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A B S T R A C T 
 
 

 Consider a pure exchange OLG economy under stationay Markov uncertainty 
with one good and with sequentially complete markets. It is known that an interior 
stationary equilibrium allocation at which the agents common matrix of intertemporal 
rates of substitution has a Perron root which is less than or equal to one is conditionally 
Pareto optimal. We provide a simple and direct proof of this fact. 
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1. INTRODUCTION

Consider a pure exchange, two-period lifetime overlapping generations (OLG) economy

under stationary Markov uncertainty in which one good is available for consumption in

each period. The stationary equilibria of such models when markets are assumed to

be sequentially complete (so that an agent can trade against all risks faced in the second

period of her life but not against the risk of being born in a bad state) are of interest since

they provide a vehicle for the analysis of a variety of macroeconomic phenomenon, social

security systems being the most important example.1 Because of their importance as

good models, the optimality properties of such equilibria have become the focus of recent

research. The following result (with minor variations) has been obtained with a finite

number of Markov states: an interior stationary equilibrium allocation is Conditionally

Pareto Optimal (CPO) if and only if it satisfies the unit root property which requires that

the Perron root of the agents’ common matrix of marginal rates of substitution, where

each row of the matrix corresponds to an agent born in a different Markov state, is less

than or equal to one.2

Aiyagari and Peled (1991) restricted attention to stationary reallocations only and

obtained the result in a model with a stochastic linear technology. Chattopadhyay and

Gottardi (1999) considered a general multigood pure exchange economy and allowed for

all possible reallocations and obtained the result by using a general sufficient condition

for equilibrium allocations to be CPO which they develop (their Theorem 3).3 These two

papers have in common the feature that the analysis of optimality starts at a certain finite

date and not at some ethereal “minus infinity”. The implication is twofold; on the one

hand they need to deal with a special agent(s), the “initial old”, and on the other hand

the set of agents in their economy is countable since at each date there are St agents,

where S is the (finite) number of Markov states. An alternative specification, used by

Zilcha (1991) and Demange and Laroque (1999), invokes a notion of stationarity which

requires time to go to minus infinity; as a result their are no “initial old” and the set

of agents can be identified with a continuum. The necessary and sufficient condition for

CPO now requires that the Perron root be exactly equal to one; it is easy to see that this

happens precisely because there are no initial old agent(s). The method of proof used by

Demange and Laroque (1999) is based on considering the set of agents to be a nonatomic

measure space so that in order to have a Pareto improvement it suffices to improve a set

of agents of full measure; in fact, the proof relies heavily on probabilistic methods.

1The market can be sequentially complete because there are enough assets; also, if there is only one
agent in each generation, as is often assumed, then the market is effectively sequentially complete.

2CPO, introduced by Muench (1977), is an optimality criterion which treats agents born in different
events as distinct individuals.

3It is not difficult to see that the consideration of stochastic production does not change the basic
result since the important issue is that of intertemporal optimality. As long as production decisions
satisfy the conditions for optimal intratemporal resource allocation, which they will if spot markets are
complete, they do not add anything of interest to the issue of intertemporal optimality even though a
model with production appears to be more realistic.

3



It is reasonable to ask whether a notion of stationarity with time going to minus

infinity is appealing when considering welfare comparisons. It is well known that in the

case of a deterministic economy such a notion of stationarity picks out the Golden Rule

as the unique stationary optimal allocation while a continuum of stationary allocations

would be considered optimal when the welfare of the initial old is taken into account. We

believe that even though economic equilibrium can be considered to have been established

at an ethereal minus infinity, any analysis of optimality must start at a finite date with

a given history. Doing so leaves us with a countable set of agents to which we wish to

apply the Pareto criterion; now it is no longer obvious that improving every agent in a

set of full measure is useful as a welfare criterion.

By considering a second order approximation to an agent’s utility at the competitive

allocation, we provide a direct and simple proof of the unit root property which applies to

a countable set of agents. Our proof is nonprobabilistic and is a direct generalization of

the classroom proof of the optimality of the Golden Rule in deterministic economies; as

a consequence it is much simpler than the proof in Chattopadhyay and Gottardi (1999)

as it directly exploits the stationary structure of the equilibrium.4

2. THE MODEL

We consider a one good, two period lifetime, pure exchange overlapping generations (OLG)

economy under stationary Markov uncertainty. We turn to a formal description of the

model and the notation used.5

Time is discrete and dates are denoted by t = 1, 2, 3, · · ·.
Let S be the state space of the Markov process with S := #S < ∞. The structure

of the date-event tree induced by all possible realizations of states from an initial date

t = 0 is as follows. The root of the tree is σ0 ∈ S; the set of nodes at date t is denoted Σt

where we set Σ1 := {σ0} × S, and, iteratively, set Σt := Σt−1 × S for t = 2, 3, · · ·. Define
Σ := ∪t≥1Σt and Γ := {σ0} ∪ Σ. Elements of Γ are called nodes (to be thought of as

the “date-events” or simply “events”), and a generic node is denoted by σ. Given a node

σ ∈ Σ, t(σ) denotes the value of t at which σ ∈ Σt, and s(σ) identifies the Markov state.

Clearly, a node σ ∈ Σt is nothing but a string (σ0, s1, s2, · · · , st), where sτ ∈ S denotes
the realization of the process at date τ , τ = 1, · · · , t (σ0 is the realization at the initial
date). It follows that the predecessor of a node σ ∈ Σt is uniquely defined and it will be

denoted by σ−1, an element of Σt−1; the set of immediate successor nodes of a node σ is
denoted σ+.

One commodity is available for consumption at each node σ ∈ Σ.

At each node σ ∈ Σ, H, a generation of agents, is born, where H := #H. Each agent
4Theorem 3 in Chattopadhyay and Gottardi (1999) follows the method pioneered by Cass (1972) for

the analysis of efficient production paths under certainty, and provides a general sufficient condition, in
the form of a Cass criterion, for equilibria to be CPO. As they show, the criterion in their Theorem 3 is
not a necessary condition in general but for stationary equilibria the condition turns out to be necessary
and sufficient.

5We use the notation developed in Chattopadhyay and Gottardi (1999).
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lives at two dates. The consumption plan of an agent specifies the level of consumption

in the event at birth and in its immediate successor nodes. A member of generation σ of

type h ∈ H is denoted by (σ, h).

In addition, there is a set, H, of H one-period lived agents who enter the economy at

each node σ ∈ Σ1 at date 1; they constitute the generation of the “initial old”, and are

indexed by (σ, h, o), where σ ∈ Σ1.

We will assume that the economy is stationary, i.e., that the characteristics (con-

sumption sets, endowments, and utility functions) of each agent depend only on the

realizations of the Markov state during her lifetime, not on time nor on past realiza-

tions. So, for any (σ, bσ) ∈ Σ × Σ, s(σ) = s(bσ) implies that (i) for consumption sets
Xσ,h = Xσ̂,h := Xs(σ),h, (ii) for endowments ω(σ, h) = ω(bσ, h) := ω(s(σ), h), where

ω(s, h) = (ω(s; s, h), (ω(s, s0; s, h))s0∈S) describes the endowment at birth and in all suc-
cessor nodes, and (iii) for utility functions uσ,h = uσ̂,h := us(σ),h (for the initial old we use

the notation Xs(σ),h,o, ω(s(σ);h, o), and us(σ),h,o). Let ω(s;h, o) = ω(s̃, s; s̃, h) for all s ∈ S
and for all h ∈ H for some s̃ ∈ S; this lets us introduce the initial old in a manner which
is compatible with the stationary structure of the rest of the economy.

A consumption plan for agent (σ, h) will be denoted by x(σ, h) = (x(σ;σ, h), (x(σ0;σ, h))σ0∈σ+)
(x(σ;h, o) for the initial old); this notation allows us to consider nonstationary consump-

tion plans even though the environment is stationary.

Denoting by ω(σ) the total endowment at node σ, we have:

ω(σ) :=
P

h∈Hω(s(σ); s(σ), h) +
P

h∈Hω(s(σ);h, o) for σ ∈ Σ1,

ω(σ) :=
P

h∈Hω(s(σ); s(σ), h) +
P

h∈Hω(s(σ−1), s(σ); s(σ−1), h) for σ ∈ ∪t≥2Σt.

We impose the following standard conditions:

ASSUMPTION 1:

(i) 1 ≤ H <∞ and 1 ≤ #S := S <∞.
(iia) For all (s, h, o) ∈ S ×H, Xs,h,o = R+, us,h,o : Xs,h,o → R is strictly monotone.

(iib) For all (s, h) ∈ S × H, Xs,h = R1+S+ , ω(s; s, h) ∈ R++ and ((ω(s, s
0; s, h))s0∈S) ∈

RS
+/{0̄}, us,h : Xs,h → R is C2, strictly monotone, and differentiably strictly quasi-

concave.

(iii) ω(s;h, o) = ω(s̃, s; s̃, h) for all s ∈ S and for all h ∈ H for some s̃ ∈ S.
(iv) For all σ ∈ Σ, ω(σ) ∈ R++.

DEFINITION 1: A feasible allocation x is given by an array

((x(σ;h, o))(σ,h)∈Σ1×H, (x(σ, h))(σ,h)∈Σ×H) such that x(σ;h, o) ∈ Xs(σ),h,o for all (σ, h) ∈
Σ1 ×H, x(σ, h) ∈ Xs(σ),h for all (σ, h) ∈ Σ×H, andP

h∈Hx(σ;σ, h) +
P

h∈Hx(σ;h, o) ≤ ω(σ) for all σ ∈ Σ1,P
h∈Hx(σ;σ, h) +

P
h∈Hx(σ;σ−1, h) ≤ ω(σ) for all σ ∈ ∪t≥2Σt.

We use a notion of optimality proposed by Muench (1977) wherein the Pareto criterion
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is applied to an economy in which agents are distinguished by the event at their birth:

DEFINITION 2 (CPO): Let x be a feasible allocation. x is conditionally Pareto optimal

(CPO) if there does not exist another feasible allocation bx such that
(i) for all (σ, h) ∈ Σ1 ×H, us(σ),h,o(bx(σ;h, o)) ≥ us(σ),h,o(x(σ;h, o)),

for all (σ, h) ∈ Σ×H, us(σ),h(bx(σ, h)) ≥ us(σ),h(x(σ, h)),

(ii) either for some (σ0, h0) ∈ Σ1 ×H, us(σ0),h0,o(bx(σ0;h0, o)) > us(σ0),h0,o(x(σ
0;h0, o)),

or for some (σ0, h0) ∈ Σ×H, us(σ0),h0(bx(σ0, h0)) > us(σ0),h0(x(σ
0, h0)).

We now introduce the notion of stationary equilibrium when markets are sequentially

complete. Let qs = ((qs,s0)s0∈S) ∈ RS
+ denote the stationary price of a one period ahead

contingent claim on the consumption good bought in the state s ∈ S. Let q := (q1, · · · , qS)
be the vector of stationary prices.

Stationarity of the equilibrium requires that x(σ, h) = x(s(σ), h) for all (σ, h) ∈ Σ×H
(i.e., the consumption allocation of each agent depends on the state at the date of his

birth and the states at the next date only); a stationary consumption plan for agent (σ, h),

with s = s(σ), will be denoted by x(s, h) = (x(s; s, h), (x(s, s0; s, h))s0∈S). We also need
to assign consumption to the initial old; for our purposes it suffices that the allocation be

feasible in the aggregate since Assumption 1 (iii) guarantees that the aggregate endowment

is stationary.6

DEFINITION 3: (x∗, q∗) is a stationary competitive equilibrium with sequentially complete
markets if x∗ is a feasible allocation and, for all (s, h) ∈ S ×H,
(a) [x∗(s; s, h)− ω(s; s, h)] +

P
s0∈S q∗s,s0 · [x∗(s, s0; s, h)− ω(s, s0; s, h)] ≤ 0,

(b) if us,h(x) > us,h(x
∗(s, h)) then

[x(s; s, h)− ω(s; s, h)] +
P

s0∈S q∗s,s0 · [x(s, s0; s, h)− ω(s, s0; s, h)] > 0.

3. THE RESULT

At an interior equilibrium allocaton, let ms,s0,h(x
∗) := dus,h(x

∗(s,h))
dx1+s0

/
dus,h(x

∗(s,h))
dx1

;7 let

Mh(x
∗) be the strictly positive square matrix with elements ms,s0,h(x

∗). Since markets
are sequentially complete, the matrices Mh(x

∗) are identical for all the agents; let M(x∗),
a strictly positive matrix, be the common value of the matrices. By Perron’s Theorem

(see, e.g., Theorem 8.2.8 in Horn and Johnson (1985)), there exists a unique vector (up

to normalization) with all components positive, y ∈ RS
++, such that M(x

∗) · y = λ · y for
some number λ ∈ R++. The number λ is the Perron root of the matrix M(x

∗) and is the
largest eigenvalue, in absolute value, of the matrix. The equilibrium is said to satisfy the

unit root property if the Perron root of the matrix M(x∗) is less than or equal to one.

6A complete specification of equilibrium requires the introduction of (i) commodity transfers via taxes,
if we think in terms of trade taking place in contingent commodities, or (ii) assets, if we think of trade
taking place in a sequence of markets, which support the net trade between generations required by the
prices q. Either of these specifies completely the consumption of the initial old.

7For f : RN
++ → R, df(x̄)

dxi
denotes the partial derivative of the function f with respect to its i-th

coordinate evaluated at the point x̄.
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THEOREM: Let (x∗, q∗) be a stationary competitive equilibrium with sequentially com-

plete markets in which the equilibrium allocation is interior. Under Assumption 1, the

equilibrium allocation is CPO if and only if it satisfies the unit root property.

PROOF: That there exists a stationary improvement when the Perron root exceeds one

can be seen as follows.8 By the defining property of the Perron root of the Matrix M(x∗)
there exists a vector y ∈ RS

++ such that

λy =M(x∗) · y ⇔ λys =
X
s0∈S

ms,s0(x
∗)ys0 for all s ∈ S

⇔ X
s0∈S

dus,h(x
∗(s, h))

dx1+s0
ys0 +

dus,h(x
∗(s, h))

dx1
(−ys)λ = 0 for all s ∈ S

⇔ X
s0∈S

dus,h(x
∗(s, h))

dx1+s0
ys0 +

dus,h(x
∗(s, h))

dx1
(−ys) > 0 for all s ∈ S,

since λ > 1, where h is any agent type. So by reducing the consumption of an agent

born in state s by ys and increasing it by ys0 in each state when old, one generates an

improvement. Feasibility is obviously maintained. Since the transfers proposed are from

the young to the old, the initial old are also improved in every state.

The argument above makes clear that if the unit root property holds there can be

no stationary improvement; we argue by contradiction to show that there are no non-

stationary improvements either.

Suppose there exists an allocation x̂ that CPO dominates x∗. Define

∆(σ;σ, h) := x̂(σ;σ, h)− x∗(s(σ); s(σ), h), for σ ∈ Σ,

∆(σ0;σ, h) := x̂(σ0;σ, h)− x∗(s(σ), s(σ0); s(σ), h), for σ0 ∈ σ+,

where we use notation that allows us to treat the case in which the allocation x̂ is not sta-

tionary. Also define ∆̄(σ) := − 1
H

P
h∈H∆(σ;σ, h), the change in the average consumption

by the young born at the node σ. Feasibility of the alternative allocation implies that

1

H

X
h∈H

∆(σ0;σ, h)− ∆̄(σ0) ≤ 0, for σ0 ∈ σ+.

It follows that if the change in average consumption by the old at a node σ is positive

then ∆̄(σ) is also positive.

Since we have an improving allocation, and preferences are strictly convex, the fol-

lowing inequality, which gives a quadratic approximation to an agent’s utility function

around the equilibrium allocation, must be satisfied for all agents (σ, h), σ ∈ Σ,9X
s0∈S

ms(σ),s0(x
∗)∆(σ, s0;σ, h) ≥ −∆(σ;σ, h) + ρ · [∆(σ;σ, h)]2, (1)

8This argument is due to Aiyagari and Peled (1991).
9See, e.g., Lemma 1 in Chattopadhyay and Gottardi (1999).
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where we identify the node σ0 ∈ σ+ with (σ, s(σ0)) which we denote (σ, s0). ρ is a positive
number which gives a uniform lower bound on the curvature of the agents’ indifference

sets and is well defined under Assumption 1.

By averaging the inequality in (1) across the set of agents born at the same node, using

Jensen’s inequality applied to a quadratic function, and using the feasibility condition,

we obtain: X
s0∈S

ms(σ),s0(x
∗)∆̄(σ, s0) ≥ ∆̄(σ) + ρ · [∆̄(σ)]2. (2)

In addition, the fact that the initial old must also be improved implies that ∆̄(σ) ≥ 0
for all σ ∈ Σ1. This fact together with an application of (2) shows that there must be

some node σ̄ such that the change in average consumption by the young is zero for all

agents born at nodes with dates t(σ) < t(σ̄) while ∆̄(σ̄) > 0.

Let λ denote the Perron root of M(x∗) and let y ∈ RS
++ be a vector such that

M(x∗) · y = λ · y, so that for all s ∈ S we have Ps0∈Sms,s0(x
∗)ys0 = λys > 0; it fol-

lows that by setting w(s, s0) :=
ms,s0(x∗)ys0

λys
we have w(s, s0) > 0, for all (s, s0) ∈ S ×S, andP

s0∈S w(s, s0) = 1 for all s ∈ S. (2) can now be rewritten as

λ
X
s0∈S

w(s(σ), s0)
∆̄(σ, s0)

ys0
≥ ∆̄(σ)

ys(σ)
+ ρ · [∆̄(σ)]

2

ys(σ)
. (3)

The existence of an improving allocation implies that (3) must hold.

To reduce the notational burden, we will assume that σ̄ ∈ Σ1, that is, the initial old

are the first to receive a transfer; this is without loss of generality.10

Define W (σ0) := 1, W (σ̄) := 1, W (σ) = 0 for σ ∈ Σ1/{σ̄}, and inductively define
W (σ) := W (σ−1) · w(s(σ−1), s(σ)) for σ ∈ ∪t≥2Σt. It is easy to see that

P
σ∈Σt W (σ) = 1

for all t ≥ 1 and that W (σ) > 0 if and only if σ is a node that succeeds σ̄ which was

defined as the first node at which the average intertemporal transfer is nonzero.

Evidently, invoking (3) twice yields

λ2
X
s0∈S

X
s00∈S

w(s(σ̄), s0)w(s0, s00)
∆̄((σ̄, s0), s00)

ys00
= λ

X
s0∈S

w(s(σ̄), s0)

(
λ
X
s00∈S

w(s0, s00)
∆̄((σ̄, s0), s00)

ys00

)

≥ λ
X
s0∈S

w(s(σ̄), s0)

(
∆̄(σ̄, s0)

ys0
+ ρ · [∆̄(σ̄, s

0)]2

ys0

)

≥ ∆̄(σ̄)

ys(σ)
+ ρ ·

(
[∆̄(σ̄)]

2

ys(σ̄)
+ λ · X

s0∈S
w(s(σ), s0)

[∆̄(σ̄, s0)]2

ys0

)
.

Equivalently, we have shown that

λ2
X
σ∈Σ3

W (σ)
∆̄(σ)

ys(σ)
≥ ∆̄(σ̄)

ys(σ̄)
+ ρ ·

(
2X

τ=1

λτ−1
X
σ∈Στ

W (σ) · [∆̄(σ)]
2

ys(σ)

)
.

10We can always ignore the set of dates at which the net transfer is zero since once the transfer is
positive at a node at some date it must be positive along some sequence of successor nodes.

8



By repeating the argument we obtain a set of inequalities which must hold if an improve-

ment exists:

λT
X

σ∈ΣT+1
W (σ) · ∆̄(σ)

ys(σ)
≥ ∆̄(σ̄)

ys(σ̄)
+ ρ ·

(
TX

τ=1

λτ−1
X
σ∈Στ

W (σ) · [∆̄(σ)]
2

ys(σ)

)
. (4)

Since the endowment is uniformly bounded across nodes and since y ∈ RS
++, feasibility

implies that the quantity ∆̄(σ)
ys(σ)

is always bounded. Since
P

σ∈Σt W (σ) = 1 for all t ≥ 0,
the left hand side of the inequality is an expected value of a bounded variable multiplied

by a growth factor. Clearly, if λ < 1, the left hand side converges to zero while the right

hand side is positive, as ∆̄(σ̄) > 0, yielding a contradiction.

In order to proceed, note that for wi > 0 with
P

iwi = 1, and xi arbitrary,X
i

wixi ≥ a ≥ 0 ⇒ X
i

wi(xi)
2 ≥ a2, (5)

which follows from the fact thatX
i

wi

h
xi −

³X
i

wixi
´i2 ≥ 0 ⇔ X

i

wi(xi)
2 ≥

³X
i

wixi
´2
.

Since (4), evaluated at λ = 1, implies that

X
σ∈Σt

W (σ) · ∆̄(σ)
ys(σ)

≥ ∆̄(σ̄)

ys(σ̄)
> 0 for all t = 2, 3, · · · ,

an application of (5) shows that

X
σ∈Σt

W (σ) · [∆̄(σ)]
2

[ys(σ)]
2 ≥

[∆̄(σ̄)]
2

[ys(σ̄)]
2 ⇔ X

σ∈Σt
W (σ) · [∆̄(σ)]

2

ys(σ)
≥ y

y
· [∆̄(σ̄)]

2

ys(σ̄)
,

where y is the smallest element of the strictly positive vector y and y is the largest element.

Now it is obvious that in (4) with λ = 1, the left hand side is bounded while the right

hand side is not and this yields the desired contradiction.
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