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COMMUNICATION AND AUTOMATA

Pen§lope Hern§indez and Amparo Urbano

ABSTRACT

The main contribution of this paper is to present a new procedure to reach cooperation
through pseudorandom schemes in the finitely repeated Prisoner’s Dilemma game, when strate-
gies are implemented by automata. The equilibrium path consists of a communication process
followed by a coordinated play. The choice of the set of communication messages is efficient
since it is the minimum set with respect to the whole coordination procedure. This allows us
to reach efficient outcomes with automata complexity lying between the ones already offered
in the literature.
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1 Introduction

Cooperation in the finitely repeated Prisoner’s Dilemma cannot be achieved under fully rational
players. Bounded rationality assumptions are needed to obtain the efficient payoff at the
repeated game equilibrium. Specifically, Neyman (1985, 1998, N hereafter), Rubinstein (1986),
Zemel (1989) and Papadimitriou and Yannakakis (1994, PY hereafter), have shown that, when
player implement their strategies by means of finite automata, cooperation can be obtained as

the equilibrium outcome in the finitely repeated Prisoner’s Dilemma.

The key point to achieve most of these authors’ result is to 1l up players’s complexity in such
a way that they cannot deviate from the equilibrium path. When dealing with large automata
the equilibrium entails mixed strategies, whose main concern, in turn, is the choice of the set of
pure strategies that belongs to the support of the mixed strategy equilibrium. The cardinality
of this set is rather big; in fact, it is an exponential number on the size of the automata. To
solve the choice of this set the equilibrium construction makes use of communication schemes,
which play two roles: on one hand, they determine the set of plays; and on the other they
specify the one which will be actually played in equilibrium.

Our paper addresses cooperation in the finitely repeated Prisoner’s Dilemma, when strate-
gies are implemented by finite automata, by means of a pseudorandom process. Given a fixed
number of automata states, the pseudorandom process determines the set of possible plays to
achieve the cooperative outcome. The choice of the specific play is undertaken by a commu-
nication scheme. Players follow a coordinated play to check that they are actually expending

their automata full capacities along the equilibrium path.

It is important to point out that the underlying assumption of bounded rationality (au-
tomata framework) is what allows us to translate mixed strategies into pseudorandom pro-
cedures. The advantage of such procedures is that in one hand they minimize the costs of
communication and on the other coordination between players can be more efficiently reached
using specific sequences which are implemented by deterministic algorithms which an automa-

ton can accept.

The equilibrium path consists of a communication process followed by a coordinated play. In
the last part of this play, a verification scheme is carried out. The choice of the set of messages
is vital in our communication process and thus the corresponding optimal set is related with the

efficiency of the coordination procedure. We construct the minimal set of messages such that



it deters deviations by players (it fills up the players’ automata capacities) and it guarantees

the cooperative payoffs.

The main features of the construction are the following: 1) the choice of the set of messages
is efficient since it is the minimum set with respect to the whole coordination process; 2)
the messages used to determine a given coordinated play are identified by a pseudorandom
process and 3) the communication process is optimal with respect to the coordination scheme,
i.e. it is a "short” communication to select a specific play. This is achieved by choosing a
"short” relationship among messages from the communication phase and those belonging to

the verification play.

The main result is stated in terms of the size of the smallest automaton that implements the
cooperative outcome and which depends on both the " j approximation to the efficient outcome
and the number T of repetitions. Our upper bound lies between that of PY (1994) and the one
of N (1998). Namely, our upper bound includes that of PY (1994), but, in turn, it is included in
the one of N (1998). The reason behind this last relationship between Neyman’s upper bound
and ours is that the Prisoner’s Dilemma game does not belong to the class of games where the
communication phase dictates the " japproximation to the efficient outcome. In the class of
games where this distortion rate is only generated by the communication process our bound is
the largest bound to achieve cooperation in a finitely repeated game played by finite automata

and it improves all the other bounds already offered in the field.

The paper is organized as follows. Section 2 sets up the model and enumerates several
known results on play complexity. The main result is presented in section 3 and in section 4
we offer an informal sketch of the equilibrium path. Pseudorandom procedures are introduced
in section 5 where, in particular, we analyze Linear Feedback Shift Registers and present some
of their properties. The main result is proved in section 6, where we characterize the automata

bounds and the equilibrium strategies are constructed . Finally, section 7 concludes the paper.



2 The model

2.1 The Prisoner's Dilemma

Let PD be a Prisoner’s Dilemma game. P D=(f1; 2g; (Ai)i2f1;2g; (ri)izfl;Zg) where f1;2g is the
set of players. Al = fC; Dg is a finite set of actions (or pure strategies) for player i , where C
stands for cooperation and D for defection. r' : A =A'£A? §¥ R is the payoff function of

player i. The payoff matrix is as follows:

Defect Cooperate
Defect| 1,1 4,0
Cooperate| 04 3,3

For any finite set B we denote by A(B) the set of all probability distributions on B. An
equilibrium of P D, is a pair (%!;%2) 2 A(A) £ A(A?) such that for every i and any strategy of
player i, ¢' 2 Al ri(¢'; %Y - r'(%%;%2): If % is an equilibrium, the payoff vector r(%) is called
an equilibrium payoff. The only equilibrium of PD is (D;D) and denoting by E(PD) the set
of all equilibrium payoffs of PD, E(PD) = (1;1). Let uj(P D) be the individual rational payoff
to player i in pure strategies, i.e., Uj(P D) = min max r'(a';ai') where the max ranges over all
pure strategies of player I, and the min ranges over all pure strategies of player 3 j I. In our
PD game uj(PD) = 1.

2.2 The “nitely repeated game PD'

;From PD we define a new game in strategic form PDT which models a sequence of T plays
of PD called stages. At each stage, each player is informed of all actions played before. Thus,
the information available to each player before choosing his action at stage t is all past actions
of the players in previous stages of the game. Formally, let H¢;t = 1;:::; T, be the cartesian
product of A by itself t j 1 times, i.e.: Hy = (A)ti1, with the common set theoretic identification
Ao = ®, and let H = [¢_oH:. A pure strategy %' for player i in PDT is a mapping from H
to A% . H 1 AL Obviously, H is a disjoint union of H¢, t = 1;::;; T and 3/4{:Ht ¥ Al s the
restriction of %' to Hy. We denote the set of all pure strategies of player i in PDT by X'(T).
Any 2-tuple %=(%1;%2) 2 £51(T) of pure strategies induces a play V(%) = (V1(%); 5 11 (%))
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with 1¢(%) = (V1(%); ¥2(%)) defined by 11 (%) = (%*(®);%*(®)) = %(®) and by induction
VI%) = % (V1 (%); o Ve 1(%)) = (Vo (%) o0 Ve 1 (%0)):

Let rr (%) = r(!l(%))+:;+r(!T(%)) be the average payoff of strategy %

Two strategies %' and ¢
strategies %', Ve (%'; %11 = V(s %) forevery 1 - t - T.

An equivalence class of pure strategies is called a reduced strategy.

' of player i in PDT are equivalent if for every 3 j i tuple of pure

2.3 Finitely repeated games played by nite automata

A finite automaton for player i that implements strategies in repeated games is a tuple M' =<

Q' ql; ' g' >, where:
2 Q' is the set of states
2 g} is the initial state
2 f!is the action function, f': Q' ¥ Al

2 g' is the transition function from state to state g' : Q' £ Ait ¥ Q!

The size of a finite automaton is the number of its states.

We define a new game in strategic form P DT (my; m,) which denotes the T stage repeated
version of P D, with the average payoff as an evaluation criterion and with all the finite automata
of size m; as the pure strategies of player i, i = 1;2. Let X'(T;m;) be the set of pure strategies
of PDT(mj;m,) that are induced by an automaton of size m;.

A finite automaton for player i can be viewed as a prescription for this player to choose his
actions in each stage of the repeated game. If at state q the other player chooses the action
tuple ai', then the automaton’s next state is g'(q;ai') and the action to be taken at stage 1 is
fi(g"). The action in stage 2 is F(g'(q"; af ")) where a}' is the action taken by the other players

in stage 1. More generally, we define inductively,

o' af'; mal) = o0 (@ af )il



where ajii is the action of player jli at stage J; the action prescribed by the automaton for
Player i at stage t is f1(g'(q';af'; :;;al!))):

For every automaton M' for player i, we consider 3/4,iv|i the strategy in PD' such that
Wby (ag-a;1) = Fl(gi (g als o atiiil)): Moreover, %! for Player i in PDT is implementable by
the automaton M' if %' is equivalent to %}, i.e.: for every ¢ 2 Z2(T); V(%' ¢) = V(% é):

A finite sequence of actions (ai;:::;a;) and a pure strategy %' are compatible, if for every
1<s<t %(a;:;as;1) = al: Let A"(%') be the set of all sequences of actions of length n
that are compatible with % We can consider for any sequence of actions (ay;::;;a;) and %' the
new strategy (%'jas;::;a;) in PDT by

(%' jag; i as)(by; by = %' (ag; i as; by iy by

The main results in automata complexity have been given by Kalai and Stanford (1988),
Kakai (1990) and Neyman (1998, 1997). The number of different reduced strategies that are
induced by a given pure strategy %' of player i in PDT (my; m;) and all %'-compatible sequences
of actions provides a first measure of the complexity of % (Kalai and Stanford, 1988). Neyman

(1998) showed that this measure equals the size of the smallest automaton that implements %.

2.4 Play complexity

As noted above the complexity of a strategy %' can be defined by the size of the smallest
automaton that implements it. Next we define the complexity for each player on plays and on
sets of plays of the repeated game. Let 1 be a play. We define the i j th player complexity of
a play ¥, comp'(1); as the smallest complexity of a strategy %' of player i which is compatible
with I

comp' (1) = inf fcomp'(%) : % 2 X! is compatible with 1g:

Let Q be a set of plays. A pure strategy %' of player i is conformable to Q if it is compatible
with any ! 2 Q: The complexity of player i of a set of plays Q is defined by the smallest
complexity of a strategy %' of Player i that is comformable to Q.

comp'(Q) = inf fcomp'(%) : % 2 X' is comformable to Qg

We consider the complexity of some particular plays which will be used in the proof of the
main result. Before stating the main result it is useful to enumerate several results on complex-

ity. We follow Neyman’s approach (1998), however they are included here for completeness.

The next lemma states a lower bound of the complexity of a sequence of actions of length t:



Lemma 1 Let a = (a;::;;a;) 2 A% Then comp'(a) - t:

Leta= (a1;:;ar) 2 Atand b = (by; iy bs) 2 AS; and denote by a+b = (ag; :::;ag; by; i bs) 2
A'™S the concatenation of two histories. The next lemma states the complexity bound of such

a concatenation.

Lemma 2 Leta = (as;::;;a;) 2 Atand b = (by; i1 bs) 2 AS: Then comp'(a+b) _ max(comp'(a); comp!(

e

For a = (az;::;;a¢) 2 At and a positive integer d, define d ® a by inductionon d: 1ra =a
and (d+1)sa=dra+a:

The complexity of a sequence of actions that changes in the last stage is stated next.
Lemma 3 Leta = (a;;::;a;) 2 At with a; = a, = 1 = ag;1 and a;,; 6 af: Then comp'(a) = t:

Let a = (az;:5ar) 2 At and b = (by; i bs) 2 AS; and s with min(t;s) _ S j 1 then define

a=sbif a, = by for every r <s:

S

A lower bound for the complexity of a play that consists of a cycle (t@a+ b) repeated d

times and there is a deviation of player 1 from the cycle is the following,

Lemma 4 Let a = (a;;:5a¢) 2 A and b = (by;5;by) 2 A" with al & bi;t . 0Oand d _ 1:
Assume that ! = (1;::5; 1) 2 AS with (d j 1)(tk+n)+tk+1<s - (d+1)(tk +n) and
do(tma+h)=¢vand ((d+1)a(tea+b))l & i Then comp'(¥) _ d(t+1):

Finally, let £ : AL ¥ A2 be a 1-1 function and let a = (as;::;a,) 2 A" be a play with
az = f(a}) for every 1 - t - n, then a is called a coordinated play. We need a complexity

lower bound for a play that consists of a coordinated periodic play. This is given next.

Lemma 5 Let a = (a;::;;a,) 2 A" be a coordinated play, b 2 A with b* & ai; and d 2 N:
Then comp(dea+b) _ (dj 1)n+1:



3 The main result

The main result addresses cooperation in the finitely repeated Prisoner’s Dilemma for subexpo-
nential size (of the number of repetitions) of the smallest automaton which implements it. The
equilibrium is characterized by conditions on the size of automata. Let m; and m; denote the
automata size of players 1 and 2, respectively. The equilibrium constraints on the automata
sizes ensure both that a payoff in a sufficiently small neighborhood of the efficient outcome (3,3)
is generated by strategies that are implemented by automata of sizes which are less than my
and mjy; and that the equilibrium path is supported by pure strategy punishments. Moreover,

these conditions, in turn, depend on both the " japproximation to the efficient outcome and

the number T of repetitions.

We construct an equilibrium which entails mixed strategies for both players. Let player 2 be
the one with the bigger automaton size. Player 2 follows a mixed strategy to generate enough
randomization to sustain the proposed equilibrium: payoffs " j close to the cooperative payoffs.
This deters player 1’s deviations by forcing him to fill up his automaton complexity. Player 1
also follows a mixed strategy which supports the proposed coordination by precluding player
2’s deviations.

Our approach is new in the literature. We apply a deterministic algorithm to produce
pseudorandom sequences. These sequences look uniformly distributed on a finite set and they
are used to construct the support of the equilibrium mixed strategy of player 2. Pseudorandom
sequences are selected by two criteria: firstly their complexity and secondly their optimal
codification. The first criterion bounds the complexity of the equilibrium path by selecting
the subset of Player 2’s pure strategies. The second criterion allows to construct a ”short”
communication phase to select a specific play which implies stronger security in Player 1’s

strategy in terms of precluding a larger number of Player 2’s deviations.

Thus, we present an alternative construction to those of N (1998) and PY (1994). First,
our pseudorandom process allow us to determine a unique equilibrium play in contrast with PY
(1994)’s approach, where for each communication sequence ( each ”business card”) they have
to design a different ”fixed up” phase to preclude deviations from the equilibrium path, i.e., all
the play after a communication message is different from all the one after a distinct message.
Second, our communication phase is optimal with respect to the verification play in contrast

with N (1998)’s communication phase, whose length is about twice the optimal length.

The equilibrium condition in terms of the upper bound of the smallest automaton imple-



menting the cooperative outcome and which depends on both the " japproximation to the
efficient outcome and the number T of repetitions, is about T3 and it lies between that of
PY (1994) and the one of N (1998). Namely, our upper bound includes that of PY (1994),
which is about T2, but, in turn, it is included in the one of N (1998), which is exp("*T). How-
ever, although N (1998)’s bound is not improved, our construction (optimal communication
scheme) is powerful enough to be considered as an alternative approach for a wider class of
games. For instance, when dealing with games where the communication phase dictates the
" j approximation to the efficient outcome our approach performs better than the other con-
structions in the literature. Unfortunately, the Prisoner’s Dilemma does not belong to this class

of games.

The next theorem states our main finding:

Theorem 1 For every " > 0; suzciently small and for T and mg large enough if mp <
m; < "?T3 and m, > T, then there exists an equilibrium for PDT(m¢;m,) in which the

expected average payo® to each player is at least 3-".
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4 The scheme of the play

In this section we present the scheme of the play to reach cooperation in the finitely repeated
Prisoner’s Dilemma game. The plays along the equilibrium path are divided into a communi-

cation phase followed by a play phase.

Players follow first a phase of communication where the smart player, say player 2, sends a
signal. This signal specifies one of the finitely many plays of the repeated game to be played
in the play phase and it uses two actions that we label 0 and 1. Since player 2 proposes the

plays, signals have to be independent of the associated payoffs to each of them.

Player 2 plays a mixed strategy during this phase and Player 1 responds properly to any
message. The action of Player 1 is independent of the signal that player 2 is sending. Thus, the
specification of the set of messages and the correspondence with the set of plays is crucial in
our construction, since we associate each message from the communication phase with a unique

play in the play phase.

After the communication phase the equilibrium play enters in the play phase. This phase
consists of a cycle of action pairs which is a coordinated play!. The cycle is repeated along the
play until T. The length of the cycle does not depend on the signal sent by player 2. Each
one of the cycles has associated payoff approximately equal to the cooperative payoff. Thus, in
any one of the proposed plays, player 1 has no incentive to deviate prior to the very last stages
of the finitely repeated game. The cycle has two parts: the regular play and the verification
play. The former has most of the action pairs as ”cooperate, cooperate”. The last part of the

coordinated play is called the verification play.

Player 2 designs a verification play to check that player 1 has spent all his states following
the play. It consists of a coordinated play with the identity as the function between A! and A?
i.e., both players play the same action. In words, both players follow a monitoring phase such
that the sequence of actions can be understood as a coordination process that determines each
pure strategy. Nevertheless, players lose some efficiency because they will play half of the time
the action pair (0;0) with payoffs (1, 1), i.e.: the "minmax value”, instead of the action pair
(1;1) with payoffs (3, 3). The sequence of actions played in this phase corresponds with the

output of a LFSR whose input is the ”seed” which composes the message or signal sent in the

la = (ag;::;an) is a coordinated play if there exists a 1-1 function f : A ¥ A? such that a? = f(a}) for
everyl-t - n:

11



communication phase. Thus, there exists a one to one relationship between each verification
play and each message from the communication phase.

Therefore, the verification scheme is constructed such that it satisfies three properties. First,
it is balanced (the number of 1’s is equal to the number of 0’s) to deter player 2’s deviations by
selecting the best payoff sequences. Second, this phase generates the rate of perturbation, ";
with respect to the cooperative payoff. Finally, player 2 fills up player 1’s capacity by generating
enough pure strategies so that the number of remaining states is sufficiently small. In this way,
player 1’s deviations from the proposed play by counting up until the last stage of the game
are avoided. For instance, player 1 could be able to select just one proposed play and deviate
in the last stage of this play while repeating the cycle in all other proposed plays. Similarly,
player 1 could increase his own payoff by neglecting a subset of plays. Also the repetition of

the cycle precludes sophisticated deviations by player 1.

A clarification is now at hand. Player 1 has to process the message sent during the com-
munication phase. Given our automaton framework we minimize the information processing of
this player by using the same states to process the signal and to follow the regular part of the
different cycles. We refer to them as the "reused states” of player 1. However, this introduces
an additional difficulty since these states of the automaton of player 1 admit both actions 0
and 1. This entails that there are deviations of player 2 that might be unpunished. If player 2
knew exactly the states that admit both actions, he could take advantage over them in future
stages of the game. These deviations can only be undertaken by player 2 in the play phase,
since the sequences from the communication phase are balanced and thus player 2 is indifferent
among them. To avoid this problem player 1 uses a mixed strategy whose support consists of
the minimal subset of pure strategies which are conformable with the proposed plays and such
that it generates enough uncertainty to hide the location of the reused states. Player 1’s mixed

strategy is constructed by a uniform distribution in this minimal subset.

Note that every player’s behavior plays a different role in the game. The signaling activity
of player 2 has two purposes: how to coordinate and how to fill up player 1’s capacity. And
these are the goals of the mixed strategy of player 2. On the contrary, player 1’s role consists of
supporting the coordination proposed by player 2 by means of a mixed strategy. To this end,

player 1 builds a mechanism against no detectable deviations of player 2.

12



5 E=cient pseudorandom procedures: security and com-
plexity

5.1 Pseudorandom sequences and automata

Reaching efficient outcomes in the finitely Prisoner’s Dilemma when players’ automata sizes
are sufficiently large involves the play of mixed strategy equilibria. The role of mixed strategies
with finite automata is twofold. On the one hand, they allow players to reach more efficient
payoffs. On the other hand, they serve the purpose of deterring deviations. To select a mixed
strategy over the set of finite automata is to choose a subset of automata over a support with
an exponential number of automata?. Coordination in this process is crucial since players
have to share the same information. Therefore the problem is how to select the same subset.
Obviously, there is not a unique efficient subset. Thus, reaching an efficient payoff can be

viewed as equivalent to selecting a set of finite automata.

In our model, this problem can be understood as finding out an algorithm for player 2 such
that the coordination can be more efficiently reached using specific sequences. Moreover, in
the automata framework these sequences have to verify a complexity requirement. Namely,
each sequence has to be implemented in a fixed number of states. Thus, we use sequences with
pseudorandom behavior because their complexity is fixed. In other words, the length of the

sequences and the associated complexity coincide.

In contrast with previous analysis in the literature (N,1998; PY, 1994) we look for random
sequences implemented by deterministic algorithms that an automaton can accept. Obviously,
a sequence produced by a deterministic automaton is not random. However, we generate
deterministic sequences that pass various tests for randomness; such sequences are called pseu-

dorandom sequences and they are a subset of all the sequences of a given length.

Pseudorandom generators® have the remarkable property of being efficient ” amplifiers /expanders”
of randomness, at a low cost. Using very little randomness -in form of a randomly chosen seed-

they produce very long sequences which look random by efficient algorithms. Under the au-

2The number of automata with size at most m is of the order of an exponential function of m logm: See

Neyman(1997).
3Pseudorandomness has been extensively used in Modern Cryptography. The reason is that the imple-

mentation of all cryptographic tasks requires a lot of "high quality random bits" at a low cost. See Gossher
(2000).
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tomata framework it is sufficient to guarantee that the automaton size is equal to or bigger

than the length of the sequence.

We apply a pseudorandom process in the verification play. This process produces uniformly
distributed sequences in a binary alphabet which ensure that their associated payoffs are the
same for each of them.

More specifically, the use of pseudorandom sequences in the verification play guarantees
on one hand the coordination of players in the set of pure strategies which are the support of
player 2’s mixed strategy and on the other the independence of player 2 from the proposed plays.
Pseudorandom sequences also identify the complexity of the coordination procedure. Player 2’s
mixed strategy is determined by the output of the pseudorandom generator of the verification
play. Since the support of player 2’s mixed strategy is related with player 1’s complexity,
then both players’s equilibrium complexity is determined by the output of the pseudorandom
generator.

Moreover, under our construction, the input of the pseudorandom in the verification play
is the seed which composes the signal from the communication phase. The length of the
communication phase is about (of order of magnitude) the logarithm of that of the verification
play. The relationship between the two lengths can be understood as a codification issue
and thus we can consider the set of signals as the codification of the verification play. In
this sense our codification is almost optimal (by Information Theory, Shannon, 1948) and it
produces a short communication path to select a specific play. This property is important since
on one hand it minimizes the number of reused states of Player 1 which, in turn, minimizes
deviations by player 2 and increases the security of the equilibrium path; and on the other a

short communication allows for a faster approximation to X.

Thus, given the complexity of player 1, the pseudorandom generators determine a given

security which in our context means to preclude both players’ deviations.

From an implementation point of view, a commonly employed method of generating pseu-
dorandom sequences is based on the use of suitable linear recurrence relationships in a finite
field of two elements (F,, henceforth). Sequences in finite fields whose terms depend in a simple
manner on their predecessors are of importance for a variety of applications. Such sequences
are easy to generate by recursive procedures, which is certainly an advantageous feature from
a computational viewpoint, and they also tend to have some useful structural properties.

The next section presents formally the Linear Feedback Shift Register procedure, LFSR.

14



The LFSR can be produced by machines with a simple hardware. Sequences generated by an
LFSR are n-periodic. This means that the procedure is implementable by an automaton since
sequences have a finite period, in contrast with other generators of pseudorandom sequences

which need a sophisticated hardware.

5.2 Linear Feedback Shift Registers

An n-stage Linear Feedback Shift Register (LFSR) is a procedure to generate pseudorandom
sequences. It consists of a shift register Ry = (In; nj1; 1), the seed, and a tap sequence
T = (th; th;1; 5 t1) where each rj and t; is a binary digit. Let H be the square matrix, where
the first row is the vector T, the n j 1 minor is the identity matrix and the last column is a
vector of 0's. By induction, let Rj = HR;;1, for i = 1;:::2" j 1, where

o 1

0O 0 ¢¢ 0 0 O

0 tte 0 0 O
H=B 0 0 1 ¢ 0 0 O
0 e 1 0 O
¢ttt 0
Consider the output matrix, whose columns are the different R;, with 1 = 0;1;:::n. The

output of the LFSR is the last row of such a matrix.

An n-stage LFSR generates a pseudorandom bit string. The randomness properties of this
sequence depend on the characteristic polynomial T(X) 2 F; associated with the tap sequence
T. Specifically, the polynomial

T(X) =t X" + to; XMLty x + 1

is formed by the elements of the tap sequence plus the constant 1.

A sequence generated by an LFSR with primitive polynomial* is called an ”n-sequence”.
The length of the sequence does not depend on the initial values, i.e. the ”seed”. Also the
sequence has a period of 2" j 1 nonzero bit sequences before repeating itself, which means that

the period is maximal. Moreover the length of R? is the logarithm of that of the output, which

4A primitive polynomial of degree n is an irreducible polynomial that divides x2" i1 + 1 but not x¢ + 1 for
any d that divides 2" + 1.
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can be understood as an optimal codification property. Sequences generated by a different asso-
ciated polynomial such as an irreducible polynomial or a factorizable polynomial, have different
properties. For instance, the period of the output produced by an irreducible® polynomial is
a divisor of 2" j 1; which means that the period may not be maximal; and the length of the

output generated by a factorizable polynomial depends on the seed.

The next example shows how to generate pseudorandom sequences by an LFSR with prim-
itive polynomial. Let T(X) = X* + X + 1 be a primitive polynomial of degree 4 on a Galois
field GF (2). Let Ro = (0;1;1;0) be the seed. The output of the LFSR associated with this

polynomial is produced in the followmg Way,

O O 1
1 001 0
1 000 1 0
Let Rl =H Ro = g g = g
0100 1 1
0010 0 1
O 1 O 1 0 1
1 00 0 1
1 00 0 0
Let R2 =H Rl = g EI g
010 1 0
0 01 1 1
We calculate R;j for i = 0;:::; 14: The output vector is represented by a matrix with 4 rows

and 15 columns (from Ry to Ry4 ). Notice that columns are different from each other.

o 1
001000111101CO01T1
glOOlOOOllllOlOlg
11001000111 1O010
01 100100011T1T1TQ071

The output of the LFSR associated to T (X) corresponds with the last row of the above

matrix: i.e.,
Py -

01 10010O0O0O111101
Notice that Ris = HRy4 = (0; 1;1;0) = Ro: Hence, the period of the LFSR associated with

the primitive polynomial T (X) is 15, which is maximal since 15=2% j 1:

SA polynomial T(x) 2 K [x] is irreducible if there are no polynomials R(x), and S(x) 2 K [x], and with
R(X) & I and S(X) & I, such that T (x) = R(X)S(x):
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5.3 Properties of LFSR with primitive polynomial:

The main properties of pseudorandom sequences generated by LFSR with primitive polynomial
are that their output length is independent of the seed, they have maximal period and their
codification is optimal, and thus they provide with the necessary conditions® to mimic uniform
random sequences. These pseudorandom sequences can be expected to have some statistical
properties satisfied by those sequences of independent random variables which attain each value
0 and 1 with probability % Thus, the number of blocks of either ones or zeros has to be the
same. This means that the relative frequency of each bit will approach % in the long run, or in
other words, that sequences are balanced. Also, the relative frequency of two successive 0’s (or
of two successive 1’s) will approach % in the long run and so on. More generally’, for any given
block of m bits the relative frequency of this block among all the blocks of m successive bits
in the sequence will approach 2™ in the long run. This property is known as the distribution

test and the serial test.

The sequences produced by our LFSR with primitive polynomial satisfy the above require-
ments. To see that let b = (by;::ibm) 2 FJ", where F; is a finite field with two elements. Let
Z(b) be the number of N, 1- n - r j 1; where r is the sequences’ period, i. e., r =2™ j 1, and
such that Sp+i;1 = bi for 1 - 1 - m: The case m = 1 corresponds with the distribution test.
The case m _ 2 corresponds with the serial test for blocks of length m. The following result

shows that Z(b) is equal to the number r2i™ provided that m is not large.

Proposition 1:(Nidl and Niederreiter, 1983)
If1-m - kandb2F]", then for any kth-order maximal period sequence in F, we have

okim ¢ 1 forb=0

Z(b) =
®) 2Kim for bh 6 0

5These properties are called ""the Golomb's randomness postulates'. They were one of the ~rst attempts to
establish some necessary conditions for a periodic pseudorandom sequence to look random.
"For a more complete analysis, consult Nidl and Niederreiter, 1983, Chapter 8.
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We will use the output of an LFSR with primitive polynomial to construct the verification
play. Proposition 1 guarantees that the pseudorandom sequences used in our construction
behave as uniformly distributed sequences and thus they preclude deviations by players along

the equilibrium path.

We assume that for each length 2% of the LESR sequences, players consider all the possible

primitive polynomial of degree k. Notice that the number of primitive polynomial of degree n
S A—(Z;i 1) A—(Z;i D is equal® to 2L

where A is the Euler function and that nTogn-

8See Hardly and Wright: An Introduction to the Theory of Numbers, Chapter XVIII.
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6 Proof of the main result

6.1 Notation

We use the following notations . Label the players actions by 0 and 1, with 0 corresponding
with ”defect” and 1 with "cooperate”. The strategy b? of player 2 in the one shot game PD
is a best reply of player 2 to the strategy a® of player 1. The pure strategy a' is denoted by
1. Let D' be the punishing strategy of player i, i.e., player i’s strategy that holds player 3 j i
down to U®i'(PD). Note that D' & a', and denote the pure strategy D' by 0.

We consider the case of "smart” players. For m; < T=4; i = 1;2 see the paper by Neyman
(1998). Then, assume that min(my; my) > T=4. We build up a mixed strategy equilibrium. To
this end, the next sections construct the set of messages and the players’ equilibrium strate-
gies. To check that they are indeed an equilibrium we show that there do not exist profitable

deviations.

6.2 De nition of the play

We define first the play to construct an equilibrium point (%7;¢°) of PDT (my; my), with mg -
m; - T3, for T large enough, and with stage game as in section 2. The associated equilibrium
payoff vector is (y1;y?) where jy! § ri(1;1)j <", ory' =j3 i "j:

The mixed equilibrium strategy of player 2, ¢°, chooses randomly a pure strategy ¢~ where
2 is an element of the message space Q. The message space Q is the set of sequences of zeros
and ones of length 4k j 2, where k depends on both the length of the game, T and on player

1’ automaton size my.

Each pure strategy % of player 1 and the pure strategy ¢° of player 2 induce a play
V¥ ¢°) = (M(¥%¢%); 17 (% ¢%)) that depends on 2, and therefore we may denote it by
1(2) = (¥14(2);::; 17 (?)) and call it the proposed play. The payoff associated to (% ¢”) does

not depend on the selected message, which we call the seed, 2.

Player 2 communicates his choice of 2 in Q at the beginning of the play to player 1, who
processes this information. The action of player 1 in the communication phase is independent
of 2 and player 2 communicates the proposed play !(2) in the first 4k j 2 stages of the game.
After the communication phase, the proposed play enters a cycle of length | (excluding the last

stages of the game). Both players cooperate during the first | j 2X stages of the cycle, i.e.,
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1,(2) = (1;1) whenever t < T and t (mod I) < j 2¢. The remaining 2 stages correspond with
the verification play. Since the play here is the output of a LFSR with primitive polynomial
the length of this play is maximal with respect to the "seed” (of length k). Let p°(2) denote the
output of this LFSR, then after the initial | j 2% stages of the cycle, the players play the string
(F) 5 (2))5 s (Mo (D) 5k (2))), feefor t> T with | § 25+ 4k § 2<t(mod 1) - 144k j 2,
1(®) = (Hemod 1y (®): Hegmod 1y ()

The strategy of player 1 detects with positive probability any deviation by player 2: some
of his deviations are immediately detected with positive probability, and others will lead to
a detection with positive probability in a future stage. The strategy of player 1 triggers to
punishing (playing D' ) forever once he detects a deviation. We turn now to the formal

construction of the proposed play.

6.3 The set of messages

We start with the construction of the set Q, and the integers k and |. Let kK = k(mg; 1), be the
smallest integer such that 221 > m; j I. We will see that the number of pure strategies for
player 2 is at most 2 and by Lemma 3 the complexity of each pure strategy of player 1 is at

. . . , . - N
least |, filling up, in this way, player 1’s complexity. It follows that 22Ki? - (] < 2K,

Recall that | is the length of the cycle. For every T (the length of the game), the cycle has

to be repeated a large number of times, L. To ensure that at the end of the repeated game

player 1 is in the regular play (not in the verification play) we choose | = [Jr ;] where % <t<l1

and T j L[LL;] < | j 2% To deter deviations L has to be greater than® 3. Thus, assume that
L=4

To build the set of messages, consider the set of sequences for the verification play. Recall
that each verification sequence is the output of a LFSR | where this output is identified by both
the seed and the associated primitive polynomial . Each seed is a sequence of zeros and ones
of length K. As the coefficients of the primitive polynomial are elements over a finite alphabet
(in our case f0;1g), we can represent each polynomial as a sequence of zeros and ones whose
length is the polynomial’s degree plus 1. If T (X) = toxK + tkilxkil + i+ tX+ 1 is a primitive
polynomial then t; = 1 and there exists 1 < j - k such that tj; & 0: Hence, it is enough to

consider K j 1 coefficients to identify a primitive polynomial. The sequence obtained by the

9See the proof of lemma 9 below.
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concatenation of a seed and the coefficients of the polynomial determines uniquely the output
of the LFSR associated to this polynomial with this seed. To keep the same preferences among
the messages, the balancedness property has to be verified and then we need at most 2k j 1
stages to balance the above sequences.

We produce a message 2 = (21; ::1; 24 ; 2) from each verification sequence in the following way.
Since each verification sequence belongs to the output associated to the seed » = (»q;::1; %) 2
T0; 1gk and the primitive polynomial T (X) = t;XX +1ty; 1XKi1 4+ 1 + X+ 1, the message consists
of the concatenation of the seed plus the coefficients of the polynomial plus a string of ones
and 24108 of length 2k j 1 such that the number of zeros is equal to the nlgmber of ones. Tgen
Q= 2=(2;:252) = O isme b it 105 150;550) 2 F0; 1g™F2 j 7 K822 — ok 1

Notice that an optimal codification of the verification sequences would produce sequences
(messages) of length 2k. Our communication sequences are almost optimal, since their length

is of the same order of magnitude (< 4k).

The associated play to a given message

To every 2 we associate a play 1(2) of PDT, i.e., a sequence '(2) = (11(2);:::; 11(2)) with
1.(2) = (11(2); 12(2)) in A as follows: ¥1(2) = (1;b?) and for t < T,
8
% (1;2) if 0-t-4kj2
2) - (1;1) if 4k j2<tmodl - 1§ 2%+4k j2
Z (WE@) if tmodl=1j§2+dkj2+i<l
B (0;0) if tmod | =4k j 2:

The first row corresponds to the communication phase when player 2 sends the message 2
and player 1 plays 1. The second row refers to the regular play of the cycle where both players
play 1, "cooperate”. The verification play is represented by the third row. The last one is the
end of the verification phase where both players play 0, ”defect”.

Setting

and recalling that
(%) = (Ma(®); e (®); 2255 (Mo (B); bk (3))
Let d =T j 2K j LI, then (the notation is defined in section 2.4)
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1@) =@ + L1298 (L1) +1°(3) + (d i D(L1) + (1;b%):
Players communicate and then follow a cycle repeated until T where both players play a

coordinated play which has two parts: a regular play and a verification play. Player 2 plays
the best response b? in the last stage of the play.

6.4 Complexity bounds

Our approach shows how to achieve cooperation in the PDT (my; m,) by a mixed strategy equi-
librium in terms of player 1’s complexity bounds -as functions of the number of repetitions- and
the "-approximation to X. We study the behavior of these bounds to characterize them in our
model. Complexity bounds provide the constraints to induce the mixed strategy equilibrium.

Let T be a real function.

De nitions:

f grows polynomially is denoted by f = O(p) for some polynomial p i:e: : f = n°W:

T grows exponentially is denoted by f = Q(Z”Z) for some 2> 0;ie: f > 2"

T grows subexponentially is denoted by f = 0(2”2); ile::82>0 2—1:,2 < Zfor all large enough

First, we study the lower complexity bound of player 1 which in turn will determine the
upper bound.

The lower complexity bound is related to the length of both the communication phase and
the verification play. The length of the first is 4k j 2, meanwhile that of the second is 2%: Also,

given " and the cooperative payoff, K is such that it verifies the restriction:

ky i r(1; Dk - ™

o

;fhen, ky i r(Dk="°%" i r(1(®))1 (3;3)2 =

o

S1((2K § 1)r(1;0) + LZr(0;0) + r(1;b2) + (T § LZ § (2k i 1) § D)r(1;1) j 1820

Since by assumption L = 4, then to check the above expression is equivalent to checking:
“(2k § 1+1)(r(1;0) § r(1;1) +2K*(r(1;1) § r(0;0)° - T
We obtain that 2%*2 4+ 4k - "T.

The k which solves the above inequality is:
3 1w i
i Lambertw (In2)22"T -
k- n2 +7
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Then the number of states used in the verification play is about
A !
Lambertw (In 2)e(In 2)71

ok — 9i 2 +

.z=.|_=|

Next, the upper bound of player 1’s complexity satisfies the constraint

22ki2 _ [ml i I] <22k
|
3 3 -
Then, m; - L(exp j LambertW (In2) 23T 23"T)2
2 .

Simplifying the above expression, m; - |_ LambertW? (In2) 23T

Z
To study the behavior of m; we compute the limit of the upper bound with respect to T,
2 and T3; when T tends to infinity.

3
1_T 2 Lot
I3 Lambertw< (In2)2%

limtweq — — = signum? ML=+1
. 1_T_ | ambertw? (In2)2%"T )

limy g 7 21222 . — = signum? (") L = +1
) 1_T_ | ambertw? (In2)271r"T .
limy g 1 2222 — = 1:5625 £1012"2 >0

Then, the upper bound of my is lower than "2T3.

6.5 Properties of the associated play.

For T large enough, the payoff reached by the prolgosed play is 2 close to the cooperative payoff

and is independent of the seed. Let R(1(2)) =£  _; r(%(?)).

P
Lemma 6 The payo® vector thl r(1¢(2)) is independent of 2, and for su=ciently large values
of T,

JR(IG) i r(1)j<

Proof:
For every 2 2 Q the number of ones and zeros coincides in both the communication and the

verification phases. Thus, payoffs to any player in these phases are
r(l’(2) = (2k § Dr(1;1) + (2k j 1)r(1;0)
r((2) = 2%r(1;1) 4+ 251r(0;0)
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P
Therefore,  {_, F(14(2)) = (2k § 1)r(1;0) + L2%1r(0;0) + r(1;b%) + (T j L2 j 2k 41 j
Dr(1;1)

The right hand of the above I(ggluality does not depend on 2. Moreover for T large enough

(L2K+2k j 1+1)

= is small and then £ tT=1 r(1¢(?) converges to r(1;1). o

We analyze next the play complexity for both players, or comp*(Q) and comp?(!(2)) where
Q can be understood as the set of plays 1(2) for 22 Q: It is trivial that comp?(¥(2)) =T +1:
Lemma 2 establishes a lower bound for player 1’s complexity on the set of plays 1(2) for every
2 2 Q: Notice that players follow a coordinated play after the communication phase. The
complexity for player 1 of the coordinated play is exactly the period of the path that coincides
with the length of the cycle | for every 2 2 Q: Hence, a lower bound of player 1’s complexity
is the number of the different coordinated plays. The next lemma shows that this number

coincides with jQjI:

Lemma 7 For every (21); (2;t") 2 Q £ f1;::;;1g with (3t) & (2;1)
(1¢(2); 0 131(2) & (To(@); iV eu1(2):

Proof:

Both players follow a coordinated play after the communication phase until the T j 1
stage. Hence, it is enough to prove that for any pair (2;t) & (2';t) there exists 0 - s - | with
(14(2);: Veas(2)) 6 (Yp(@); 5 Ypas(?)); or that there exists 0 - s - | with Viis(2) 6 Tors(?):

Suppose that t = t* and thus 2 & 2. We know that the mapping associated!® to the LFSR
is 1-1. This means that p°(2) 6 u°(?"). Therefore there exists 0 - s’ < 2 with p%(2) 6 p%(?):
Let s =t + s’ such that 0 - s - I: We conclude that Vivs(2) & Veas(?):

Next, suppose that t 6 t'. We can always choose one s such that the 1¢(2) is in the regular
part and Tgrs = Va2 Then 'eg(?) = (1;1) and Tw,x(?) = (0;0): More specifically,
suppose that t <t If ! j t > 1§ 4k j 2; settings = | j t+4Kk j 2% then ' 4+s =144k j 2 then
Vois(?) = Naak;2(F) = (0;0) and Vs () = (L;1): It - 14k j2;settings =4k j 2+1j t;
then Yiis(2) = Vwak;2(2) = (0;0) and Ywis(?') = (1;1). Note that this choice is independent
of 2,22 Q. o

10The LFSR can be viewed as a mapping between two s-dimensional vector spaces.

24



6.6 Construction of player 2's equilibrium strategy

We construct now the equilibrium strategy of player 2. It consists of a mixed strategy with
j Q j pure strategies. To every 2 2 Q, a proposed play !(?) is associated with a pure strategy
in the support of ¢"; the equilibrium mixed strategy. Player 2 follows the proposed play and
punishes forever as soon as he detects a deviation. Thus, for any 22 Q , ¢° = (¢;)i=; is the

pure strategy of player 2 defined by,

e (St se1) = 12(3) if (s1;:5861) = (11(2); 25 151 (2);
0 otherwise

The mixed strategy ¢° informs player 1 about the chosen message 2 . As already noted, no
message gives any advantage to player 2, since both the communication and verification phases
consist of balanced sequences. Also recall that the associated payoff to each message coincides
for all of them. Thus, there is no strategic behavior from player 2 in the communication phase.
Then, he follows the proposed cycle until the end of the game where there exists a verification
play related to the chosen message. The pure strategy ¢ 2 X2(T; T + 1), i.e.,¢” is implemented
by an automaton < f1;::;;T; T + 19;1; f2; g2 > of size T + 1 where:

2 f1;::;T; T + 19 is the set of states.

2 1 is the initial state.

2 The action function f# defined by f2(t) = 12(2) if t - T;f2(T + 1) = D%

2 The transition function gZ; defined by gé(t;a) = t+ 1 ifa = 1}(2) and t - T, and

g2(t;a) = T + 1 otherwise, ie., if a6 11(2), orif t=T + 1.

6.7 Construction of player 1's equilibrium strategy

The equilibrium strategy of player 1 consists of a mixed strategy. Player 1 has to answer
correctly to any seed sent by player 2. Thus, each pure strategy belonging to the support of the
mixed equilibrium strategy must be conformable with the set of plays £1(2) : 22 Qg: Player 1
has to process the information sent by player 2 in the communication phase. To this end, he

uses the same states to be used in the regular play. Recall that this states admit both actions
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and then deviations by player 2 are not detectable. To conceal the location of these reused
states player 1 uses a mixed strategy. The difference among the pure strategies in its support is
the location of the communication phase in the regular play. The mixed strategy of player 1 is a
uniform distribution over a minimal subset of pure strategy % 2 ¥!(m;) where % is conformable
with F1(2):22 Qg: This set is the minimal set which produces enough uncertainty for player

2 about the actual location of the reused states.

Let us construct an automaton that implements a pure strategy % 2 ¥!(my) conformable
with F1(2) : 22 Qg: Firstly, we design an automaton that implements the cycle and then we

define the transition function in the communication phase.

6.7.1 The Automaton of player 1

The cycle: The cycle is the deterministic part of player 1’s automaton, i.e., it does not
depend on the pure strategy selected by player 1. The equilibrium strategy of player 1 has to
follow a cycle whose length is |. In the first | j 2X stages of the cycle, player 1 will play the same
action, ”cooperate”, if player 2 does it. In addition, he has to count until | j 2 + 1 because he

needs to know when to start the verification play.

The mixed equilibrium strategy of player 1, %* 2 A(X(mjy; T)); is a mixture of pure strate-

gies, each one being implemented by an automaton with state space
M! =f®g [ Q £ f1;:::; g

The action function of the automaton is given by,

and

8
S 1 if 0<j-lijs

i if ljs-73-1
B u]( ) - 1 ] J
- 0 if j=1

We visualize the states of the automaton of the form (?;j) as arranged in a rectangular
array with JQj rows and | columns. The rows are indexed by the different elements 2 in Q and
the columns are indexed by 1,...,I. Thus the action function assigns the action a' to each state

in the first | j 2¥ columns , and in the remaining 2K columns an action that depends on the
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row (verification phase). We may think that every row corresponds with each pure strategy of

player 2. The number of columns is the length of the cycle.

Figure 1 illustrates the automaton of player 1 for k = 3; and j Q j= (23 j 1)@ =7
g = 14: Suppose that the regular play has 12 columns and that the verification play has 23 = 8
associated columns. The filled disks (2) represent states of the automaton whose action function
is 1, "cooperate”, when player 2 plays 1 as well. The small disks (%) represent states that play
the action 0, "defect”, when player 2 plays 0. The big disks (=) mean the final states of the
verification phase where both players have to play ”defect” at the same time. The transition
function in this state goes to the first state in the same row. The horizontal arrows indicate

the transition of the automaton when player 1 follows a coordinated play.

2!—!2!2!i!i!2!2!2!i!\J 10011100
2!—!2!2!i!i!2!i!2!2!\J 10010110
2!—!2!2!i!2!i!i!2!2!\J 10100110
2!—!2!2!i!2!2!2!i!i!\J 10111000
2!—!2!2!2!i!2!i!i!2!\J 11010010
2!—!2!2!2!i!i!2!i!2!\J 11001010
2!—!2!2!2!2!1!2!1!1!\J 11101000
2!—!2!2!2!2!1!1!2!1!\J 11100100
2!—!2!1!2!2!2!1!1!2!\J 01110010
2!—!2!1!2!2!2!1_2!1!\J 01110100
2!—!2!1!2!1!2!2!2!1!\J 01011100
2!—!2!1!2!1!1!2!2!2!\J 01001110
2!—!2!1!1!2!2!2!1!2!\J 00111010
2!—!2!1!1!2!1!2!2!2!\J 00101110
Regular Play Verification Play
Figure 1.

The transitions of the automaton will be defined such that for each fixed 2 2 Q, if player
2’s strategy is ¢, the state of the automaton at stage t = jmod(l + 4k j 2) with 0 - j - I, is
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(2,J). This leads to the following transitions:

. (J+1) if 0<j-1j2K
gl (Zixy = . e
(3j+1) if |j(3)=1 andlj2x-j -1
. (Zj+1) if lj2X<j<Il andy(2) =0
g'((%]);0) = , ) . i)
(%1) if j=1

Player 1 remains in the same row and goes to the next column in case player 2 plays correctly

in the verification phase. At the end of the verification play player 1 goes to the first column

in this row, i.e., he starts another repetition of the cycle if player 2 plays 0 in this stage.

The states of the automaton of the form | j 2% < j < | implement a coordinated play. Any
deviation from this play at these states results in punishing forever.

9 ((%j)e)=®if 1'j2*<j - land yj(2) 6-¢

g'(f®g; 0) = @

The communication phase: In the communication phase player 1 has to process the infor-
mation sent by player 2. To this end, he uses the same states to be used in the regular play. We
design the transition function for the first 4K j 2 stages such that player 1 follows a specific play
after the communication phase and he conceals his reused states by means of changing their
locations in his pure strategies. In other words, each pure strategy in the support of player 1’s
mixed strategy is designed such that he selects the right row along the communication phase

and he does not reveal which states admit both actions.

The transition function of the automaton of player 1 in the communication phase depends on
the pure strategies in tl&e support of %°. Each pure strategy is given by two random integers,
p2 1;1i2Xi6k+3 and n 2 f1;29. The first one determines the initial state of the
automaton. We denote this initial state by (1;p). Thus, p is the column where player 1
processes the signal sent by player 2. To select the range of p it is necessary to know the
location of the last state in the communication phase. To this end, we choose this range such

that it ensures that the processing scheme entirely lies on the regular play.

The random number n 2 [2; K] determines the jumps in the columns (along the same row)
that player 1 will follow in the communication phase when player 2 sends a 0 after the first

2k j 1 stages.

28



The transition function of the communication phase consists of three parts: the first one
corresponds to the first 2k j 1 stages; the second to stages 2k to 4k j 3, and finally the third
part corresponds to the last stage of the communication.

Thus, to select the right row during the first 2K j 1 stages!?, the transition function is moving
between the different rows in such a way that in stage 4k j 1 the state of the automaton is in
the row that corresponds to the sequence of actions of player 2 in the first 2k j 1 stages of the

game. This is achieved through the following partial transition function. If 2 = (24; :i1; 24k 2)

01((%J);0) = ((20;:52p:0; 1,5 1;:50),§ +1) if p-j -p+k

Figure 2 illustrates the communication phase associated to the verification play in the above
example. The star (? ) is the initial state. The diamonds (}) represent those states in the regular
play that are used to process the information sent by player 2 in the communication phase, and
thus admit both actions 0 and 1 from player 2. The big states with a dot are the states in the
regular play that player 1 uses to determine the end of the communication phase. These states

also admit both actions, 0 and 1.

INotice that player 1 is processing the information sent by player 2 by trying to recognize the di®erent
sequences. By the properties of the LFSR, player 1 needs k stages to identify the seed and k j 1 stages to
identify the primitive polynomial.
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In second place, we design the transition function!? when player 2 is sending the last part
of the seed but the last stage, i.e., for t : 4k § 2 >t > 2k j 1. Here, the randomness of the
jumps allow player 1 to hide the reused states.

AEKj1
( kl ))

As we noted above, player 1’s automaton is a matrix with | columns and 2X( TOWS,

ie., 2"(&—:;;%) rows. The communication phase starts in the p column that player 1 has chosen
randomly. Hence, the states used to process the seed are located in a submatrix with 4k j 2

rows and a number of columns which depends on n.

Now, the associated transition function for t: 4k j 3>t > 2k j 1 is defined by:

0" ((%2);0)=(Zj+n)ifp+2k jl<j<p+4k j2and2 =0

12Notice that we do not use a distribution over transition functions, but we produce enough uncertainty on
the ~nal states of the transition function to deter deviations.
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Finally, the last state in the communication phase is not in the same column for every row.
It depends on 2;n;p, i.e. on where the communication starts, on the distribution of ones in 2

and on the number of jumps.

This state is defined as follows for every message:

Let @ be a function

e:Qi¥ p+kip+6k i3
- - - - 2kijl I:)2ki1
2|! E(Z):p+2k|1+(2k|1| i=1 2i)+n =1 2i

Let @ be the max @(2) where 22 Q:

£ o
Notice that p will be chosen!® such that [p; p+e| % 1;1j 2 :

The initial state is (1;p) where 1 means the signal whose first 2k j 1 components are ones

and p is a random value such that [p; p+e] %2 1;1 j 2kD that player 1 chooses.

Now it is possible to define the transition function for the final state for every row: g*((%@(2)); 0) =
(% 1):

This is equivalent to: gl((l; p);2) = (31):

In all other cases the value of g* equals ®.

Figure 3 illustrates'* the scheme that player 1 follows to process the message sent by player

2. This is an example for K = 3; p =5 and n = 2: The star (? ) represents the initial state of

the automaton of player 1.

3Notice that this set is not empty, since T j Lz <1 j st

14We consider the primitive polynomial f(x) = x* + x + 1 on GF(2):
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Figure 3: Communication phase.

6.8 Equilibrium conditions:

We check here that the constructed strategies are indeed an equilibrium. We show first that

any profitable deviation by player 1, cannot be implemented by a finite automata of complexity

mM;: Then, we study the complexity of a strategy of player 1 which yields a higher payoff when
T

playing against ¢°, i.e. comp®(%) where r} (%; (%) =1 w Secondly, we show that with

probability close to 1 there is no profitable deviation by player 2.
2 P 2 2
Let % be a strategy of player 1 and 2 2 Q, with r}(%;¢%) . tT=1 w Then, 14(%;¢") =
1(2) for any t - L where z is a fixed number that depends on the action pair (1,1), with

payoffs (3;3), and on the other payoffs of the stage game PD (4 and 1 in our model). Note

that z < 1;5. Therefore, for any strategy % of player 1, r(%¢°) - tT=1 rl(i(z)) + % where

C_TMAi3+").
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L1y m BT P0e) -
Let % be a pure strategy for player 1 with rt(¥%¢") . =, —F and such that % is

implemented by an automaton of size mj.

In order to characterize the size of the automaton which implements a profitable deviation,

consider the following partition of the set of seeds

Let
n P .o
Q(1;%) = 22 Qsuch that rf (% ¢") > PtT:l @O
Q(2i%) = 22 Qsuch that rf (% ¢") = PtT:l ~eo)
Q(3;%) = 22Qsuch that ri(%¢%) < |, —C)

To study the complexity of % we must know that of 1(2) for every 2 2 Q, hence we analyze
the complexity for every set of the partition of Q. Define Q; = 1(%;¢%) : 22 Q(1;%)g; Q. =
fY(%¢%):22Q(2;%)g; and Q3 = FI(%;¢%) : 22 Q(3;%)g: Notice that comp*(Qz) . 1jQ(2;%)j
by lemma 7.

P+

1 . P P;
=1 w then ri (% ¢"°)

As ¥% verifies that ri (% ¢"°) - J%J 22Q  t=1

11 (2 .
- # Hence,
P 2
(%) = gt (he’) = ]
G D20t (% ¢7) + Yeao@an T (% ¢ ) + Veao@mnlt (% ¢)

2 P 2
Now, since any strategy % of player 1, r+ (¥%;¢°) - thl rl(!T( ) 4 % and by the definition of

Q(3; %); then

. 5 .
°p Pr g

RILW LGRS +jQEw) o, T2

. P ri 2

JQL;%) + Q(3; %)) Il =2

Thus £ jQ(1;%)j . jQ(3;%)j and for T large enough jQ(1;%)j . 2jQ(3;%)j

In the next lemma we study the least complexity of a strategy of player 1 which can give

him more that tT= . _fl(!Tt(Z)).

P

e ;
t=1 71 IS

Lemma 8 The complexity of % such that r (%;¢%) .
comp* (%) .. 31JQ(L;%)j + 1jQ(2;%)]

Proof:
By the definition of complexity, compt(%) = comp! f1(%;¢*) : 22 Qg .
comp* £ (%;¢%) : 22 Q(1;%) [ Q(2;%)g =



comp?(Qy) + comp*(Qy):

Notice that comp(Q2) . 1jQ(2;%)j by lemma 7. Let us bound the complexity of Q:
By the definition of Q(1;%), for every 2 2 Q(1;%), ri(%¢”) > RY(1(2)): Therefore there

exists a deviation from the proposed play at the end of the game i.e., for every t - 2k + 4l;
1.(% ¢%) = 1¢(2): Now by lemma 4, a deviation after 4k j 2 + 4l stages entails a complexity of
player 1 of at least 3l. By the definition of complexity with finite automata it is sufficient to
prove that for every pair (2;t); (2;t") with (2;t) & (@;t") and t _ tin

Q(L;%) £F4k § 2+ 1;:54K § 2+ 3lg
there exists S < T j tsuch that

(1255 1s(®) = (1) 5 1 (®)

B(11(2); 0 Yas(2) 6 %B(11(2); 15 Toas(®))
We just consider the case where t 6 t. (The other case satisfies the condition of lemma 7).

We suppose now that t>t%; t =t" mod (1) and 2 2 Q(1;%):
Let s be the largest positive integer such that

()50 Tews(®) = Yo (% ¢ 7)o Veoas (% ¢ 0):
P 'z
Asri(¥e) . L, 2Dy s<T jtand
H(Ve(2);: Vs (®) 6 %(Tp(@); 10 Veas(P): o)

Lemma 9 below asserts that for any pure strategy of player 1 that play against the mixed
strategy ¢ of player 2, the payoff is the average on Q.

Lemma 9 For anEstrategy % 2 ¥1(my)
) - RY(1()

Proof:

o PT ri(1(2).
) - —7

Suppose that ri (% =1

Consider the partition of Q = Q(1;%) L Q(2;%) [ Q(3; %):
First, if jQ(3;%)j = ; then jQj = jQ(1;%)j + jQ(2; %)j: By the above lemma the complexity
of % is greater than or equal to 31jQ(1;%)j + 1jQ(2;%)j:
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£ o
As my _ 31Q(1;%)j + 1jQ(2; %)j = 1jQj + 21jQ(1; %)j and since 2Kit - Miil < 2K; then

my . my i 21 +21jQ(1;%)j , jQ(1;%)j = ;

P 2
We conclude that rk (% ¢") - thl rl(i( ).
Next, if JQ(3;%)j & ;; as already noted, we can suppose that for T large enough jQ(1;%)j _

2jQ(3;%)j. Then,

my . 31jQ(1;%)j + 1jQ(2;%)j =
= $IQ(L;%)j + $iQ(1; %) + 1jQ(2; %)j =

> 1jQj + 21jQ(1;%)j > my: By the same argument, we get a contradiction. o

To conclude that (%%;¢) is equilibrium, the next lemma states the equilibrium condition
for player 2. It is enough to prove the condition with one strategy in the support of the mixed

strategy of player 2.

Lemma_10 For any strategy ¢ 2 ¥? and every 22 Q
L) - PP

Proof:
Let ¢ be a pure strategy of player 2 such that for some 2 2 Q, 1+(%"; () = 1¢(?) for every
1-t-4kj2and r2(%°%:) . r2(%¢°).

e

Let s’ be the smallest integer that 2 < s' - T with (%% ¢) & V«(2) and ¥4(%";¢) =
LE)1I<t<s

Let @ = max fe(?) such that 22 Qg

Observe that T j 4k j 2 j LI is of the order I and for sufficiently large values of T; these
stages 1¢(?) = (1;1) for T >t >p+e+4k j 2+ LI. Hence, any strategy % in the support of
Y%“does not tolerate any deviation from the proposed play for T >t>p+e+4k j 2+ LI and
r?(1;0%) _ r(1;1) > u?*(PD).

Therefore, if T > s > 4Kk j 2+ LI+ p-+@ then the strategy %" does not tolerate any deviation.
Hence, r2(%";¢) < r2(%°;¢%), and if s = T then r?(%%¢) < r2(%%;¢°).

If 2 < s < 2K+ LI 4 p + @ then with probability close to one the strategy of player 1, %;
detects the deviation of player 2 in future stages and player 1 punishes forever. Notice that
player 2 gains more if he deviates at the end of the game. The other deviations are punishable

with probability close to one:
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If player 2 deviates in the communication phase, i.e.: if (V(%%;¢); 5 15(%%¢)) is not in

Q, then with probability at least % player 1 will detect the deviation before | stages. Player 2

loses T (x? j u?) against what he may win, g
Therefore ¢ is a best reply against %°. o)
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7 Concluding Remarks

The design of optimal communication schemes is important when communication is inter-play
and games are repeated a finite number of times. When players implement their strategies
by means of finite automata these communication schemes may also determine the number of

possible plays to achieve a cooperative outcome.

We have presented an equilibrium construction with an optimal communication scheme. Our
equilibrium condition in terms of the upper bound of the smallest automaton implementing the
cooperative outcome and which depends on both the " j approximation to the efficient outcome
and the number T of repetitions, lies between that of PY (1994) and the one of N (1998).
Namely, our upper bound includes that of PY (1994), but, in turn, it is included in the one
of N (1998). The reason behind this last relationship between Neyman’s upper bound and
ours is that the Prisoner’s Dilemma game does not belong to the class of games where the

communication phase dictates the " j approximation to the efficient outcome.

In the class of games where this distortion rate is only generated by the communication
process, the optimality of such a process is vital for the equilibrium conditions. For instance,
and without loss of generality, suppose a 2 player game where the targeted cooperative payoff
belongs to the convex hull of the two actions al and a} of player 1 and a2 and a3, of player
2, ie, x = ,ir(aj;ad) + ,2(a3;a5), with ,; > 0;i = 1;2 and  _;,,i = 1: Label aj and
aZ by 0 and a} and a3 by 1, then X = _1r(0;0) + ,»(1;1): Following our approach, and for T
large enough, the equilibrium play consists of a communication phase, which is composed of
the actions pairs (0;0) and (0; 1), and a cycle play, where the action pairs (0;0) and (1;1) are
played in both the regular and the verification plays. In this case, the "-approximation to X
only depends on the (2K j 1) stages of the communication phase where the action pair (0;1) is
played.

Known results in the automata complexity’s literature (see Neyman, 1998) state that the
upper bounds of the automata have to be subexponential to achieve cooperation in finite
repetition of the underlying game. In the above problem, the upper bound of player 1 is lower
than exp(%), where C is a parameter which depends on the specific game’s payoffs. Our bound
is the largest bound to achieve cooperation in a finitely repeated game played by finite automata
and it improves all the other bounds already offered in the field. This improvement is due to

our optimal codification of the communication phase.
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