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TOPS RESPONSIVENESS, STRATEGY-PROOFNESS AND
COALITION FORMATION PROBLEMS

José Alcalde and Pablo Revilla

A B S T R A C T

This paper introduces a property over agents’ preferences, called Tops Re-
sponsiveness Condition. Such a property guarantees that the core in Hedonic
Coalition Formation games is not empty. It is also shown that a mechanism
exists that selects a stable allocation. It turns out that this mechanism, to be
called tops covering, is strategy-proof even if the core is not a singleton. Further-
more, we also …nd out that the tops covering mechanism is the only strategy-proof
mechanism that always selects stable allocations.
KEYWORDS: Coalition Formation; Stability; Strategy Proofness.
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1. Introduction

Economic agents usually cooperate to reach some objectives that they could not
obtain by themselves. It seems to be clear that agents’ cooperation is funded on
the own interest of each economic agent. We might give a further step saying that
such behavior is followed by agents not only by economic purposes but also for
other (more generic) reasons.
In real-live situations one can …nd several examples that can be (partially) ex-

plained by the above principle. For instance, economic researchers could increase
the quality level of their …ndings by their cooperation on researching. Workers
form associations, called unions, to defend collectively their interests faced to
…rms’ desires on work contractual conditions. The emergence of the European
Economic Union can be explained on the basis of countries’ interest on reaching
some economic and/or political agreements that involve their cooperation on cer-
tain aspects. Similar arguments can be used for the cases of the North-American
agreements signed with the name of NAFTA and, most recently, MERCOSUR.
The above examples present some similarities which allow us to give a common

treatment to all of them. In fact we can say that all these examples can be
expressed in generic terms as follows. A set of agents, who could …nd pro…table
to reach agreements on cooperating, decide to form coalitions under which this
fruitful cooperation will be done.
The study of how some of these agreements emerge can be done on the basis of

a cooperative game-theoretical approach. There is ample literature on the study
of how coalitions are formed. Some authors focussed on the case in which the
players only have preferences regarding the members of their coalition but not,
however, regarding its entire structure. The agents involved in a coalition tend
to behave as though they were immune to the decisions made by other coalitions.
This phenomenon, that Drèze and Greenberg (1980) called the hedonic aspect of
coalition formation, is the sort of game we focus on in this paper.
We deal with a static study that can be viewed as an initial approach to

understanding why some coalitions are formed. We shall focus speci…cally on two
main aspects of the implementation of such agreements, namely, their stability
and the existence of sincere mechanisms implementing them.
We consider an agreement to be stable whenever it is impossible to …nd a set

of agents that could block it, i.e., they cannot …nd another agreement, involving
only these agents, that is advantageous for all of them. Unfortunately, in a general
setting, it is impossible to guarantee the existence of stable agreements. This
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problem was pointed out by Gale and Shapley (1962) showing that the set of stable
agreement con…gurations may be empty, whenever only two-agents agreements
could be signed.
Some authors concentrate on the study of economic environments in which

stable con…gurations always exist. In such a context, Alcalde (1995) solves the
existence of stable con…gurations for two-agents agreements. The concept of the
above-mentioned paper is generalized by Banerjee et al. (2001), who consider
economic environments that cannot be described as a Cartesian product of the
agents’ characteristics. This description of their environments imposes additional
di¢culties on the study of comparative statics (see Alcalde and Romero-Medina
(2000) for a discussion on this subject). Cechlárová and Romero-Medina (1998)
provide an economic environment to guarantee the existence of stable agreement
con…gurations. The description of the agents’ preferences in such a case is quite
simple. Each individual orders the set of agents, without including itself. When
an individual has to compare two sets of agents with whom she could reach an
agreement, she cares only about the best partners, according to the above or-
dering. Recently, Alcalde and Romero-Medina (2000) have described economic
environments, based on individual preferences, under which stable agreement con-
…gurations always exist.
In this paper we deal with the possibility of generalizing the idea beyond the

concept of Essentiality, de…ned by Alcalde and Romero-Medina (2000). This will
be done with the Tops Responsiveness condition, a property that guarantees the
existence of stable allocations, whenever the agents’ preferences ful…ll it.
The second question to be dealt with, is the analysis of the agents’ strategic be-

havior when they have to follow some speci…c rule in order to decide which agree-
ments they should sign. Following the framework proposed by Gibbard (1973)
and Sattherwaite (1975), we concentrate on direct mechanisms, i.e., agents are
asked to declare their own preferences on the set of outcomes (agreements con-
…gurations), and a …xed rule will select an outcome for any preferences pro…le.
We intend to avoid conclusions that would recommend employing rules that are
di¢cult to justify. With such a view, we shall require that our rules ful…ll two
basic properties: stability and strategy-proofness. By strategy-proofness we en-
sure that no agent could bene…t from lying about her own preferences when an
agreement rule is employed. Formal de…nitions for both of these concepts will be
introduced later on.
The main results reported in the literature regarding the problem of …nding

stable rules that would avoid any strategic behavior by the agents involved are

4



rather pessimistic. In fact, Gibbard (1973) and Sattherwaite (1975) state that the
two properties are incompatible. In matching models, a framework which is quite
close to the one we present here, Roth (1982) obtains negative results which are
strengthened by Alcalde and Barberà (1994).
Such results, however, can not be applied directly to our model, as they were

de…ned for mechanisms that are applied to universal domains, i.e. no restriction is
imposed on the agents’ preferences. Note that, in our framework, an impossibility
result can be straightforwardly found since, for some cases, there is no stable
allocation. In our model, however, when the Tops Responsiveness Condition is
ful…lled by the agents’ preferences, we design a mechanism that associates a stable
agreement con…guration to each economic environment and, as it turns out, the
mechanism we provide is strategy-proof.
The paper is organized as follows: Section 2 outlines the basic framework and

introduces the Tops Responsiveness Condition, a property that describes the eco-
nomic environments that will be analyzed throughout the paper. Section 3 shows
the existence of stable agreement con…gurations under the Tops Responsiveness
Condition. Section 4 introduces a mechanism, to be called the Tops Covering
Mechanism, which selects a stable agreement con…guration for each economic en-
vironment that satis…es the Tops Responsiveness Condition. We also show that
such a mechanism satis…es strategy-proofness. It turns out that stability and
strategy-proofness, together, characterize the Tops Covering Mechanism. Con-
clusions are gathered to Section 5. Finally, an appendix contains some technical
proofs.

2. The Framework

Let N = f1; : : : ; i; : : : ; ng be the set of agents. A subset S of N is called an
agreement. Let Ai = fS µ N : i 2 Sg be the set of agreements that agent i can
reach. Each agent i is endowed with a complete pre-ordering Ri, de…ned over Ai,
which represents her preferences over all the possible agreements she can reach.
We denote, by Pi the strict preference derived from Ri, i.e. SPiS 0 means that
SRiS

0 and not S0RiS. An agreements problem will be shortly described by a pair
fN;Rg, where the agents’ preferences pro…le R is a description of each agent’s
preferences.
A solution for an agreements problem, also called an agreements con…guration,

is a function ¹ : N 7! 2N such that

(i) ¹ (i) 2 Ai, for each i 2 N , and
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(ii) ¹ (i) \ ¹ (j) 6= ; if, and only if, ¹ (i) = ¹ (j) for any i, j 2 N .

In fact, an agreements con…guration can be viewed as a partition of the set of
agents.
We say that an agreements con…guration ¹ is stable for fN;Rg if there is

no non-empty set of agents, say S, such that SPi¹ (i) for each i 2 S. A set
satisfying the above property is said to block agreement ¹. Finally, we state that
an agreements con…guration ¹ is individually rational for fN;Rg if there is no
single agent blocking it.
In this paper we focus on the study of stable agreements con…gurations for any

given problem fN;Rg. Since we are not concerned with any analysis of population
variations, we shall consider N to be …xed throughout the paper.
An agreements con…guration rule ° is a function that selects, for each possible

preferences pro…le R, an agreements con…guration for fN;Rg. We say that rule
° is stable if it selects a stable agreements con…guration for each problem, i.e. for
any preferences pro…le R, ° (R) is stable for fN;Rg.
We will provide an example showing the general impossibility of …nding stable

rules. In this example, we build a situation that has no stable allocation.

Example 2.1. A problem with no stable agreement con…guration.
Let N = f1; 2; 3g with the preferences described in the following table:

f1; 2g P1 f1; 3g P1 f1g P1 f1; 2; 3g
f2; 3g P2 f1; 2g P2 f2g P2 f1; 2; 3g
f1; 3g P3 f2; 3g P3 f3g P3 f1; 2; 3g

This problem has no stable allocation. Note that the “autarchic” situation, in
which ¹ (i) = fig for each i, is blocked by any pair of agents. Agreement ¹0 in
which ¹0 (i) = f1; 2; 3g for each agent i is blocked by any agent. Finally, any
agreement ¹00 where ¹00 (i) = fig for some i and ¹00 (j) = ¹00 (k) = fj; kg for the
rest is blocked by a coalition formed by i and another agent. If i = 1, f1; 3g is the
blocking pair; f1; 2g will be the blocking pair if i = 2; and f2; 3g blocks ¹00 when
i = 3.

As we mentioned in the Introduction, the aim of some recent papers has been
the study of economic environments in which stable allocations always exist. We
introduce the “Tops Responsiveness Condition,” a property that is weaker than
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both Essentiality and the Union Responsiveness Condition (Alcalde and Romero-
Medina, 2000). This property may or may not be satis…ed by any agent’s prefer-
ences. But, as Theorem 3.4 informs us, when each agent has preferences satisfying
Tops Responsiveness, the set of stable agreements con…gurations is non-empty.

De…nition 2.2. We say that agent i’s preferences, Ri, satisfy Tops Responsive-
ness on Ai, if for any set S in Ai there is only a maximal for Ri, to be denoted
by Chi (S);1 and for any two sets S and S 0 in Ai, the following conditions are
ful…lled:

1. Chi (S)PiChi (S 0) implies SPiS 0, and

2. If Chi (S) = Chi (S 0), and S ½ S 0 then SPiS0.2

Let R denote the set of agents’ preference pro…les, where each agent’s prefer-
ences satisfy the Tops Responsiveness Condition.

Let us illustrate the two conditions referred to above with the following ex-
ample: We shall consider …ve researchers, A, B, C, D, and E, who may or may
not be able to reach any agreements on cooperating on writing a paper. Agent A
thinks that her cooperation with Band C will produce the nicest paper she can do.
Condition 1 means that A will also prefer any agreement involving all of the …ve
researchers (or any four containing A, B and C) to any other that is not agreed to
by B (or C). The idea is that agent A needs the cooperation of B and C to produce
such a nice paper, and this is what does matter to such an agent! Condition 2
states that agent A would prefer to have an agreement with researchers B, C and
D, rather than the one involving all of the other researchers. This is because A
thinks that (a) incorporating more researchers will not improve the quality of the
paper, and (b) the more authors a paper have, the lower importance is attributed
to each one. To sum-up, therefore, it is more important for A to avoid the absence
of B or C than to prevent the presence of any other researcher, (D or E). In other
words, the idea beyond the Tops Responsiveness condition can be illustrated by
the sentence “my friends’ friends are my friends,” and considering that each one
just prefers to stay with her own friends, so the least friends’ friends come to the
group, the better I feel.

1Chi (S) denotes the choice of agent i in set S under preferences Ri. Thus, Chi (S) is the
set S0 µ S such that S0PiS00 for any other set S00 µ S.

2In order to avoid confusions, let us note that, throughout this paper, we use the symbol ½
for the strict inclusion (i.e. A ½ B does not allow the case where A = B), whereas the symbol
µ will be used for the weak inclusion.
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3. Tops Responsiveness and Stability

We have stated in Section 2 that any agreements problem whose agents’ prefer-
ences satisfy the Tops Responsiveness Condition have stable agreements con…g-
urations. The aim of this section is to provide a formal statement for this fact.
We will introduce a procedure which selects a stable agreements con…guration for
any problem whose agents’ preferences exhibit the Tops Responsiveness property.
This procedure can be viewed as a natural extension for the RA-algorithm by
Alcalde and Romero-Medina (2000) (and henceforth to the Gale’s Tops Trading
Cycle introduced in Shapley and Scarf (1974)).
Before introducing our rule, to be called the tops covering algorithm, we need

some additional notation. Let us consider an agreements problem fN;Rg satisfy-
ing the Tops Responsiveness Condition. Given two sets of agents, S and S 0, with
S µ S 0, let de…ne ChS (S 0) = [i2SChi (S 0). For each agent i, and set S in Ai,
let ¿ i (S) be the smaller set containing Chi (S) such that Ch¿ i(S) (S) = ¿ i (S).3

Note that such a set can be built straightforwardly by using the following choices
covering algorithm, whose output is ¿ i (S).

De…nition 3.1. The Choices Covering Algorithm works as follows: Let S µ N
be a set of agents, and i be an agent in S. Let us assume that all agents in S
exhibit preferences satisfying the Tops Responsiveness Condition.

Step 1. Let S1 = Chi (S). If ChS1 (S) = S1, then let ¿ i (S) = S1, otherwise, go
to Step 2.

Step k. Let Sk = ChSk¡1 (S). If ChSk (S) = Sk, then let ¿ i (S) = Sk, otherwise,
go to Step k+1.

Note that for any k ¸ 2, Sk¡1 µ Sk µ S. Since N contains …nite elements,
this property guarantees that the above algorithm always converges in a …nite
number of steps.

De…nition 3.2. Let fN;Rg be an agreements problem whose agents’ preferences
satisfy the Tops Responsiveness Condition. The Tops Covering Algorithm works
as follows:

3Henceforth, ¿ i (S) has to ful…ll two requirements: (a) Ch¿i(S) (S) = ¿ i (S), and (b)
ChT (S) 6= T for any T ½ ¿ i (S) \Ai.
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Step (1) Let compute, for each agent i, the set ¿ i (N). For each agent i such
that ¿ i (N) µ ¿h (N) for each h 2 ¿ i (N), let set ¹1i = ¿ i (N). Finally, let
N1 = fi 2 N : ¹1i = ¿ i (N)g. If N1 = N , stop; otherwise, go to Step (2).

Step (2) Let compute, for each agent i 2 NnN1, the set ¿ i (NnN1). For each
agent i such that ¿ i (NnN1) µ ¿h (NnN1) for each h 2 ¿ i (NnN1), let
set ¹2i = ¿ i (NnN1). Finally, let N2 = fi 2 NnN1 : ¹2i = ¿ i (NnN1)g. If
N2 = NnN1, stop; otherwise, go to Step (3).

Step (k) Let compute, for each agent i 2 Nn [j<k N j, the set ¿ i (Nn [j<k N j).
For each agent i such that ¿ i (Nn [j<k N j) µ ¿h (Nn [j<k N j) for each
h 2 ¿ i (Nn [j<k N j), let set ¹ki = ¿ i (Nn [j<k N j). Finally, let Nk =©
i 2 Nn [j<k N j : ¹ki = ¿ i (Nn [j<k N j)

ª
. If N = [j·kN j, stop; otherwise,

go to Step (k+1).

The algorithm ends at the Step t-th satisfying that [j·tN j = N , and produce
an output ¹tc (R) such that, for each set N j and agent i in N j, ¹tci (R) = ¹

j
i .

In order to show how the previous algorithm works, let us consider the follow-
ing four agents’ problem.

Example 3.3. Let N = f1; 2; 3; 4g, with agents’ preferences
f1; 2gP1 f1; 2; 3gP1 f1; 2; 4gP1 f1; 2; 3; 4gP1 f1; 3gP1 f1; 3; 4gP1 f1gP1 f1; 4g
f1; 2; 3gP2 f1; 2; 3; 4gP2 f1; 2gP2 f1; 2; 4gP2 f2gP2 f2; 4gP2 f2; 3gP2 f2; 3; 4g
f1; 3; 4gP3 f1; 2; 3; 4gP3 f2; 3; 4gP3 f3gP3 f2; 3gP3 f1; 3gP3 f1; 2; 3gP3 f3; 4g
f4gP4 f3; 4gP4 f2; 4gP4 f1; 4gP4 f1; 2; 4gP4 f1; 3; 4gP4 f2; 3; 4gP4 f1; 2; 3; 4g

In this case, we have that ¿ 1 (N) = ¿2 (N) = ¿3 (N) = N , and ¿ 4 (N) = f4g,
hence N1 = f4g, and ¹tc4 (R) = ¹14 = f4g. In the second Step, we have that
¿ 1 (f1; 2; 3g) = ¿ 2 (f1; 2; 3g) = f1; 2; 3g, and ¿3 (f1; 2; 3g) = f3g, soN2 = f3g, and
¹tc3 (R) = ¹

2
3 = f3g. Finally, at the third Step, ¿ 1 (f1; 2g) = ¿2 (f1; 2g) = f1; 2g,

which yields N3 = f1; 2g, and the output ¹tc1 (R) = ¹31 = ¹tc2 (R) = ¹32 = f1; 2g.
As can be seen, the output of our procedure is a stable agreement con…guration
for the original problem fN;Rg.
A nice feature of the Tops Covering Algorithm is that it produces a stable

agreement for any problem whose agents’ preferences satisfy the Tops Respon-
siveness Condition. The conclusion of the next result is a direct consequence of
this fact.
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Theorem 3.4. Let fN;Rg be an agreements problem whose agents’ preferences
satisfy the Tops Responsiveness Condition, then the set of stable agreement con-
…gurations is non-empty.

Proof. See the appendix.

4. Strategic Behavior and the Tops Covering Algorithm

This section is devoted to the analysis of agents’ behavior when they are forced
to follow some speci…c rule in order to establish whether an agreement can be
signed. We insist on two main requirements to consider a rule acceptable: sta-
bility and strategy-proofness. Stability means that the only rules that we shall
consider are those that, for any given problem fN;Rg, assign a stable agreement
con…guration, relative to R. Strategy-proofness means that the rule is immune to
agents’ manipulations.

De…nition 4.1. Let N be a …xed set of agents, and let R¤ be a set of agents’
preference pro…les. A stable agreements mechanism on R¤ is a function ¹¤ which
selects, for each R in R¤, an agreements con…guration ¹¤ (R), which is stable for
fN;Rg.

De…nition 4.2. Let N be a …xed set of agents, and let R¤ be a set of agents’
preference pro…les. We say that mechanism ¹¤ is strategy-proof on R¤ if for all
R in R¤, and each R

0
i in R¤

i we have that
4

¹¤i (R)Ri¹
¤
i

³
R¡i; R

0
i

´
In our study, given that we want the rule to always provide a stable allocation,

we have to restrict attention to the frameworks where such an allocation exists.
We have already seen that when agents’ preferences satisfy the Tops Responsive-
ness Condition, stable agreements con…gurations exist. Hence, we can formulate
this question: Let us consider that agents’ preferences are forced to satisfy the
Tops Responsiveness Condition. Is there any strategy-proof rule selecting stable
agreements con…gurations? A positive answer to this question is given in Theorem
4.3.

4In what follows, we use the classical formulation. Given a preferences pro…le R,
³
R¡i; R

0
i

´
will denote the pro…le where agent i’s preferences, Ri, have been replaced by R

0
i.

10



Theorem 4.3. Let N be a …xed set of agents. Let de…ne the Tops Covering
Mechanism as the mechanism which selects, for each R in R the agreements
con…guration ¹tc (R). Then, the Tops Covering Mechanism is strategy-proof.

Proof. Let us assume that for some agreement problem, say fN;Rg, there
is an agent {̂ and preferences for this agent R

0
{̂ such that ¹

tc
{̂

¡
R¡{̂; R

0
{̂

¢
P{̂¹

tc
{̂ (R).

For each agent i, let k (i) denote the stage of the algorithm (when applied
to preferences R) in which this agent reaches her agreement.5 Let us note that,
for any agent i such that k (i) < k (̂{), we have that the set ¿ i computed for the
society Nn [1·k<k(i) Nk, does not depends on agent {̂’s preferences:

¿ i
¡
Nn [1·k<k(i) Nk;R

¢
= ¿ i

³
Nn [1·k<k(i) Nk;R¡{̂; R

0
{̂

´
.

This implies that, for each i such that k (i) < k (̂{), ¹tci
¡
R¡{̂; R

0
{̂

¢
= ¹tci (R). Hence-

forth, ¹tc{̂
¡
R¡{̂; R

0
{̂

¢ µ Nn[1·k<k({̂)Nk. Moreover, 8i 2 ¹tc{̂
¡
R¡{̂; R

0
{̂

¢ n f{̂g it is sat-
is…ed that Chi

¡
Nn [1·k<k(̂{) Nk

¢ µ ¹tci
¡
R¡{̂; R

0
{̂

¢
. Since ¹tc{̂

¡
R¡{̂; R

0
{̂

¢
P{̂¹

tc
{̂ (R),

the fact that agents {̂’s preferences satisfy the Tops Responsiveness Condition im-
plies that it must be the case that Ch{̂

¡
Nn [1·k<k({̂) Nk

¢ µ ¹tc{̂ ¡R¡{̂; R0
{̂

¢
. There-

fore, by de…nitions 3.1 and 3.2, ¹tc{̂ (R) µ ¹tc{̂
¡
R¡{̂; R

0
{̂

¢
, which contradicts that

¹tc{̂
¡
R¡{̂; R

0
{̂

¢
P{̂¹

tc
{̂ (R).

We now deal with the characterization of stable rules satisfying strategy-
proofness in the family of problems whose agents’ preferences satisfy the Tops
Responsiveness Condition. An answer to that question can be trivially found in
some environments. For instance, Alcalde and Romero-Medina (2000) show that,
when agents’ preferences satisfy Essentiality (a property stronger than the Tops
Responsiveness Condition), there is a unique stable allocation. Henceforth, we
can trivially state that, when agents’ preferences are forced to satisfy essentiality,
the Tops Covering Mechanism is the only stable and strategy-proof mechanism.
The reason for this is quite simple: The mechanism satis…es both properties, and
since the set of stable allocations is always a singleton, any stable mechanism
would have to coincide with ours. This simple argument, however, can not be
applied to the more general setting of agents’ preferences satisfying the Tops Re-
sponsiveness Condition. This is because, as the following example shows, the set
of stable agreement con…gurations is not generally a singleton.

5Following the notation employed in De…nition 3.2, k (i) is the integrer such that i 2 Nk(i).

11



Example 4.4. Let N = f1; 2; 3g, with preferences
f1; 2gP1 f1; 2; 3gP1 f1gP1 f1; 3g ,
f2; 3gP2 f1; 2; 3gP2 f2gP2 f1; 2g ,
f1; 3gP3 f1; 2; 3gP3 f2; 3gP3 f3g

In this problem, there are two stable agreements con…gurations. ¹tc (R) = [f1; 2; 3g],
and ¹0 (R) = [f1g ; f2; 3g].

This example is also useful in demonstrating why any stable and strategy-proof
mechanism must select the Tops Covering agreements con…guration. Let us note
that, in this example ¹tc3 (R)P3¹

0
3 (R). If we are employing any stable mechanism

selecting, for this problem, ¹0 (R), agent 3 can manipulate by declaring preferences
R03 such that

f1; 3gP3 f1; 2; 3gP3 f3gP1 f2; 3g
This fact can be extended to any stable mechanism selecting, for some problem,

an agreements con…guration di¤erent from one proposed by the Tops Covering
mechanism. This is the aim of Theorem 4.5.

Theorem 4.5. Let N be a …xed set of agents, and let ª be a stable mechanism
on R. If ª is strategy-proof, then ª(R) = ¹tc (R) for all R in R.
Before giving a formal proof for Theorem 4.5, let us introduce a way of describ-

ing how agents could manipulate. The idea beyond this possibility of manipulation
is somehow similar to the one used in an impossibility result due to Alcalde and
Barberà (1994).
Let R be a preferences pro…le in R. Given any agent i, let Rtci denote agent

i’s preferences de…ned by:

1. For any two sets S and S 0 in Ai n fig ; SRtci S 0 if, and only if, SRiS0, and
2. For any set S in Ai n fig ; figP tci S if, and only if, ¹tci (R)PiS and ¹tci (R) "
S.

Note that Rtci can be understood as the agent i’s preferences obtained from Ri,
by stating that any agreement con…guration that i considers worse that ¹tci (R)
is now to be considered individually irrational from i’s point of view, the only
exception comes from supersets of ¹tci (R), in order to guarantee that R

tc
i satis…es

Tops Responsiveness.
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It is straightforward to see that ¹tc (R) = ¹tc (R0) for any preferences pro…le
R0 where R

0
i 2 fRi; Rtci g.

Proof of Theorem 4.5 Let ª be a strategy-proof stable mechanism on
R, and let us assume that ª 6= ¹tc. Hence, there should be a preferences pro…le
R such that ª(R) 6= ¹tc (R).
Since both ª(R) and ¹tc (R) are stable for R, and ª(R) 6= ¹tc (R), there

should be an agent i preferring ªi (R) rather than ¹tci (R). Moreover, by the
stability of the above agreements con…gurations, it should be the case that for
each i in N , such that ªi (R) Pi ¹tci (R), there should be an agent i

0 in ªi (R) such
that ¹tci (R)Pi0ªi (R).
The rest of the proof is done by an inductive argument on the agents’ strategies.

Since the arguments on how the agents can manipulate reach a high level of
sophistication as the number of agents increases, we provide the formal arguments
not only for the …rst agent, but for a few stages. This is done just to show how
this induction is done.
Let Nk be the set of agents identi…ed in Step (k) of the Tops Covering Algo-

rithm when applied to fN;Rg. (See De…nition 3.2.) Without loss of generality, let
us assume that there is an agent i belonging to N1 such that ªi (R) Pi ¹tci (R).

6

It should, therefore, be the case that Chi (N) µ ªi (R) ½ ¹tci (R). By construc-
tion of ¹tci (R), and given that ¹

tc satis…es individual rationality, we have that
¹tci (R) 6= fig. Hence, there must be an agent, say i1 such that

i1 2 ¹tci (R) \ªi (R) , and

Chi1 (N) " ªi (R) ,

hence ¹tci (R)Pi1ªi (R).
Now, let us consider that i1 states preferences Rtci1 . Note that, in such a case,

any agreements con…guration ¹ with Chi1 (N) " ¹ (i1), and ¹ (i1) 6= fi1g, fails to
be stable for

©
N;
¡
R¡i1 ; R

tc
i1

¢ª
. Hence, we have that

1. ªi1
¡
R¡i1 ; R

tc
i1

¢
= fi1g, or

2. Chi1 (N) µ ªi1
¡
R¡i1 ; R

tc
i1

¢
.

6Note that if there is not such an agent in N1, we can proceed as follows. We select R such
that there is an agent in N1 for which ªi (R) 6= ¹tci (R) holds. If such a pro…le does not exist,
we select the preferences pro…le R for which the agent with the lowest k (i) ful…lls this property.
Note that ªi (R) = ¹tci (R) will hold for all agents in N

k for k < k (i). Hence, the argument
throughout the rest of the proof can be followed by considering N n [k<k(i)Nk instead of N .
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If Chi1 (N) µ ªi1
¡
R¡i1; R

tc
i1

¢
, then i1 could manipulate ª at R via Rtci1 . Note

that, in such a case, the Tops Responsiveness Condition states that

ªi1
¡
R¡i1 ; R

tc
i1

¢
Pi1ªi1 (R) .

Therefore, strategy-proofness satis…ed by ª, implies that ªi1
¡
R¡i1; R

tc
i1

¢
must be

fi1g.
Furthermore, given that ¹tci is not a singleton, there should be an agent i2 in

¹tci (R) such that i1 2 Chi2 (N). This comes from the fact that i1 2 N1, and ¹tc

satis…es individual rationality.
Given that ¹tc (R) = ¹tc

¡
R¡i1 ; R

tc
i1

¢
, we have that

¹tci
¡
R¡i1 ; R

tc
i1

¢
Pi2ªi2

¡
R¡i1 ; R

tc
i1

¢
.

Hence, by applying the same argument as we did above, we have that, if agent i2
states preferences Rtci2, it should be the case that ªi2

¡
R¡fi1;i2g; R

tc
i1
; Rtci2

¢
= fi2g.

At this stage, we must consider the following two possibilities:

(a2) ¹
tc
i (R) = fi1; i2g. Then, Chi1 (N) = Chi2 (N) = fi1; i2g, which contradicts
that ª

¡
R¡i1; R

tc
i1

¢
was stable for

©
N;
¡
R¡i1 ; R

tc
i1

¢ª
, or

(b2) ¹
tc
i (R) 6= fi1; i2g. Then, there should be an agent, i3 in ¹tci (R) n fi1; i2g
such that fi1; i2g \ Chi3 (N) 6= ;.

Let select agent i3 such that i2 2 Chi3 (N).
Then, since ªi2

¡
R¡fi1;i2g; R

tc
i1
; Rtci2

¢
= fi2g, it must be the case that

Chi3 (N) " ªi3
¡
R¡fi1;i2g; R

tc
i1
; Rtci2

¢
.

If there is no agent i3 such that i2 2 Chi3 (N), then choose agent i3 such that
i1 2 Chi3 (N).
Given that i2 2 ¹tci (R), it must be the case that i2 2 Chi1 (N). Note that, in

this case, we have
ªi2

¡
R¡fi1;i2g; R

tc
i1
; Rtci2

¢
= fi2g , and

fi1gP tci1 S for any S 2 Ai1 not containing i2,
hence

Chi3 (N) " ªi3
¡
R¡fi1;i2g; R

tc
i1
; Rtci2

¢
.

Moreover, ¹tc (R) = ¹tc
¡
R¡fi1;i2g; R

tc
i1
; Rtci2

¢
. Let us now consider that agent i3’s

preferences were Rtci3 . From the arguments provided above, it must be that

14



ªi3
¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2; R

tc
i3

¢
= fi3g. Notice that, otherwise, i3 might manipu-

late ª at
¡
R¡fi1;i2g; R

tc
i1; R

tc
i2

¢
via Rtci3 .

We should now consider, again, the following two cases:

(a3) ¹
tc
i (R) = fi1; i2; i3g. Then,

[3k=1Chik (N) = fi1; i2; i3g ,
which contradicts that ª

¡
R¡fi1;i2g; R

tc
i1
; Rtci2

¢
was stable for the problem©

N;
¡
R¡fi1;i2g; R

tc
i1
; Rtci2

¢ª
.

(b3) ¹
tc
i (R) 6= fi1; i2; i3g. Then, there should be an agent, i4 in ¹tci (R)nfi1; i2; i3g
such that fi1; i2; i3g \ Chi4 (N) 6= ;.

Let us select agent i4 in accordance with the following priorities rule.

[1] i3 2 Chi4 (N). Then, since
ªi3

¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2 ; R

tc
i3

¢
= fi3g ,

we have that Chi4 (N) " ªi4
¡
R¡fi1;i2;i3g; R

tc
i1 ; R

tc
i2 ; R

tc
i3

¢
.

[2] If there is no agent satisfying [1], it must be that i3 2 Chi1 (N), or i3 2
Chi2 (N). We then select i4 such that

[®] i2 2 Chi4 (N) if i3 2 Chi2 (N). Note that, then we have thatChi4 (N) "
ªi4

¡
R¡fi1;i2;i3g; R

tc
i1 ; R

tc
i2 ; R

tc
i3

¢
because

ªi3
¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2 ; R

tc
i3

¢
= fi3g ,

and
fi2gP tci2 S for any S 2 Ai2 not containing i3,

or, if no agent satis…es [®],

[¯] i1 2 Chi4 (N) if i3 2 Chi1 (N). Since
ªi3

¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2 ; R

tc
i3

¢
= fi3g ,

and
fi1gP tci1 S for any S 2 Ai1 not containing i3,

we can also conclude, once more, that

Chi4 (N) " ªi4
¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2 ; R

tc
i3

¢
.

15



[3] Finally, if there is no agent satisfying either [1], nor [2], select i4 as follows

[®] i1 2 Chi4 (N) if i3 =2 Chi1 (N), and there is no i4 such that i2 2
Chi4 (N). Note that, in this case i3 2 Chi2 (N), i2 2 Chi1 (N), as
explained in Condition (a2) above, and i1 2 Chi4 (N). Henceforth, we
have that

Chi4 (N) " ªi4
¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2; R

tc
i3

¢
because

ªi3
¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2 ; R

tc
i3

¢
= fi3g ,

fi2gP tci2 S for any S 2 Ai2 not containing i3,
and

fi1gP tci1 S for any S 2 Ai1 not containing i2,
or,

[¯] i2 2 Chi4 (N) if i3 =2 Chi2 (N), and there is no i4 such that i1 2
Chi4 (N). Note that, in this case i3 2 Chi1 (N), i1 2 Chi2 (N), and
i2 2 Chi4 (N). Henceforth, we have that

Chi4 (N) " ªi4
¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2 ; R

tc
i3

¢
.

This is because

ªi3
¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2 ; R

tc
i3

¢
= fi3g ,

fi1gP tci1 S for any S 2 Ai1 not containing i3,
and

fi2gP tci2 S for any S 2 Ai2 not containing i1,

Note that, since i4 2 ¹tci (R) n fi1; i2; i3g, we must be able to …nd i4 to satisfy
any of the three cases above.
Now, note that stability of ªi4

¡
R¡fi1;i2;i3;i4g; R

tc
i1
; Rtci2 ; R

tc
i3
; Rtci4

¢
, will imply that

ªi4
¡
R¡fi1;i2;i3;i4g; R

tc
i1
; Rtci2 ; R

tc
i3
; Rtci4

¢
= fi4g , or

Chi4 (N) µ ªi4
¡
R¡fi1;i2;i3;i4g; R

tc
i1
; Rtci2 ; R

tc
i3
; Rtci4

¢
.

Henceforth, strategy-proofness for ª implies that fi4g must coincide with the
agreements con…guration ªi4

¡
R¡fi1;i2;i3;i4g; R

tc
i1
; Rtci2; R

tc
i3
; Rtci4

¢
.

We should consider, again the following two cases:
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(a4) ¹
tc
i (R) = fi1; i2; i3; i4g. Then,

[4k=1Chik (N) = fi1; i2; i3; i4g ,

which contradicts that ª
¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2; R

tc
i3

¢
was stable for the prob-

lem
©
N;
¡
R¡fi1;i2;i3g; R

tc
i1
; Rtci2 ; R

tc
i3

¢ª
, and

(b4) ¹
tc
i (R) 6= fi1; i2; i3; i4g. Then, there should be an agent, i5 in ¹tci (R) n
fi1; i2; i3; i4g such that fi1; i2; i3; i4g \ Chi5 (N) 6= ;.

We can now select agent i5 following a priorities rule similar to the previous
one (for agent i4), i.e., …rst, select i5 such that i4 2 Chi5 (N); or, if such an agent
does not exist, and since i5 2 ¹tci (R), it must be that i5 2 [3k=1Chik (N). Hence,
we can replicate the arguments on the steps [2] and [3] above exhausting all the
possibilities, and showing that ªi5

¡
R¡fi1;i2;i3;i4g; R

tc
i1
; Rtci2 ; R

tc
i3
; Rtci4

¢
must be fi5g.

Since ¹tci (R) has a …nite number of agents, an inductive argument help us to
recover this set:

¹tci (R) = fi1; : : : ; ir¡1; irg ,
in such a way that agent ir:

(a) Could manipulate ª at
¡
R¡fi1;:::;ir¡1g; R

tc
i1 ; : : : ; R

tc
ir¡1

¢
via Rtcir or,

(b) ª
¡
R¡fi1;:::;irg; R

tc
i1
; : : : ; Rtcir

¢
is not stable for

©
N;
¡
R¡fi1;:::;irg; R

tc
i1
; : : : ; Rtcir

¢ª
,

which contradicts the initial hypothesis on ª’s properties.

5. Conclusions

In this paper we have explored the existence of economic environments where
the problem of reaching stable coalition structures can be solved satisfactorily.
The property that characterizes this environment can be understood as a natural
generalization of what Alcalde and Romero-Medina (2000) called Essentiality.
This generalization introduces a new feature to the core of the problems that

we study. We show that the core is not only non-empty, but also that it is not
always a singleton. This is why we explore the possibilities of agents’ strategic
behavior when they face mechanisms to select stable agreement con…gurations.
We show the existence of mechanisms for which agents have no incentive to mis-
inform about their true characteristics (or preferences), when they are restricted

17



to satisfy the Tops Responsiveness condition. We also deal with the problem of
characterizing the (non-empty) family of stable mechanisms. Our main result is
therefore quite strong: Whenever a strategy-proof mechanism for selecting sta-
ble outcomes is required, we have a unique option, that of employing the Tops
Covering Mechanism.
The above result contrasts with the …ndings of Sönmez (1999), who shows

that in a more general setting, the existence of strategy-proof stable rules is con-
ditioned to the case of frameworks whose core is (essentially) a singleton. Provided
that, as shown by Example 4.4, when agents’ preferences satisfy the Tops Respon-
siveness condition the core is not necessarily single-valued (in Sönmez’s terms),
we should provide arguments for such an apparent contradiction. Sönmez’s re-
sult rests on a condition which might be considered strong in some environments,
namely each agent can truncate her preferences at the level she wants to. In fact,
Sönmez’s conditions state, in particular, that given two alternatives, x and y, and
an agent’s preferences Pi if xPiyPiai holds, there is another agent’s preferences, say
P 0i satisfying that xP

0
i aiP

0
i y, where declaring aiP

0
i y is to say that alternative y is

considered individually irrational by agent i. Nevertheless, this condition is never
satis…ed by frameworks that satisfy the Tops Responsiveness condition. This is
the reason why there is no contradiction between our result and the Sönmez’s one,
in contrast to what could seem apparently.
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APPENDIX: Proof of Theorem 3.4

We shall now deal with the study of the Tops Covering Algorithm. We …rst show,
Lemma 5.1, that it converges in a …nite number of steps; we then show, Lemma
5.2, that our rule provides an agreements con…guration for any problem; …nally, we
proceed to see that this agreement con…guration is stable, relative to the agents’
preferences.

Lemma 5.1. Let fN;Rg be an agreements problem with agents’ preferences that
satisfy the Tops Responsiveness Condition. The Tops Covering Algorithm then
converges in a …nite number of steps.

Proof. We …rst concentrate on showing that N1 in Step (1) is non-empty.
The proof is completed by an iterative argument on the following steps.
By following De…nition 3.1, we can construct, for each agent i in N , the set

¿ i (N). Let us assume that N1 in Step (1) is empty. This means that, for each
i 2 N , there is some agent i0 2 ¿ i (N), such that ¿ i0 (N) ½ ¿ i (N). Let us
construct the sequence of individuals fikg1k=0 such that i0 = 1, and, for each
k ¸ 1, ik satis…es that ¿ ik (N) ½ ¿ ik¡1 (N). Since the set of agents is …nite, this
sequence must have a cycle. Henceforth, there must be two terms, say k and k0,
such that ik = ik0 . By transitivity of the (strict) inclusion relation, we have that
¿ ik (N) ½ ¿ ik (N). A contradiction. Henceforth, there should be an agent i such
that ¿ i (N) µ ¿h (N) for all h 2 ¿ i (N), i.e. N1 is non-empty.

Now, let us consider the problem7
n
NnN1; RNnN

1
o
, where N1 is the set de-

scribed in the Step (1) of De…nition 3.2. Note that, by using the above argument,
we have that we could also …nd a non-empty set of agents in this problem, say
M , playing the same role as N1 does in fN;Rg. Since NnN1 is the set of agents
considered in Step (2) of De…nition 3.2, we conclude thatM is precisely the set N2

in the description of the Tops Covering Algorithm. Since N is …nite, an inductive
argument on the set of agents yields the desired result.

7We follow the next notation. Given a problem fN;Rg, and a set of agents S, let ©S;RSª
denote the problem whose agents are in S, and their preferences are restricted to S in a natural
way; i.e., for any i in S and two sets of agents, say T and T 0 contained in S with i 2 T \ T 0, we
have that TRSi T

0 if, and only if, TRiT 0.
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Lemma 5.2. Let fN;Rg be an agreements problem whose agents’ preferences
satisfy the Tops Responsiveness Condition. Then, the output of the Tops Covering
Algorithm is an agreements con…guration for fN;Rg.

Proof. Let us assume that the algorithm stops after t steps. Let us consider
the sets Nk, k = 1; : : : ; t, that are produced at each step of the Tops Covering
Algorithm. Let suppose that agent i belongs to N1, we show that, in such a case
¹tci (R) µ N1. Note that, by construction, it should be the case that, for all i0 in
¹tci (R), ¿ i (N) = ¿ i0 (N). Since ¿ i (N) µ ¿h (N) for each h 2 ¿ i (N), this property
must also hold for agent i0. Hence, for all i0 in ¿ i (N), ¹tci0 (R) = ¹

tc
i (R) = ¿ i (N).

Considering that the second step of our algorithm can be described as the …rst
step applied to the problem

n
NnN1; RNnN

1
o
, we can conclude that, for each i

in N2, and any i0 in ¿ i (NnN1), ¹tci0 (R) = ¹tci (R) = ¿ i (NnN1). Applying an
inductive argument to the above statement, it is straightforward that, for any set
Nk, k > 1, and each two agents i in Nk, and i0 in ¿ i

¡
Nn [k¡1j=1 N

j
¢
it should be

the case that ¹tci0 (R) = ¹
tc
i (R) = ¿ i

¡
Nn [k¡1j=1 N

j
¢
.

To conclude this section, we shall show that, for any R satisfying the Tops Re-
sponsiveness Condition, the agreements con…guration ¹tc (R) is stable for fN;Rg.

Proposition 5.3. Let fN;Rg be an agreements problem. If agents’ preferences
satisfy the Tops Responsiveness Condition, the Tops Covering Algorithm produces
an agreement which is stable for fN;Rg.

Proof. Let the problem fN;Rg satisfy the Tops Responsiveness Condition, and
let ¹tc (R) be the output of applying the Tops Covering Algorithm to fN;Rg.
Assume that ¹tc (R) is unstable, then there should be a non-empty set of agents,
say S, such that, for each i in S, SPi¹tci (R).
For each agent i, let k (i) denote the stage of the algorithm in which this agent

reach her agreement8 and let us de…ne the set Ni = Nn[1·k<k(i)Nk. By construc-
tion, it should clearly be the case that, for each i in S, Chi (Ni) µ ¹tci (R) µ Ni.
Let us select an agent {̂ in S with the lower k (̂{), i.e., for each i in S,

k (̂{) · k (i). By De…nition 2.2, and the fact that S blocks ¹tc (R), we have
that Ch{̂ (N{̂) µ S, and ¹tc{̂ (R) * S. We must therefore consider two possibilities:
First, that if S is a subset of ¹tc{̂ (R), and hence k (i) = k (̂{) for any agent i in
S. Then, ChS (N{̂) = S, which contradicts the fact that ¿ {̂ (N{̂) were the smaller
set containing Ch{̂ (N{̂) such that Ch¿ {̂(N{̂) (N{̂) = ¿ {̂ (N{̂). The second possibility

8This formulation was introduced in the proof of Theorem 4.3.
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is that there exists an agent, say i0 in S \ ¹tc{̂ (R) such that Chi0 (N{̂) * S. This
implies that ¹tci0 (R)Pi0S, which contradicts the conclusion that i

0 belonged to the
blocking coalition S.
Note that the fact stated in Theorem 3.4 is a direct consequence of the above

proposition.
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