionally clear
way evidence in favour of the following claim: ‘Some subjects, throughout the experiment,
go beyond learning a number -such as the equilibrium price- and adopt the optimal pricing
rule.” By exogenously inposing this rule in one of the treatments, the design in G-GG
allows us to formally account for the role of price parallelism across products sold by the
same firm on the compatibility between observed limit behavior and the full-information
MBNE predictions.

Table 3 summarizes tests performed for all individual sessions in experiments 11 and
12. As in the majority of the experiments, in which no specific pricing rules were im-
posed to multiproduct players, varieties sold by the same firm were priced differently.
Most multiproduct players had no doubt on the gains from such a strategy in terms of
their possibilities of learning. However, the imposition of the rule to multiproduct firms
has been clearly shown to help them escape from the attraction of the single-product

noncooperative equilibrium.
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3.1 A model of adaptive behavior

As pointed out by Rassenti et al.(2000), best response dynamics may be unstable. Sta-
bility of the convergence process is guaranteed if not too heterogenously adaptive players
exhibit some inertia with respect to their past own strategies. A broad family of adaptive
models which involve such inertia will be referred to as partial adjustment best-response
models. Having this in mind, we propose an adaptive model for multiproduct firms (al-
ready presented for the case of single-product firms in G-G) which allows for different
degrees of responsiveness to rival strategies in the past.

Suppose that at period ¢, firm i’s price for product k is a linear function of the firm’s
expectation at ¢ for the prices charged by firm ¢’s rival, j, and the prices chosen by i for

its other products (r # k) so that

Prt = Ap + BrEy + Z Grrprt (2)
r#k
where
Ey=w-Ey 1+ (1—w) Epji_q (3)

is the way in which ¢ forms its expectations on the sum of its rivals’ prices as a linear
combination of the already existing expectation from the previous period and the sum of
the prices set by the firm’s rivals in the period before.

This implies a broad range of adaptive models, according to the value of w. That
is, if w is high, the subject is reluctant to adapt his/her expectations to what has been
observed in the last period. If, on the contrary, w is low, then the subject forms its
expectations in a straightforward way by assuming that this period’s prices will be similar
to what was observed in the last period. Obviously, in the case of single-product firms, a

reduced form of the model will be used in which the other own products term is dropped?.

20A similar model is estimated for the asymmetric quantity-setting oligopoly in Rassenti et al. (2000),
who observe that such models of behavior can be seen as special cases of the general adaptive learning

formulation in Milgrom and Roberts (1991).
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Estimation results are presented in tables 4-9. For each session, pricing of each product
(or, in experiment 12, group of products) is explained with the corresponding adaptive
model estimated for 5 different values of the parameter w (w € {0.1,0.3,0.5,0.7,0.9}).
This results in a discrete but reliable representation of the behavior of each model over
the continuum of values for w € (0,1). In each case, the model which performs best is
discussed.

With respect to the single-product experimental oligopolies studied, it is worth ob-
serving that the models which best explain individual behavior in experiment 2 are the
ones involving the highest w parameters (w = 0.9 for varieties 1-4 and w = 0.5 for variety
5). This contrasts with what we obtain studying data from sessions 1, 3 and 4, where
best-performing models are compatible with smaller w parameters (w = 0.1 for 12 of the
remaining 15 regressions, w = 0.3 for two of them, whereas only pricing of the fifth vari-
ety in experiment 4 is best explained by a model with an w = 0.9 parameter). Another
difference between experiment 2 and the other three single-product experiments studied
concerns responses to prices charged by rival firms in the past. In experiment 2, a small
in absolute value, but statistically significant negative coefficient of the variable term,
indicates that in each period, firms have mostly price-cut the prices set by their rivals
in the last period. This contrasts with intuition and theory which both suggest that the
best response to a price increase by a rival is a price increase. In fact, strong statistical
significance is obtained in all regressions for all coefficients of the term accounting for
responses to prices charged by the rivals in the previous period. A surprisingly consis-
tent pattern indicates that such coefficients obtained from experiment 1 have an average
of 0.164, whereas slightly higher averages (0.208 and 0.21, respectively) correspond to
coefficients obtained from experiments 3 and 4. The behavior of firms reflected on the
coefficients of the variable terms also indicate a relatively homogeneous type of responses
to rival prices in the past. Considering that the requirement of homogeneity in the type
of individually adopted rules is a requirement for convergence, some clearer convergence
towards Nash behavior in experiment 3 as compared to experiment 4 might be explained

through the fact that, in experiment 3, the dispersion of the coefficient estimates around
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their mean is much lower than is the same magnitude in experiment 4 (the average de-
viation of the price response term coefficient for the former is 0.024 and for the latter
is 0.048). However, we should also note that the coefficient estimates obtained for these
terms are significantly higher than the response coefficients of the corresponding static
best reply functions (0.02 for experiments 1 and 2, 0.06 for experiments 3 and 4). Even
if we take into account the partially adaptive nature of the model (w > 0), the adaptive
models estimated here cannot be seen as some stochastic and lagged version of static best
response functions. Nevertheless, the fact that response coefficients in experiment 1 are
significantly lower than those in experiments 3 and 4 correctly reflects the different de-
grees of strategic complementarity among varieties (6 = 0.14 in experiment 1 and # = 0.4
in experiments 3 and 4). Finally, the lack of any systematic statistical significance, sign
or size of the constant term estimates of the regressions, indicates their scarce importance
for the convergence process.

In the following claim, we summarize our observations concerning the relation be-
tween individual adaptive rules adopted spontaneously by uninformed economic agents
and convergence to a perfect-information static equilibrium:

Claim 1: Given the specification in G-G, the adoption of a partially adaptive price-
response behavior model by initially uninformed single-product firms, makes convergence
to non cooperative full information equilibrium more accurate (faster) if w is low, price
responses fulfil the requirement of positively sloped reaction functions and individual re-
sponses to rival prices in the past come from a homogeneous population of subjects.

We move now to the results obtained from experimental oligopolies with multiproduct
firms. As static results reported in G-GG indicate, behavior is not as homogeneous
as in the single-product case. This has produced a much larger variety in the dynamics
observed and the subsequent convergence to a certain limit point. A first look at figures 5-
8, containing price information collected from experiments 11, 11(r2), 11(R1) and 11(R3),
leads us to the following observation: session 11(R1) converges to a significantly higher
price than the Bertrand-Nash equilibrium would predict. On the contrary, the other

three experiments converge to prices which would fail to confirm the static equilibrium
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prediction that the presence of multiproduct firms is associated with higher prices. As
we have already said, this result was obtained from applying rigorous statistical tests for
all replications of experiment 11. Session 11(R1) is a clear exception to this rule. Let
us compare the estimates obtained from the adaptive model for this session with the
estimates obtained from the other three sessions. We should first note that, overall, the
adaptive models estimated for the replications of experiment 11 perform better than the
models estimated for experiments 1-4. Especially in the case of session 11(R1), all values
of the parameter w give similarly good results. In the case of the other three sessions, most
models reach their best performance for medium values of w (w = 0.3,0.5,0.7) except
for the model estimated for firm 2 in experiment 11 which performs best for w = 0.9.
However, higher w values correspond to the firms with less products which implies that
they are more adaptive to prices set by their rivals in the past. In other words, firms
with less products give their rivals the role of price leaders. Another general feature has
been that price responses to rival prices in the past have been much weaker than what
have been in the single-product case. Significance of the corresponding response term
coefficients is not systematic either. Therefore, contrary to the case of single-product
oligopolists, in the case of experiments with multiproduct firms, we would like to stress
the importance of rules concerning pricing of own products by multiproduct firms.

We will be interested in a special type of rule which we call price parallelism of products
sold by the same firm. As we have defined and used this rule in G-GG, it requires
that products sold by the same firm are priced equally. However, in this treatment,
multiproduct firms were free to choose any price for each one of their products. Therefore,
we will check whether a firm has spontaneously use this rule by comparing its own cross-
product coefficients with unity. If this is the case, we will call it a case of perfect price
parallelism. If a rather large coefficient but significantly less than 1 is obtained, we will
call it a case of partial price parallelism. Tt is easy to see that, in session 11(R1) the firm
selling 3 products has adopted perfect price parallelism when pricing its first and third
products and partial parallelism when pricing its second product. The firm’s rival has

also exhibited a strong tendency to set equal prices for its own products. In the rest of the
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replications of experiment 11 parallelism in the prices of own varieties has been less and
not as systematic as in the case of session 11(R1). Specifically, firm 1 in experiment 11
has exhibited a strong tendency to adopt price parallelism, but the firm’s rival responded
adopting only partial price parallelism. A stronger divergence between the two rivals is
observed in sessions 11(R3) and 11(r2) in which perfect parallelism by one firm (firm 1
in the former and firm 2 in the latter) is responded by no parallelism at all by the other
firm. A final remark concerns the lack of systematic responses to prices charged by rivals
in the past. In fact, negative price responses (against the expected positive ones) are
surprisingly many (almost half of the corresponding significant coefficients).

We summarize these observations in the following claim:

Claim 2: Adaptive behavior by multiproduct firms who are not informed on the de-
mand model can be described using the model presented here. Convergence to higher than
SBNE prices is not observed unless subjects adopt industry-wide price parallelism. In
fact, in most cases parallelism will not be adopted at a sufficient level, and convergence
to single-product Bertrand-Nash will be observed. However, following Claim 1, conver-
gence will be poor mostly because responses to rival prices do not systematically fulfil the
requirement of positively sloped best response functions.

As we can see from table 3, convergence towards higher than SBNE prices is obtained
once price parallelism is imposed to multiproduct subjects as a compulsory rule of behav-
ior. In fact, the prediction that firms with more products will set higher prices than firms
with less products is also fulfiled.

Let us check whether these elements relate with the subjects’ adaptive behavior. The
model to estimate becomes again similar to the one for single-product firms, given that
own products are equally priced by definition. However, in each session firm 1 produces
three products, whereas firm 2 produces only two.2! In each pair of sessions, we have one

session with differing and another with similar w values for which the model performs

21 As suggested in G-GG, the framework is also appropriate for addressing the issue of market power.
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best.?? Despite these differences, all of the sessions converge towards limit points which
are compatible with both MBNE predictions: (1) prices will be higher than would be in
a SBNE and (2) prices charged by firms selling more products will be higher than prices
charged by firms selling less products. Therefore, convergence (which is much less accurate
than that obtained with single-product firms) towards limit points compatible with full-
information equilibrium predictions, does not depend on behavior features captured by
parameter w. Finally, response term coefficients also exhibit a less systematic pattern than
that obtained for the single-product sessions (1-4). As suggested in Claim 1, homogeneity
of adaptive behavior across subjects would facilitate convergence towards the SBNE. The
asymmetric power structure in the configuration studied here induces asymmetries in
the attitude of firms towards the variety-specific symmetric demand they are faced with.
Subsequently, convergence towards any limit point is achieved with less accuracy and
slower than that observed in the case of oligopolies with single-product firms.

We summarize the conclusions from the estimation of the model for this third treat-
ment in the following claim:

Claim 3: The imposition of the perfect parallelism rule to multiproduct subjects con-
firms theoretical predictions concerning higher than SBNE prices and higher prices for
firms with more products. However, convergence to any limit point is less accurate than
that obtained from oligopolies with single-product firms, because (see Claim 1), adaptive

behavior is not sufficiently homogenous across subjects.

4 Concluding remarks

We have used some of the experimental data obtained from a large number of experimental

markets with single product and multiproduct firms to study the relation between indi-

22 = 0.1 for firm 1 in sessions 12(r1) and 12(R2). In the same sessions, firm 2 behaves according to

a higher w value (w = 0.5 in session 12(rl) and w = 0.9 in session 12(R2)). In each one of the other two
sessions of experiment 12, firm behavior is best described by the same w value (w = 0.7 and w = 0.5 for

sessions 12(r2) and 12(R3), respectively).
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vidual adaptive behavior and convergence. The sessions chosen correspond to the most
representative and most interesting cases observed as far as convergence and adaptive
behavior are concerned.

Generally speaking, most markets with single-product firms sharply converge towards
the corresponding full-information static equilibrium. This is not necessarily true for the
equivalent equilibrium concept in the case of markets with multiproduct firms.

As suggested in G-GG, in the presence of single-product firms alone, the algorithm
according to which a profitable price increase is followed by a further increase in the next
period, leads to the corresponding non-cooperative equilibrium level. Contrary to that,
multiproduct configurations fail to converge to the corresponding multiproduct Bertrand-
Nash equilibria, if multiproduct activity is not intense (many multiproduct firms produc-
ing large part of the products in the market), or if multiproduct firms apply the afore-
mentioned algorithm with respect to each one of their products separately. Both a pricing
rule for multiproduct firms (or cartels), according to which they price all their products
equally and intense multiproduct activity, are necessary conditions for convergence to the
theoretical multiproduct Bertrand-Nash equilibrium price levels.

We introduce an adaptive model for multiproduct firms allowing us to study each firm’s
way of responding to prices charged by rivals in the past and rules according to which
multiproduct firms price their own products in each period. The results obtained from the
estimation of the adaptive model show that, in general, agents use simple mechanical rules
to decide their strategies. They choose their strategies learning that their performance in
the past has depended on their rivals’ actions.

Estimation results indicate that adaptive behavior is more homogeneous across sub-
jects in the experiments with single-product firms. In fact, when this is not confirmed and
responses to rival prices in the past do not fulfil the requirement of a positively sloped
response function, convergence is slower (or less accurate).

Responses to rival prices become less significant in predicting whether behavior in
a market with multiproduct firms will converge towards prices which are higher than

those predicted for oligopolies with single-product firms. Instead, the rule according to
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which a multiproduct firm’s own varieties are equally priced, becomes crucial. Adoption
of industry-wide parallelism will push prices above single-product non cooperative levels.
On the contrary, partial price parallelism was found insufficient to guarantee convergence
to higher than single-product non-cooperative levels. The explicit (non spontaneous)
adoption of price parallelism guarantees convergence of prices towards levels predicted
by static full-information equilibrium for markets with multiproduct firms. However,
an intrinsic asymmetry in the design of the corresponding configuration raises a further
question. That is, whether convergence of such a multiproduct market can ever become
as clear as that observed in the case of symmetric oligopolies with single-product firms.
For the moment, the answer is no.

An interesting insight gained from the illustration of the specific cases studied here
concerns symmetric adjustment procedures adopted by not too heterogenously adaptive
subjects. The resulting dynamics guarantee, then, sharp convergence to the corresponding
full-information static equilibrium. Subsequently, asymmetric market configurations like
the multiproduct oligopolies studied here, lead the subjects to the formation of asymmetric
theories and expectations concerning rival strategies and market conditions. The resulting
dynamics are responsible for a rather poor convergence towards the same limit point as
that to which an industry with single-product firms would tend over time. Learning the
optimal rule for multiproduct pricing has been rather unusual. If the rule is exogenously
imposed, firms escape from the single-product equilibrium, but in no case convergence is
as strong as is in experimental oligopolies with single product firms.

Multiproduct subjects, who were interviewed at the end of each session, seemed to
reject the hypothesis of similarity between their products and that of symmetric variety-
specific demand conditions. On the contrary, by pricing equally its products, a multiprod-
uct firm would realize that variety-specific demand conditions are symmetric. However,
multiproduct players who start pricing differently their products (which has been the
case in the vast majority of experiments with multiproduct firms in the absence of any
imposed pricing rule) cannot appreciate this fact, nor can they learn, in most cases, the

equal prices for products of the same firm rule, once they have created different histories
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for different products.

Future research should aim at investigating not only the limitations of human learning
in complex environments, but also, the efficiency of simple learning rules which are usually
adopted in the presence of smaller obstacles due to market asymmetries and task multi-
plicity. Having in mind the behavior reported here, consider the following three levels of
learning: First, learning a number, like in this case the equilibrium (or the right) price,
means a basic implicit learning which is reached by following mechanical steps in order to
correct bad performance in the past. Second, learning a rule is like a meta-learning with
respect to the aforementioned first level of learning. In this case, a multiproduct player
may come to the conclusion that “...this is what I have to do with respect to my two prod-
ucts...” or “...this is the best strategy to follow if my rival undercuts price too much...”.
Third, to really learn about this environment requires knowing details like “These three
products are substitutes in a symmetric way”. It has been straightforward to establish
that, while the first level of learning is reached in one way or another in all the experi-
ments, the third type of learning has not been achieved by anyone of our subjects. Some
non-systematic evidence for second-level learning and its implications for convergence to

certain limit points has been put forward.
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Multi || Ezperiment 11 (6 = 0.14) || Ezperiment 11(r2) (6 = 0.14)
5(3,2) Firm 1 Firm 2 Firm 1 Firm 2
w | Est. P1 P2 P3 P4 Ps5 P1 P2 p3 P4 P5
Ak 14.59 10.36 -5.38 28.08 45.69 -137.17 76.69 87.16 11.95 -13.16
(t) (3.34) (2.2) | (-1.56) | (1.70) (3.47) (3.46) (5.93) (3.18) (1.08) (1.19)
Bk 0.14 0.16 0.01 0.05 0.05 0.08 -0.02 0.04 -0.03 0.03
() (2.18) (2.68) (0.20) | (1.62) (1.85) (3.90) (2.71) (2.50) (1.08) (1.39)
w=0.1 GAkT -0.41 -0.4 0.5 0.6 0.48 2.60 0.28 -0.24 0.99 0.99
(t) (-2.49) | (-2.49) (5.69) | (3.64) (3.64) (9.04) (9.26) | (8.62) | (76.62) (76.15)
Gt 1.02 1.01 0.50 - - -0.45 0.07 0.34 - -
() (5.69) (5.67) (5.67) - - (2.04) (0.89) | (0.89) - -
R? 0.95 0.96 0.98 0.51 0.52 0.794 0.746 0.25 0.996 0.996
Ak 17.81 14.52 -7.16 28.22 46.14 -156.77 80.11 93.19 17.32 -18.2
t) (4.42) (3.14) | (-1.87) | (1.70) (3.48) (3.92) (6.25) (3.23) (1.62) (1.69)
Bk 0.23 0.23 -0.04 0.05 0.05 0.08 -0.02 0.04 -0.04 0.05
) 3.77) | (3.72) | (-0.70) | (1.62) | (1.74) (3.70) (2.63) | (2.22) (1.66) (1.92)
w=0.3 GAkT -0.50 -0.53 0.56 0.61 0.49 2.67 0.27 -0.20 0.99 0.99
(t) (-3.36) | (-3.36) (5.60) | (3.72) (3.72) (9.24) (9.44) | (1.60) | (82.50) (83.08)
Gt 0.91 0.97 0.56 f B -0.39 0.05 0.27 B f
(t) (5.67) (6.09) (6.09) - - (1.66) (0.67) | (0.67) - -
R? 0.96 0.96 0.98 0.51 0.52 0.79 0.75 0.176 0.996 0.996
Ak 17.38 13.83 -8.26 27.24 46.56 -181.17 84.32 100.50 23.54 -23.87
() (4.32) (2.80) | (-2.30) | (1.66) (3.44) (4.54) (6.74) (3.37) (2.26) (2.28)
Bk 0.15 0.14 -0.05 0.05 0.03 -0.09 -0.02 0.03 -0.06 0.06
() (3.70) (2.99) | (-1.44) | (1.75) (1.27) (3.46) (2.50) (1.22) (2.30) (2.36)
w =0.5 GAkT -0.44 -0.52 0.58 0.62 0.53 2.76 0.27 -0.17 0.99 1.00
(t) (-3.05) | (-3.05) (6.73) | (3.98) (3.98) (9.62) (9.64) | (1.30) (99) | (100.20)
Gt 1.01 1.15 0.57 - - -0.30 0.03 0.18 - -
(t) (6.73) (7.70) (7.69) - - (1.28) (0.40) | (0.42) - -
R? 0.96 0.96 0.98 0.52 0.49 0.79 0.76 0.11 0.996 0.996
Ak 14.86 10.84 -7.53 23.37 46.86 -224.89 92.42 114.87 32.82 -31.85
(t) (3.66) (2.19) | (-2.38) | (1.44) (3.38) (5.73) (7.84) | (3.77) (3.16) (3.02)
Bk 0.07 0.06 -0.03 0.05 0 0.14 -0.04 0.01 -0.08 0.08
(t) (3.16) (2.23) | (-1.94) | (2.06) (0.19) (3.97) (4.00) (0.31) (2.35) (2.23)
w=0.7 G;ﬁ‘ -0.38 -0.46 0.57 0.66 0.61 2.93 0.26 -0.11 0.98 1.01
() (-2.60) | (-2.60) (7.57) | (4.63) (4.63) (10.24) | (10.40) (0.82) (98) | (101.40)
Gl 1.13 1.28 0.54 - - -0.19 0.01 0.04 - -
(t) (7.57) (8.39) (8.39) - - (0.83) (0.07) | (0.08) - -
R? 0.96 0.96 0.98 0.53 0.47 0.797 0.789 0.078 0.996 0.996
Ak 12.06 7.53 -5.55 13.59 50.12 -308.94 128 201.23 -25.55 42.25
(t) (2.78) (1.57) | (-1.84) | (0.79) (3.72) (6.87) | (11.14) | (6.83) (2.32) (3.89)
Bk 0.03 0.03 -0.01 0.05 -0.03 0.26 -0.11 -0.13 0.09 -0.13
() (1.99) (1.99) | (-1.97) | (2.25) | (-1.56) (2.08) (4.07) (1.55) (1.06) (1.65)
w =0.9 GAkT -0.37 -0.38 0.53 0.76 0.67 3.23 0.21 -0.02 1.01 0.98
(t) (-2.27) | (-2.27) (7.63) | (5.76) (5.76) (8.18) (8.07) | (0.15) | (45.73) (46.62)
Gl 1.23 1.30 0.53 - - -0.04 -0.07 -0.46 - -
(t) (7.63) (8.35) (8.35) - - (0.15) (1.00) | (1.02) - -
R? 0.95 0.96 0.98 0.54 0.51 0.734 0.799 0.138 0.996 0.996

Table 6: Estimation of the Adaptive Model: py; = Ay + BrEit + G irDrts r£ks 1>k
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Multi || Ezperiment 11(R1) (0 = 0.4) || Ezperiment 11(R3) (6 = 0.4)
S(3,2) Firm 1 Firm 2 Firm 1 Firm 2
w Bst P1 P2 P3 P4 Ps P1 P2 P3 P4 Ps5
Ak -2.52 1.20 2.03 24.94 -10.35 -6.47 162.09 37.30 204.32 156.62
(t) (-1.03) | (0.65) | (0.67) (3.39) | (-1.56) (-0.30) | (4.16) (1.97) | (5.34) | (4.06)
Bk -0.01 0.02 -0.01 -0.08 0.13 0.04 -0.04 -0.06 -0.13 -0.03
(t) (-0.27) | (1.23) | (-0.42) | (-2.23) (6.48) (0.89) | (-0.42) | (-1.49) | (-1.76) | (-0.45)
w =0.1 Gkr 1.05 0.58 -0.04 1.06 0.68 0.05 0.25 0.88 -0.19 -0.16
(t) (7.00) | (7.00) | (-0.16) | (9.31) | (9.31) (0.61) | (0.61) | (13.25) | (-1.01) | (-1.02)
Gt -0.02 0.38 1.03 B - 0.96 -0.47 -0.08 B -
(t) (-0.16) | (4.48) | (4.48) B S| (13.25) | (-1.10) | (-1.10) B .
R? 0.99 0.99 0.988 0.90 0.95 0.86 0.069 0.87 0.11 0.032
Ak -2.50 1.15 2.08 26.02 -12.90 -14.31 192.35 44.51 222.34 190.29
() (-1.02) | (0.62) | (0.69) (3.54) | (-1.83) || (-0.63) | (4.87) | (2.18) | (5.01) | (4.72)
Bk 0 0.01 -0.01 -0.07 0.11 0.06 -0.16 -0.08 -0.16 -0.10
(t) (-0.27) | (1.22) | (-0.52) | (-2.30) (5.79) (1.20) | (-1.33) | (-1.75) | (-1.87) | (-1.38)
w=0.3 Gkr 1.05 0.58 -0.04 1.03 0.75 0.06 0.33 0.88 -0.25 -0.19
(t) (7.00) | (7.00) | (-0.16) | (10.54) | (10.54) (0.80) | (0.80) | (13.53) | (-1.20) | (-1.29)
Gt -0.03 0.38 1.03 B - 0.96 -0.57 -0.10 B -
(t) (-0.16) | (4.52) | (4.52) B S| (13.83) | (-1.36) | (-1.36) B .
R? 0.99 0.99 0.98 0.90 0.947 0.86 0.11 0.87 0.122 0.08
Ak -2.50 1.04 2.25 27.59 -16.22 -24.14 220.31 53.60 241.09 220.21
(t) (-1.01) | (0.56) | (0.74) (3.72) | (-2.11) (-0.98) | (5.66) (2.47) | (4.86) | (5.46)
Bk 0 0.01 -0.01 -0.06 0.09 0.09 -0.27 -0.11 -0.19 -0.18
(t) (-0.20) | (1.18) | (-0.72) | (-2.33) (4.94) (1.55) | (-2.17) | (-2.08) | (-2.04) | (-2.20)
w=0.5 Gkr 1.05 0.58 -0.04 0.98 0.84 0.08 0.42 0.88 -0.30 -0.23
(t) (6.98) | (6.98) | (-0.17) | (12.28) | (12.28) (1.06) | (1.06) | (13.82) | (-1.54) | (-1.54)
Gt -0.03 0.39 1.03 B - 0.97 -0.67 -0.12 B -
(t) (-0.17) | (4.58) | (4.57) B S| (13.81) | (-1.66) | (-1.66) B .
R? 0.99 0.99 0.988 0.91 0.94 0.87 0.188 0.88 0.137 0.153
Ak -2.44 0.82 2.63 30.17 -20.68 -24.29 220.06 54.60 242.45 215.58
(t) (-0.96) | (0.43) | (0.86) (3.98) | (-2.42) (-0.99) | (5.68) (2.55) | (5.16) | (5.35)
Bk 0 0.01 -0.01 -0.05 0.07 -0.09 -0.27 -0.12 -0.20 -0.17
(t) (-0.19) | (1.15) | (-0.95) | (-2.45) (4.11) (1.57) | (-2.18) | (-2.18) | (-2.22) | (-2.07)
w =0.7 Gkr 1.05 0.58 -0.04 0.93 0.94 0.08 0.42 0.87 -0.30 -0.23
(t) (6.99) | (6.99) | (-0.17) | (14.90) | (14.90) (1.07) | (1.06) | (13.73) | (-1.56) | (-1.56)
Gt -0.03 0.39 1.03 B B 0.97 -0.68 0.12 B B
(t) (-0.17) | (4.63) | (4.63) B S| (13.74) | (-1.68) | (-1.68) B .
R? 0.99 0.995 0.989 0.934 0.93 0.87 0.188 0.879 0.156 0.141
Ak -2.33 0.87 2.53 34.30 -25.92 -8.51 152.88 34.63 180.40 137.15
(t) (-0.88) | (0.43) | (0.78) (4.33) | (-2.66) || (-0.46) | (4.51) | (2.00) | (5.39) | (4.16)
Bk 0 0.01 -0.01 -0.05 0.06 0.06 -0.02 -0.07 -0.09 0.01
(t) (-0.28) | (0.69) | (-0.48) | (-2.75) (3.42) (1.36) | (-0.17) | (-1.77) | (-1.25) | (0.17)
w =0.9 Gkr 1.05 0.59 -0.04 0.88 1.03 0.04 0.25 0.89 -0.17 -0.13
(t) (7.18) | (7.18) | (-0.16) | (17.84) | (17.84) (0.58) | (0.58) | (13.77) | (-0.86) | (-0.86)
Gt 20.02 | -0.39 1.02 B B 0.96 -0.45 -0.07 B B
(t) (-0.16) | (4.52) | (4.52) B Sl asrry | (c1.02) | (-1.03) B .
R? 0.99 0.995 0.988 0.912 0.92 0.866 0.065 0.87 0.071 0.026

Table 7: Estimation of the Adaptive Model: py; = Ay + BrEit + G irDrts r£ks 1>k
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‘ Multi (rule) H Ezperiment 12(r1) (6 = 0.14)

H Ezperiment 12(r2) (6 = 0.14)

S5(3,2) Firm 1 Firm 2 Firm 1 Firm 2
w ‘ FE'st. pi,t=1,2,3 pi,t=4,5 pi,t=1,2,3 pi,t=4,5
Ay, 65.53 86.84 10.06 97.84
(t) (2.85) (15.62) (0.34) (13.01)
w=0.1 1 By 0.22 0.07 0.45 0.05
(t) (2.13) (4.34) (3.56) (2.40)
R? 0.12 0.36 0.28 0.15
Ay 75.53 81.17 -9.79 96.47
(t) (3.38) (14.02) (-0.33) (12.5)
w=03| By 0.18 0.09 0.55 0.05
(t) (1.74) (5.14) (4.23) (2.52)
R? 0.083 0.45 0.35 0.16
Ay, 87.61 78.93 -16.19 95.12
(t) (4.13) (13.21) (-0.59) (12.16)
w=05 | By 0.12 0.96 0.58 0.06
(t) (1.26) (5.36) (4.82) (2.66)
R? 0.046 0.46 0.41 0.17
Ay, 99.96 83.81 2.38 94.34
(t) (5.29) (13.76) (0.10) (12.27)
w=07 | By 0.07 0.08 0.51 0.07
(t) (0.75) (4.45) (4.84) (2.81)
R? 0.017 0.375 0.42 0.19
Ay 109.19 95.33 50.84 97.94
(t) (7.57) (18.32) (2.64) (13.56)
w=09 | By 0.03 0.05 0.33 0.06
(t) (0.34) (3.00) (3.32) (2.50)
R? 0.003 0.214 0.25 0.16

Table 8: Estimation of the Adaptive
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‘ Multi (rule) H Experiment 12(R2) (0 = 0.4) H Ezperiment 12(R3) (0 = 0.4)

S5(3,2) Firm 1 Firm 2 Firm 1 Firm 2
w ‘ E'st. pi,t=1,2,3 pi,t=4,5 pi,t=1,2,3 pi,t=4,5
Ay, 73.49 69.72 62.24 102.82
(t) (4.78) (6.14) (2.59) (11.33)
w=0.1| By 0.27 0.18 0.35 0.12
(t) (5.32) (7.28) (4.78) (7.06)
R? 0.46 0.62 0.40 0.60
Ay 81.70 63.24 63.96 99.38
(t) (5.29) (6.40) (2.85) (12.17)
w=03| By 0.25 0.19 0.32 0.13
(t) (4.77) (9.14) (5.03) (8.27)
R? 0.41 0.72 0.43 0.67
Ay, 89.48 61.17 73.59 98.25
(t) (6.08) (7.98) (3.54) (14.04)
w=05| By 0.22 0.20 0.32 0.13
(t) (4.47) (11.95) (4.98) (9.84)
R? 0.377 0.812 0.43 0.745
Ay, 96.39 67.99 93.98 103.89
(t) (7.56) (12.93) (4.92) (16.09)
w=07| By 0.21 0.19 0.26 0.13
(t) (4.64) (16.16) (4.37) (9.81)
R? 0.395 0.887 0.37 0.744
Ay 106.67 88.31 131.54 128.18
(t) (11.22) (23.96) (7.88) (16.50)
w=09| B 0.20 0.18 0.17 0.09
(t) (5.20) (17.74) (2.74) (5.02)
R? 0.451 0.90 0.184 0.43

Table 9: Estimation of the Adaptive Model: py; = A + BiEjy
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Figure 1: S = (1,1,1,1,1) (# = 0.14) experimental prices and theoretical equilibrium

values.
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Figure 2: S =(1,1,1,1,1) (6 = 0.14) experimental prices and theoretical equilibrium values.

35



Experiment 3
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Figure 3: S =(1,1,1,1,1) (# = 0.4) experimental prices and theoretical equilibrium values.
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Figure 4: S =(1,1,1,1,1) (# = 0.4) experimental prices and theoretical equilibrium values.
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Experiment 11
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Figure 5: S = (3,2) (no rule) (f = 0.14) experimental prices and theoretical equilibrium values.
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Figure 6: S = (3,2) (no rule) (¢ = 0.14) experimental prices and theoretical equilibrium values.
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Figure 7: S = (3,2) (no rule) (# = 0.4) experimental prices and theoretical equilibrium values.
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Figure 8: S = (3,2) (no rule) (# = 0.4) experimental prices and theoretical equilibrium values.
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Experiment 12 (r1)
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Figure 9: S = (3,2) (rule) (# = 0.14) experimental prices and theoretical equilibrium values.
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Figure 10: S = (3,2) (rule) (6 = 0.14) experimental prices and theoretical equilibrium values.
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Experiment 12 (R2)
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Figure 11: S = (3,2) (rule) (6 = 0.4) experimental prices and theoretical equilibrium values.
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Figure 12: S = (3,2) (rule) (6 = 0.4) experimental prices and theoretical equilibrium values.
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