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REPEATED GAMES WITH PROBALISTIC HORIZON

Ivan Arribas and Amparo Urbano

ABSTRACT

Repeated games with probabilistic horizon are defined as those games
where players have a common probability structure over the length of the
game’s repetition, 7. In particular, for each ¢, they assign a probability p,
to the event that "the game ends in period t 7.

In this framework we analyze Generalized Prisoners’ Dilemma games in
both finite stage and differentiable stage games. Our construction shows that
it is possible to reach cooperative equilibria under some conditions on the
distribution of the discrete random variable T even if the expected length of
the game is finite. More precisely, we completely characterize the existence
of sub-game perfect cooperative equilibria in finite stage games by the (first
order) convergence speed: the behavior in the limit of the ratio between the
ending probabilities of two consecutive periods. Cooperation in differentiable
stage games is determined by the second order convergence speed, which
gives a finer analysis of the probability convergence process when the first
convergence speed is zero.

Leptokurtic distributions are defined as those distributions for which the
(first order) convergence speed is zero and they preclude cooperation in fi-
nite stage games with probabilistic horizon. However, this negative result is
obtained in differential stage games only for a subset of these distributions.

Keywords: Repeated Games, probabilistic horizon, cooperation.

JEL Classification System: C72



1 INTRODUCTION

Assumptions about the length of players’ horizons often have profound impli-
cations for their behavior. As is well known, equilibria in infinitely repeated
games are characterized by folk theorems. However, in instances where the
stage game gives rise to a unique equilibrium, a large but finite horizon does
not allow players to sustain anything other than the repetition of the stage
game equilibrium.

Games with infinite horizon and constant discounting imply that the end
of the game never gets any closer (in a probability sense). Yet, the expected
horizons of agents do not remain constant, in general, over time. In this
context the analysis of games with unknown horizons is of very practical
interest.

Repeated games with probabilistic horizon are defined as those games
where players have a common structure of probability over the length of the
game’s repetition, 7. In particular, they assign a probability p; to the event
that “the game ends in period t. In this framework we analyze Generalized
Prisoners’ Dilemma games in both finite stage and differentiable stage games.

Papers in this line of research are Bernheim and Dasgupta (1995,BD
hereafter) and Jones (1998,1999, J hereafter). The former authors study a
class of repeated games that retains the desirable features of both finite and
infinite horizon assumptions, while avoiding their undesirable features. They
refer to this class of games as games with ”asymptotically finite” horizon:
there is always a positive continuation probability but it varies over time.
Their results have an application in both differentiable stage and finite stage
games. For the first ones BD obtain a sufficient and necessary condition over
continuation probabilities for the existence of cooperative equilibria. For
finite games they show a sufficient condition for negative results. J (1998,
1999) analyzes cooperation in finite stage games through linear strategies. In
his 98 paper the set of cooperation vectors associated with subgame perfect
publicly correlated equilibria is examined, meanwhile the 99 paper focuses
on the conditions for the existence of cooperative subgame perfect equilibria.

Our construction shows that it is possible to reach cooperative equilibria
under some conditions on the distribution of the discrete random variable T°
even if the expected length of the game is finite. More precisely, we com-
pletely characterize the existence of sub-game perfect cooperative equilibrium



in finite stage games by the (first order) convergence speed: the behavior in
the limit of the ratio between the ending probabilities of two consecutive
periods. The convergence speed, in turn, measures the speed at which p;
converges to zero as t tends to infinity. It allows to completely classify the
set of distributions over the length of the game in three subsets. In one of
them cooperation is always sustained, in another one it never occurs and
finally, in the third one cooperation depends on the payoff matrix of the
game.

Our approach to modeling the uncertainty over the length of the game al-
lows us to solve analytically a wider family of problems than those previously
analyzed in the literature. ”Leptokurtic distributions” are defined as those
distributions whose convergence speed is zero. This is the class of probability
distributions of the length of the game, for which no cooperative equilibrium
exists, independently of the finite stage game under consideration. Also, we
relate them with both quasi-finite (J, 1999) and asymptotically finite (BD,
1995) continuation probabilities. Moreover, since by changing the structure
of the probability over the future, we vary the way in which cooperation may
be sustained, our approach allows us to work with a wider family of games
of unknown length. Thus, finite stage games with probabilistic horizon unify
the analysis for finitely repeated game without discount factor, infinitely re-
peated games with discount factor and infinitely repeated games with limit
average payoffs. Common and wide families of probability distributions over
the length of the game as the positive Poisson, the geometric, the harmonic
and the negative binomial distributions, among others, are useful to analyze
and characterize the existence of cooperation.

We reinterpret BD (1995) results for differentiable games and classify
them according to both the convergence speed of the probability distribution
over the length of the game and the convergence speed of its logarithm. Also,
just a subset of the leptokurtic distributions precludes cooperation in these
classes of games.

To conclude our work we present a classification of the distributions over
the length of any probabilistic Generalized Prisoners’ Dilemma game which
allows to ascertain the existence of cooperation in both finite and differen-
tiable stage games. This taxonomy is made according to the behavior of
both the first and the second order convergence speeds. We classify discrete
distributions in three categories which include five subcases and we analyze
in which of them cooperation is attainable.
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The paper is organized as follows. Section 2 sets up the probabilistic
horizon model and defines the associated statistical concepts. The main re-
sults for both finite and differentiable stage games are presented in section 3.
In subsections 3.1-3.2, we present the finite stage model and we characterize
the existence of cooperation by means of the first order convergence speed.
Subsection 3.3, introduces the class of distribution for which cooperation is
never attainable in finite stage games and is related with alternative negative
results. The analysis of differentiable stage games is undertaken in subsec-
tion 3.4, where the existence of cooperation is characterized in terms of the
second order convergence speed. Finally, section 4 concludes the paper by
offering a summary and a classification of probabilistic horizon games.



2 THE MODEL

2.1 The stage game

Let us consider a simultaneous move game, G, played by N players. Each
player ¢ selects an action s; € S;, where S; is a subset of R, which may be
either finite,(for the analysis of finite stage games) or compact (for the case
of differentiable stage games). Let S = x¥,S;, and let s denote an element
of S. The payoft to each player i is given by the function m; : S — R.

Let s = (s;,5—;) be an action profile where s; € S; and s_; = (s1,...,8i-1,
Sit1,---,Sn) and define

¢i(s) = mazyes,mi(s;, 5-i) — mi(s)

as a function that measures the maximum gain that player ¢ can achieve
by deviating unilaterally from s. The existence of this function is obviuosly
guaranteed when S; is a finite set and under continuity of m; when S;is a
compact set. Trivially, s € S is a Nash equilibrium of G iff ¢;(s) = 0 for all
1. In other words, if any deviation from s is a loss to any player.

We consider the class of the generalized Prisoners’ Dilemma games in-
troduced by BD (1995). Thus, assume that in the stage game there is a
unique Nash equilibrium, s*, and normalize payoffs so that m;(s*) = 0 for all
i. Further, there exists at least one efficient action s whose payoffs strictly
Pareto dominates those of the Nash equilibrium.

2.2 The probabilistic horizon repeated game

Assume that the stage game is repeatedly played by the same players an
unknown number of times.

Players have a common probability structure over the length of the re-
peated game. More precisely, if we define the discrete random variable T as
the length of the repeated game, the players will assign a probability p; to
the event T' = t,

PT‘(T:t):pta vt:]-727"'7 pt207 Zpt:]-
t=1
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Once the random variable T" is defined as above, denote by E[T] the
expected length of the game. More precisely,

Definition 1 (Expected length of the game) If the length of the repeated
game, T, is a random variable with distribution {p;}3°,, the expected length
of the game is defined as the expected value of the random variable T, i.e.,

= tht (1)

Notice that the expected length of the game could not exist if the series
in (1) diverges. In this case F[T] = oo and it means that players believe that
the stage game is going to be repeated forever.

Players maximize average expected payoffs. For any sequence of action
profiles § = {s;}°, and distribution {p;}°,, player ¢ will receive a payoff of
m;i(s1) if the game lasts for just one period, an event that has probability p;.
If the game lasts for two periods, with probability ps, player ¢ will receive a
payoff of m;(s1) + m;(s2). In general, if the game is played during ¢ periods,
an event that has probability p;, player i will receive a payoff of m;(s1)+...+
mi(s¢). The payoff function to each player in the repeated game is defined by
the limit of average expected payoffs.

Thus, for any sequence of action profiles s = (s1,s9,...), player i’s ex-
pected average payoff is given by!

mi(s) = tlg})lo ﬁ(plﬂi(sl) + o pmi(s) + . m(s) =

. z@m o

t_)OOZn 1npnj 1 \n=1

= lim —— Z <Zp]> Ti(Sn) (2)

t
HOOZ:—lnpnn 1 \j=n

if the limit exists.

!By Fubbini’s theorem we can change the order of the summations.
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When the expected length of the game is finite and the payoffs of the
stage game are bounded, the above expression translates to:

1 oo oo
a3 () mte
n=1 \j=n
On the other hand, E[T] could be oo but then either i) player i’s payoffs
for all actions in s are bigger than a fixed value, m;(s,) > a > 0 for all n, and

then the limit in (2) exists and m;(5) > «, or ii) 5 has a finite set of actions
different from the Nash equilibrium and then ;(3) = 0 for all i.

We refer to the above defined repeated game as a probabilistic horizon
game. Notice that this model is more general than the usual discount factor
model for infinitely repeated games. In the latter, the discount factor is the
subjective present value of one payoff unit received after a delay of one period.
However, the discount factor also represents the knowledge that players have
about the exact length of the game. In other words, players, at present, do
not give all the value to future payoffs since they cannot be sure that the
game will be infinitely played. Taking p; = (1 — §)6'", § € (0,1), the payoff
function becomes the one of the traditional discounted (infinitely) repeated
game.

While the game is played the expected length of the game is updated
each period by Bayes’ rule, so that if the game reaches period t, then the
expected length of the game will be conditioned upon this event. In general,

Definition 2 (Conditional expected length) The expected length of the
game after period t has been played is the conditional expected value of the
random variable T, i.e.,

1 S Dt Pn
npn = S
L—pr = =pa S, D net Pn

ETT > 1] = (3)

The conditional expected length of the game is the simplest way to sum
up the information contained in the distribution of 7.

Moreover, since E[T|T > t| is the total number of periods expected to
be played after period t, the next definition expresses the expected extra
number of periods to be played after period t and it plays a key role under
our approach.



Definition 3 The remaining expected length of the game is

BITIT > f — 1 = St —Oe @

The value E[T|T > t] — t gives players the expected number of periods
they have to punish any deviation in period t.

Throughout the paper, we will focus on the subgame perfect Nash equi-
libria. Repeating the Nash equilibrium of the stage game, s*, in every period
is clearly a subgame perfect Nash equilibrium; we will refer to it as the de-
generate equilibrium.

Definition 4 (Cooperative equilibrium) A cooperative equilibrium is any
subgame perfect equilibrium with actions different from those of s* for some
history of the game. Repeating the Nash equilibrium, s*, in every period and
for any history is a degenerate equilibrium.



3 MAIN RESULTS

Our construction shows that it is possible to reach cooperative equilibria
under some conditions on the distribution of the discrete random variable T’
even if the expected length of the game is finite, i.e. E[T] < oo.

The conditions for cooperation depend on the class of stage games being
analyzed: finite games or differentiable games. For the former both the value
of the payoffs in the stage game and the distribution of the length of the
game are the key factors. For the latter only the structure of the underlying
distribution has to be considered.

The difference between these two classes of games relies on the compact-
ness of the players’” action space. This compactness is used to design punish-
ments to support subgame perfect equilibria. The intuition tell us that the
longer the expected length of the game the more cooperation is possible. In
games with a low probability to be infinitely played, future payoffs have a
small probability to be reached and there is no room to punish any deviation.
Moreover, if the remaining length of the game decreases as the game goes
on, then subgame perfect equilibria can only be supported when the gains of
deviations from the equilibrium path decrease as time goes on. This is only
possible in general if the game has a compact action space.

In next sections we show our results for both finite stage games and dif-
ferentiable stage games, both with common knowledge about the probability
distribution of the length of the game.

3.1 Finite stage games

We will consider first finite stage games with probabilistic horizon in which
the distribution on 7T is equal for both players and common knowledge. We
will show that, in most of the cases, the necessary and sufficient condition
for cooperation depends not only on the distribution, {p;}$°;, but also on
the payoff matrix. This condition has a natural interpretation in terms of
the expected value of the length of the players’ horizons, and it is translated
to the behavior in the limit of the ratio between the ending probabilities of
two consecutive periods.

A strategy such that players will play a fixed collusive outcome in any
period can be played whenever deviations can be punished. A rough way
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to think of it is the following: if player i deviates from action s’ in period ¢
he wins ¢;(s’) and in the remaining periods he will be punished by a loss of
mi(s'). (Recall that we have normalized the payoff of the Nash equilibrium
so that m;(s*) = 0 for all 4.) Thus, the ratio between these two values gives
us the number of times that player i has to be punished. If players estimate
that the expected length of the game is equal to or bigger than this ratio
any deviation can be punished and hence cooperation could be obtained. Of
course, if the expected length of the game is lower than f%‘::; no collusion is
attainable. '

We are concerned with the existence of strategies that can support sub-
game perfect cooperative equilibria. As in BD (1995) and J(1998, 1999) we
select an action that has relatively the least benefit from deviations. Thus,
consider the action s such that it verifies the following two conditions:

Z) 771'(80) > 771'(8*) Vie N
¢i(s)

N0 - i)
it) ¥ € arg min {Izlé%( m(s)}

That is, s° is an efficient action with respect to s* yet it also minimizes
the gains from deviations. By assumption there exists at least one action in
the stage game which verifies condition i) and we select among them the one
which also verifies condition ii).

We look for the conditions that ensure the existence of cooperative equilib-
ria. To this end we remove two types of distributions which yield degenerate
cases.

Consider first a terminating p-function as defined by Carroll (1987): a
distribution {p;}$2, is a p-function if p; = 0 for all ¢t > ¢,, with ¢, a fixed
integer. In a probabilistic horizon game in which the distribution is a termi-
nating p-function the only equilibrium is the degenerate one, consisting on
the repetition of s* as long as the game is played. The proof of this result is
trivial by using backward induction. As Becker (1990) points out this kind
of games is equivalent to the class of finitely repeated games.

Alternatively, we could model any finitely repeated game as a probabilistic
horizon repeated game in the following way. For an [-times repeated game,
consider the distribution {p!}2°, such that p, = 0 for all t # [, and p;, = 1.
Player i’s expected average payoff is Z;Zl mi(sn)/l. Now we could analyze
the behavior in the limit, when the length of the finitely repeated game grows.
Thus, we obtain a degenerate discrete distribution {p{°}2°, which represents
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the infinitely repeated game, ie. pf® = 0 for all £. This is a degenerate
case in the sense that »_ p; is zero, but it arises as the limit of a proper
distribution and thus player i’s expected average payoff can be calculated
as lim;_, o Z;Zl mi(sn)/l, i.e. the usual time-average payoff (Fudenberg and
Tirole, 1991).

Given the above discussion, we only consider discrete distributions such
that there exists an infinite number of periods with probability of ending
different from zero. More precisely,

Condition (C): given {p;}{2, there exists an infinite and strictly in-
creasing sequence of integer numbers {¢;}7°, such that p, > 0 if and only if

te {tl}loil-

The following proposition gives the condition for the existence of coop-
erative equilibria. Recall that by definition of s% if there exists an efficient
strategy which plays any cooperative action in all periods, then there exists
a strategy which plays s° in all periods. Moreover, it is sufficient to consider
trigger strategies because any subgame perfect outcome can be supported by
a trigger strategy (Abreu,1988).

Proposition 1 In any probabilistic horizon Generalized Prisoners’ Dilemma
game which satisfies condition (C), there exists a cooperative equilibrium
which plays s° in all periods if the distribution of the length of the games
satisfies

¢i(s°) -~
max {m<80)} <ETT>t—-t Vt>0 (5)

Proof: A strategy which plays s in all periods is a subgame perfect
equilibrium if any deviation can be punished. Suppose that player i deviates
from cooperation in period ¢, so that he obtains an extra gain of ¢;(s°). In
the remaining periods both players play s*, but the length of this phase is
unknown. The punishment loss per period is m;(s?) — m;(s*) = m;(s°), and
the number of punishment periods is the remaining length of the repeated
game. Then, players estimate the expected punishment loss as,

(E[T|T > 1] - t)mi(s")

12



Thus, s° is a subgame perfect equilibrium if the one stage gain for devi-
ation is smaller than the expected punishment loss, for all ¢y > 0 and for all
1, 1.e

$i(s°) < (E[T|T > t] — t)m(s®)  V¢>0, Vie N

which is (5). O

Note that the right hand side of (5) is, in general, bigger than zero,
(E[T|T > t] > t, for all t), but it does not have to be bigger than max {%}
as t increases. To determine whether or not (5) is verified, we need to know
the behavior in the limit of the conditional expected length of the game.

3.2 The remaining expected length of the game

Intuitively it is clear that if the remaining expected length of the game after
any period, F[T|T > t| — t, is infinity there is room to punish properly any
deviation and, hence, there exists cooperative equilibria; similarly, if, after
any period, it is some constant different from zero then, it is possible to
find, under some assumptions, cooperative equilibria in the repeated game.
But if , as the game goes on, this remaining expected length goes to zero
then players may not have time to punish deviations and only degenerate
equilibria will be available as subgame perfect equilibria.

Next results characterize the behavior in the limit of E[T|T > t] — t.
First,

Lemma 1 Let {p:};°, be a distribution, with {t;}7°, an infinite strictly in-
creasing sequence of integer numbers such that p, > 0 if and only if t €
{t1}2,. Then, Vt,t' such that t;—y <t <t <t it is verified that

E[T|T >#)— > E[T|T >t —t > E[T|T > t] —

Proof. Recall that p, = 0 if t;_; <t < t;. Then the proof is straightfor-
ward since by (3)

Zzo:t npn o Zzo:tl NPn

DomiiPn Zio:tl Dn
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Lemma 1 says that if the probabilistic horizon game is moving along non-
ending periods the remaining expected length of the game decreases, since
the conditional expected length does not change?.

Unfortunately, there does not exist a clear relationship between E[T|T >
ti_1]—t;_1 and E[T|T > t;]—t;, but the analytical expression of E[T'|T" > t|—t
involves series and succession terms (see (4)), and thus we can use different
results concerning both the convergence of series and the limit of successions
to obtain its behavior in the limit. In particular, the First Stolz’s convergence
criterion transforms the limit of partial sums (series) into the easier limit of
successions. We state it next for completeness.

Proposition 2 (First Stolz’s Criterion) Let {a,} and {b,} be two suc-
cessions converging to zero, such that

by >by>...>b,>....

If the limit of ‘Z:E:ZZ is finite or infinite with a proper sign, then
Qp — Qap . Qp
lim =L

n—0oo bn+1 - bn n—0oo bn

Our approach has a simple intuition. From a statistical viewpoint the
conditional expected value of a random variable depends on where the prob-
ability mass of this variable is concentrated: either around some specific
value, or around all the values of the variable (dispersed). To study whether
or not this random variable is concentrated we need to know the weights of
the tails. In our setting, a measure of how fast the tails go to zero (if we
understand them as functions of time) is to evaluate the behavior of p;—tl in
the limit.

The above criterion allows us to calculate the behavior in the limit of
ETIT>t—t= %T when both the numerator and the denominator
are considered as successions of t. And, it turns out that this behavior
depends on the ratio & B,

2 Although players update the probability distribution by Bayes’ rule period by period,
the underlying distribution does not vary.
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Moreover, since the behavior in the limit of p;—:l is also a way to measure
the speed at which p; goes to zero, cooperation in repeated games with prob-
abilistic horizon can be easily characterized by the underlying probability
distribution over the length of the game. In fact, the order of convergence
of p; depends on the order of convergence of the mass of probability concen-
trated in either far periods or along all the distribution. Thus, define

Definition 5 (Convergence speed) If {p;}:2, is a distribution such that
p: > 0 for all t, the measure at which p; tends to zero, the convergence speed,
is defined as lim,,_,o © ;1 . The closer to zero this limit the faster p; decreases.

Now, D’Alambert’s criterion on convergence of series helps us to bound
the possible values of the convergence speed. We also state it next for com-
pleteness.

Proposition 3 (D’Alambert’s criterion) Let > a, be a series and let
A = lim, o ‘GZ“‘ € R U{+o0}, if it exists. Then

n

i) A< 1= > a, is absolutely convergent = >_ a, is convergent
i) A>1 (or A =+00) = > ay, is divergent
iii) X = 1 the criterion does not give a precise answer.

Thus, given that Y~ p, = 1 and by the above criterion, we have that

Corollary 1 lim, .. 2 € [0,1].

The next Theorem characterizes the behavior in the limit of E[T'|T > t]—t
according to the convergence speed (the proof appears in the Appendix).
This result is our first contribution to the analysis of finite stage games with
probabilistic horizon and it allows to completely classify the set of distribu-
tions over the length of the game in three subsets. In one of them cooperation
is always sustained, in another one it never occurs and finally, in the third
one cooperation depends on the payoff matrix of the game.

Theorem 1 Assume that lim;_, p;t“ exists then,
l

0 < limy e p;ljl -0

l
lim ET|T > 4] -ty = 750<7<1) & lm o P —
00 & limy ., 2 =1

l
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To illustrate our findings let us consider three natural families of dis-
crete distributions each one corresponding to each of the above cases: the
positive Poisson distribution, the geometric distribution and the harmonic
distribution. In the three cases p; > 0 for all t.

e The positive Poisson distribution: p; = (e* — 1)7*\{/t! for t = 1,2, ....
It is not difficult to see that p;—tl = t%, which converges to zero as t tends to
infinity. The expected value for 1" under this distribution is %, that goes

from 1 as A — 0, to co as A — oc.

e The geometric distribution: p; = (1—7)v'~!. The geometric distribution
verifies a property which characterizes it: Pr(T = Ty +t|T > Ty) = Pr(T =

t) for all Ty and ¢. Thus, E[T|T" > t] —t is constant and equal to 2 .

(E[T] = ﬁ, that goes from 1 as v — 0, to co as v — 1).

e The harmonic distribution: p, = K/t* with o > 1 and K a nor-
malization parameter equal to 1/> . It is not difficult to check that
limtﬁoop;—:lzlandthat ET|=xifl <a<2.

We summarize the remaining expected length of the game behavior for
these three distributions in the next Corollary. To prove it just combine the
previous Theorem and the definitions of the distributions.

Corollary 2 The value of limy .o, E[T|T > t] —t is,
i) zero, if py is distributed as a positive Poisson distribution.
it) 1—1—7, if pi follows a geometric distribution with ratio .
ii1) infinity, if p; is distributed according to a harmonic distribution.

Conditions for the existence of cooperative equilibria are given next. They
follow directly from Proposition 1, Lemma 1 and Theorem 1.

Proposition 4 Consider a finite Generalized Prisoners’ Dilemma game with
probabilistic horizon determined by the distribution {p;}?°, which satisfies
condition (C) and which defines the payoff function for any path {s;};2, as,

T )
W ; (;ptm(sn)>



then, there exists a cooperative equilibrium which plays s° in all periods if

. Pty ¢i(50)
ML, {m(SO) + ¢i(s0) } (©)

Proof: Since max {#i)(sﬂ)

v > % for all ¢, and v € (0,1). Or, alternatively that ¢’ g < L w
for all i. Now, by Theorem 1, lim; o, E[T|T > tl] - == Thus there
exists a integer I such that E[T|T > t] —t > £ ) for all 4 and t > ¢t;,. By

proposition 1 there exists a cooperative equlhbrlum (]

} € (0, 1), we consider the case lim;_, pzt“ =
l

A clarification is at hand. In case that (6) is fulfilled with strict equal-
ity cooperation is still sustained if the ratio p;lT“ is never lower than max

1 )
{ ¢4 (s%) }
mi(s9)+i(s0) [°

The next two corollaries establish the sufficient (and necessary) conditions
for the existence and non-existence, respectively, of cooperative equilibria,
independently of the payoffs of the finite stage game under analysis.

Corollary 3 There exists a cooperative equilibrium in pure strategies for any

finite Generalized Prisoners’ Dilemma game with probabilistic horizon if and

. . Pt
only if lim;_, # =1
l

Proof: 1If lim;_ p;lt“ =1, then (Theorem 1) limy_, E[T|T > t;] — t; =
1
oo, and by (5) in Proposition 1, necessity is trivially satisfied.
Suppose next that there exists a cooperative equilibrium in pure strategies
for any generalized Prisoners’ Dilemma but lim; . p;’t“ = v < 1. Then
1

consider the next Prisoners’ Dilemma game, where o > 1,

C D
c 11 -1:%=
-
D #,-1 00
8l
The unique efficient strategy is to play s = (C,C) in all periods, and
forall i, 1> m(ﬁ;f;z(so) = 12; = a_;ﬂ > . Then by proposition

2 there does not exist a cooperative equilibrium in this game. But this fact
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. . . Pt
contradicts our assumption. Hence, lim;_, p’t“

O

= 1 is a sufficient condition.

Next, notice that by Proposition 1 and by Theorem 1, there does not
exist a cooperative equilibrium which plays s° in all periods if

0
lim P ax { bi(s’) }
I—o0 py, o mi(s0) + Bi(s0)

In particular, we have that

Corollary 4 There does not exist a cooperative equilibrium strategy in pure
strategies for any probabilistic horizon finite Generalized Prisoners’ Dilemma
game if and only if the convergence speed of the length of the game is zero,
1.€.

lim 2 — g

l—oo ptl

Proof: If lim;_, o, % = 0, then by Theorem 1, lim; ., E[T|T > t;] —t, =
0, which implies that (5) is not satisfied for any ¢. By Proposition 1, there
does not exist a cooperative equilibrium which plays an efficient action of the
stage game in all periods.

Suppose now that there does not exist a cooperative equilibrium strat-
egy in pure strategies for any finite Generalized Prisoners’ Dilemma but
lim;_, p;lt“ = v > 0. Then consider the Prisoners’ Dilemma game of the
proof of tile above corollary, but where 0 < a < 1, with a+ v > 1. The
unique efficient strategy is to play s° = (C,C) in all periods, and for all i

we have that 0 < m(ﬁ;f;i(so) = O‘_éﬂ < 7. Then by Proposition 2 there
exists a cooperative equilibrium in this game. But this fact contradicts our
Dty

= 0 is a sufficient condition. O

assumption. Hence, lim;_, o

The intuition of the above results is clear by Proposition 1 and by The-
orem 1. Let us assume that p; > 0 for all &. When lim;_ pt% = 0, the
remaining expected length of the game, after period t — 1 has been played,
collapses to zero and (6) is never verified. The probability goes to zero too
quickly and the future has no relevance. After period ¢ — 1, players estimate
that the expected length of the game is close enough to ¢ and hence it is not
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possible to punish deviations in period ¢. Thus, cooperation is not obtained
in any subgame perfect equilibrium. The game in this case is equivalent to
a finitely repeated game and the unique subgame perfect equilibrium is the

repetition of the Nash equilibrium of the stage game, s*.

If limy o 2 ;t L

= 7, then the rate at which probabilities decrease is a

constant between zero and one3. Now, the remaining expected length of the
game after period ¢ — 1 has been played is a constant and close to /(1 — 7).
In other words, at any period of the game, players expect to play v/(1 — )
more periods. Thus, if the number of periods needed to punish the deviator,

max {fijﬁ%}, is lower than 7/(1 — 7) cooperation is possible, and this is

equivalent to (6). In this case the expected length of the game is also finite,
but, at any period, the remaining expected periods are constant. In other
words, no matter how many periods have been played, players always believe
that 7/(1 — -y) periods remain to be played.

Hence, this repeated game with probabilistic horizon is neither equivalent
to a finitely repeated game (since at any period the remaining expected
periods stay constant), nor to an infinitely repeated game (since the expected
length of the game is finite).

Moreover, recall that if p; = (1 — §)§'~! then the game with probabilis-
tic horizon becomes an infinitely repeated game with discount factor 6 and
player i’s expected average payoffs is (1 — &) > ., 6" 'mi(s¢). In this case

lim, o & gl = ¢ and it is well known that cooperation is possible if and only

if max {%} < 6/(1=9).

DPt+1

Finally, if lim; ., = 1 then we have a degenerate case in the sense
that the (conditional) expected length of the game goes to infinity. Thus,
from some period on, players estimate that they have a huge number of

periods to punish any deviation and cooperation holds independently of the

m;(s0)+¢i(s0)
This case is similar to an infinitely repeated game where the average payoft
of the repeated game is given by the limit of average payoffs, limy_, % Zle i (S¢)-

parameters of the game given that max {L‘QO)} < 1.

Thus, finite games with probabilistic horizon make it possible to unify the
analysis for finitely repeated games without discount factor, infinitely repeated

3This is the case when there exists an external, arbitrary and independent event which
makes the game finish and it has a probability + to occur.
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games with discount factor and infinitely repeated games with limit average
payoffs.

3.3 Leptokurtic distributions, continuation probabili-
ties and finite games.

This section considers the class of probability distributions of the length
of the game, for which no cooperative equilibrium exists, independently of
the finite stage game under consideration, and relates it with alternative
approaches in the literature. The above Corollary 4 characterizes the class
of discrete distributions for which just degenerate equilibria exist, and we
define this class of distributions as leptokurtic distributions.

Definition 6 (Leptokurtic distributions) A distribution {p;}°, is lep-
tokurtic if and only if its convergence speed is zero, i.e.,
Pty

lim —— =0
l—o0 ptl

where {t;}52, is a strictly increasing sequence of integer numbers such that
pe > 0 if and only if t € {t;}72,.

Probabilistic horizon games are similar to games with continuation prob-
abilities as defined in BD(1995) and* J(1998, 1999). Expected payoffs for
these games weigh future payoffs by both the continuation probability and
the discount factor.

Definition 7 A continuation probability is defined by a sequence {03},
where 3, is the probability that the game will continue to the k" period given
that the (k — 1)™ period occurs.

Both of the above authors analyze the class of continuation probabilities
for which cooperative equilibria do not exist, independently of the underlying

4While finishing our paper we got to know the work of J(1998,1999). In this section
we relate our approach with that of him.
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finite Prisoners’ Dilemma stage game. In particular, BD (1995) show that if
the continuation probabilities are such that lim; .., ; = 0 and the stage game
is finite, then there does not exist any cooperative pure strategy subgame
perfect equilibrium. They define this class of continuation probabilities as
asymptotically finite.

Definition 8 (Bernheim and Dasgupta, 1995) The continuation prob-
ability {5 }32, where B € (0, 1), is asymptotically finite if and only if lim;_,o. By =
0.

On the other hand, J (1998) considers a model where players use publicly
correlated strategies and he shows that there does not exist a publicly cor-
related subgame perfect equilibria for any Generalized Prisoners’ Dilemma

Jj=p+1
ation probabilities as quasifinite.

1/t
game if lim; o sup,en (Ht+p ﬁj) = 0. He defines this class of continu-

Definition 9 (Jones, 1999) The continuation probability {3;}32,, where
B € [0, 1], is quasifinite if and only if

t+p 1/t
lim sup < H @) =0.

t—o00
PEN \j=pt1

Both classes of continuation probabilities are related, so that if a contin-
uation probability is asymptotically finite then it is quasifinite.

Note that under our approach p; can be expressed as p; = - GBi(1 —
Bi+1) or equivalently that

fozt Pn

Zio:tfl Pr

Thus, we can relate leptokurtic distributions with both asymptotically
finite and quasifinite continuation probabilities. The next results link all the
concepts named above.

B =

Corollary 5 An asymptotically finite continuation probability has an under-
lying leptokurtic distribution over the length of the game.
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Proof: 1f lim;_,, B, = 0 then we can consider, without loss of generality,
that B, < 1 for all ¢ and thus, p, = 51 -+ - B;(1 — Bi41) > 0 for all t. Thus,

lim Pi+1 — lim ﬂt+1(1 - ﬂt+2)

=0
t=oo Py oo 1= [y

0

The reverse result is not true as we see in the next example. Consider
the distribution,

B 0 t is even
Pt = n!(:ﬂ) t is odd.

Clearly the convergence speed is,

Pays _ 4 [+1

y
- (1 +2)

=00 Poj+1

But the continuation probability defined by the above distribution, is,
B % t is even
ﬁt—{ 1 tis odd.

that is not asymptotically finite.

Note that the above continuation probability is no asymptotically finite
since it has a subsequence that does not converge to zero. Also, when (3, = 1
then p;,_; = 0, but the leptokurtic behavior of the distribution is driven by
the convergence to zero of the ratio of the subsequence of strictly positive
probabilities. However, the existence of any subsequence converging to zero,

does not guarantee that the distribution is leptokurtic: for instance, consider
the distribution,

1 0.1t/2 :
Py = WW t 1s even
(%) t is odd.

P2at+2 13 A : P2t41
= limy o0 757 <5 =0 but that lim; .

Thus, the distribution is not leptokurtic and there exists a cooperative
quilibrium for some stage game when played indefinitely. In fact, since

It is easy to check that lim; .,

|—

[N
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E[T|T > t] —t > 5/9 for all ¢, by Proposition 1 we can find a Generalized
Prisoners’ Dilemma stage game such that there exists a cooperative equilib-
rium for its repetition.

Thus, the class of asymptotically finite continuation probabilities has un-
derlying distributions on 7" which are a subset of the class of leptokurtic
distributions. The next corollary relates quasifinite continuation probabili-
ties with leptokurtic distributions.

Corollary 6 The continuation probability {5;}:°, is quasifinite if and only
if the associated distribution on T is leptokurtic.

The proof of this corollary follows directly from definitions 6 and 9 and
Stolz’s criteria for convergence of successions. In this way, the characteri-
zation of quasifinite continuation probabilities has a natural translation to
their underlying distributions on 7. Thinking of distributions instead of con-
tinuation probabilities has some advantages: firstly, it is easier to translate
players’ beliefs over the length of the game by means of a distribution than
by a continuation probability. Secondly, from an analytical point of view, the
calculus of the convergence speed entails solving an easier limit than know-
ing whether or not the continuation probability is quasifinite. In fact and

1/t
even for very standard distributions lim . sup,ey (Hé:]; 1 @-) can only
be calculated if the convergence speed ratio is known since, if we consider,

without loss of generality, that p, > 0 for all ¢ , then

t+1 1/t t+1 yo 1/t
—iDn
lim B; = lim — =
tmee <11:[2 ]> fmee <11;[2 Z":jlp”>

. . =t+2Pn
= lim Z pn> = lim ==z
t—o00 <n_t+1 t—o0 Zn_
— lim P42
t—o0 DPi+1
where the second equality holds by the functional relationship between any
distribution and their associated continuation probability; the fourth by the
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second Stolz’s criterion® and the fifth by (the first) Stolz’s criterion.

Thus, when §; < 1 for all ¢, the asymptotic geometric average of Jones is
equal to the limit of the continuation probabilities which, in turn, can be ap-
proximated by the limit of the ratio of the underlying probabilities. In other
words, the limit of the geometric average of the continuation probabilities is
equal to the limit of this succession (Cauchy’s criterion), which, by Bayes’
rule, is the convergence speed.

Note that the above result and theorem 4.5 in Jones(1999), allow us to
extend directly our approach to cooperative equilibria in publicly correlated
strategies: at every round ¢, players publicly correlate their actions and with
probability \; agree to all play an efficient action (s°) and with probability
(1 — ) all play the Nash equilibrium of the stage game, s*.

3.4 Differentiable stage games

These classes of games was analyzed by BD (1995) by considering asymptot-
ically finite continuation probabilities. They showed under which conditions
cooperation is supported. The most important fact is that given the com-
pactness of players’ action spaces, the conditions that give rise to cooperative
equilibria do not depend on the stage game under consideration, but just on
the continuation probability. Hence, cooperation is a property of the contin-
uation probability sequence. Our main contribution in differentiable stage
games with probabilistic horizon is to find the threshold of the speed at which
the distributions on the length of the game have to converge to sustain co-
operation.

Let us recall first some assumptions for differentiable games (also in
BD(1995)). Let S;, be a compact subset of R for each i and assume,
Assumption 1: 7; is C?, 7(s) = (m1(s), ..., mn(s)).

®The second Stolz’s Criterion says the following :  Let {a,} be a positive succession

. . . . a 1/(bn+1*bn)
and {b,} — oo be increasing. If the limit of (ﬁi)

a proper sign, then

18 finite or infinite with

(nt1 1/(bnt1—bn)
lim | —— = lim al/bn
n— oo Ay, n— o0
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Assumption 2: s* € Int(S) and Dw(s*) is regular, where Dm(s) is the
Nz N matrix of partial derivatives, so that the element i, j is B%S(,S).
J
Assumption 3: There exist a b, and € > 0 such that for all s € S with

s — 5" < €, Yoy ils) > bls — s*2.

The first condition establishes a minimum condition in order to work.
Assumption 2 ensures that s* is locally inefficient, i.e. there exists a vector
v such that if we move from s* in the direction of v all players increase their
payoffs. Formally, 3v € RN, o/ > 0 such that Vo < o/, s* +av € S, and

dmi(s* + av)

0 Vi
do > 1

a=0

Assumption 3 is important since it guarantees local uniqueness of the
Nash equilibrium s*.

Assume that the stage game is repeatedly played an unknown number of
times. Repeating the unique s* in every period, irrespective of the history, is
clearly a subgame perfect equilibrium. As said above, by the local inefficiency
of s*(assumption 2) there exists a vector v such that if we move from s*
in the direction of v all players increase their payoffs. Since payoffs are
approximately linear whithin a neighborhood of s*, we may consider the set
of efficient actions defined by s* 4+ av. The idea is that players choose a
sequence {a;}°, to play s* + a;v in period ¢t. If anybody deviates, then
players play s* in all subsequent periods. As long as the gains from deviating
in period t are smaller than following the constructed play, this play will be
a cooperative subgame perfect equilibrium.

Thus, cooperation in this framework translates to the existence of a se-
quence of action profiles {s;}52; such that it verifies

max {(b"(‘gt)} <ET|IT>t-t V>0
i mi(Se)
We have to analyze under which conditions the above sequence exists in

our framework. Without loss of generality we assume that p; > 0 for all ¢.
Pt+1

If the convergence speed is slow, lim;_, ., > 0 then cooperative equi-
libria will be trivially obtained. In the differentiable case, in contrast to
the finite case, cooperation is attainable independently of the payoffs of the
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stage game. The next proposition shows this result, which parallels that of
BD (1995).

Proposition 5 If a probabilistic horizon differentiable Generalized Prison-
ers’ Dilemma game satisfies assumptions 1 and 2 and the distribution of the
length of the games verifies that lim,_ ., 2 gl > 0 then there exists a coopera-
tive equilibrium.

Proof: If lim;_, ptplT“ > 0, by lemma 1 and Theorem 1, E[T|T > t] —t >
oy for all t >ty and all > 0.

On the other hand, by assumptions 1 and 2, there exists a > 0, as > 0,
and a vector v such that for all & < ag, m(s* + av) > aa. Moreover, the
Envelope theorem implies that there exists b > 0 such that for all o < as,

¢i(s* + av) < ba?. Hence, if s° = s* + av, we have that % < La for all 4.

Then, taking a < min{fa;,as} the inequality %3) < E[T|IT >t —t
holds for all ¢ > t; and player i. Now, without loss of generality, we can
rescale time so that period ¢y + 1 is period 1, and assume that (5) is satisfied

for all t. By proposition 1 there exists a cooperative equilibrium. O

According to Theorem 1, the above result tells us that players consider
that the remaining expected length of the game after any period is bounded
from below by a fixed value bigger than 0. Players just have to play an
efficient action sy (near the Nash equilibrium s*) in any period such that
its payoff, m;(sg), is bigger than zero, and the gain from a deviation, ¢;(so),
is low enough. If some player deviates then s* is played in all subsequent
periods. Clearly, this is an equilibrium since ¢;(so) < (E[T|T > t] —t)m;(so),
is satisfied for all ¢ and for all ¢.

However, when lim;_,, & ;1 = (0 cooperation is still possible under more
demanding requirements as the next proposition shows. As we already saw in
the above section if p; goes to zero too quickly the only possible equilibrium
in Generalized finite Prisoners’ Dilemma games is the repetition of the stage
game Nash equilibrium. In contrast, the next Proposition tells us that in
differentiable games cooperation is reached even if we assign a low probability

to future payoffs, but this probability has a lower bound.
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Proposition 6 Suppose that lim;_, pt—tl = 0 and assumptions 1 to 3 are
satisfied. Then the necessary and sufficient condition for the existence of a
cooperative equilibrium is

¢
lim Y 27%In(py) > —oc (7)

t—oo
k=2

The way to prove Proposition 6 (see the Appendix for a sketch of the
proof) is not remarkably different from that used by BD(1995), once we
show first the equivalence between the convergence behavior of condition (7)
with the one of BD in terms of the underlying distribution® (see step 1 in
the proof of the Proposition).

We can understand (7) as a lower bound for the convergence speed. It re-
stricts the distributions {p, }2, to those that verify p, > A*' for some positive
A < 1, i.e. it gives us the threshold of the speed at which the distributions
on the length of the game have to converge to sustain cooperation. In fact, it
classifies the leptokurtic distributions (see definition 6) over 7' with respect
to the distribution A2'.

Moreover, lim;_,., £ ”1 > (0 implies condition (7). If lim; ., & ;tl =a>0
then p, > a'~"p, for all t < tg. Thus,

t

t
i 32 i) > Jim 32 ) -
k=to k=to

6The translation of the necessary and sufficient condition given by BD(1995) in terms
of the underlying distribution is,

ZQ"‘In(Z n=k Pn > > —00

n=k—1Pn
If {p;} has a convergence speed equal to zero and verifies (7), then there exists t, a
positive number ¢ and two real numbers e, A € (0,1), such that

cet > pp > A2 Yt >t

27



= Z 27 R In(a ) 4 Z 2 % In(p;,) =

k=to k=to

= (In(a)(to + 2) + In(py,)) (%) o > — 00

Clearly, by adding the first ¢y terms in the sum, (7) is satisfied.

Condition (7) can be translated to a more operative expression. Notice
that, when p;% goes to zero and by Theorem 1 also E[T|T > t| — t does
it, we need a finer analysis of the convergence process, characterized by the
above Proposition. This finer analysis proceeds by considering the limit of
Inlpes)) - \We can consider the convergence speed as a first order behavior of

In(pe) -
{p:}$2,. Thus, the second order convergence speed is defined by,

Definition 10 If {p:}:°, is a distribution such that p; > 0 for all t, the
second order convergence speed is defined as lim;_, %, that is always

equal to or greater than one if the (first order) convergence speed is zero.

The next Corollary characterizes cooperation in terms of the second or-
der convergence speed and gives a more useful condition than (7) to ascer-
tain whether or not cooperation is attainable. It is a direct consequence of
D’Alambert’s criterion for series.
Corollary 7 Suppose that lim;_, %
1sfied, Then,

i) if limy o0 e
In(pt41)

it) if imy_, oo o 2 cooperation is not attainable.

= 0 and assumptions 1 to 3 are sat-

@) o o cooperation is attainable,

In differentiable stage games, the knowledge of the first and second order
convergence speeds allow players to know whether or not cooperation is pos-
sible. However, if the first order convergence speed is zero and the second one
is two, there is no way to know whether or not cooperation is attainable. For
instance, consider a distribution {p;}?°; such that p, = A2 where o > 0
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and X\ € (0, 1) is such that > p, = 1. It is easy to check that lim; ., 22 =0

Pt

and lim;_, % = 2 but (7) is verified depending on «, since

t t t

lm» 27*n(p,) = lim 2—’f1n(m%2’“):t1ggo 2-’“2kk—1aln(A):
k=2 k=2 =
- m)Y =
k=2 ke

And the harmonic series Y-, 7 converges or equivalently (7) is verified
if and only if o > 1.

We saw that leptokurtic distributions over T preclude cooperation in
probabilistic horizon games with finite stage games. However this is not a
sufficient condition on the probability distribution to preclude cooperation
in differentiable stage games. In fact, Corollary 7 characterizes the subset of
the leptokurtic distributions for which cooperation is not possible. We define
them as,

Definition 11 A distribution {p;}°, is ultra-leptokurtic if and only if

ln(pt+1)

> 2
t—oo In(py)

Thus, cooperation is never attained in differentiable stage games with
probabilistic horizon whenever the distribution over the length of the games
is ultra-leptokurtic.
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4 CONCLUDING REMARKS

To conclude our work we present a classification of the distributions over
the length of any probabilistic Generalized Prisoners’ Dilemma game which
allows us to ascertain the existence of cooperation in both finite and differ-
entiable stage games. This taxonomy is made according to the behavior of
both the first and the second order convergence speeds.

First, the next result is needed.

Lemma 2 The relationship between the first and second order convergence
speed is given by,
i) limy oo 2P 5 1 = Jim, o 2L = 0

In(pt) Dt
i) Ty o 22 = 0 = Tlimy oo B2 >

Proof: 1) If limtﬁw% > 1 then there exists a > 1 such that

lim; o l'llﬁfzt:)l) > > 1. Then, there exists a ¢y such that in(p;1) < aln(p;)
for all t > ¢;,. But this expression is equivalent to p;y; < pf* which implies
Pirl — po=l for all t > 1.

Dt
Thus,

0 < lim 2% < fim p2~! =0

t—o0 D t—o00

where the last equality holds given that o — 1 > 0.

i) If lim; o 2 ;tl = 0 then for any 0 < € < 1 there exists a ty such that

pei1 < €pg for all t > ty. Then, taking logarithms on both sides we have that
In(piy1) < In(e) + In(p;) for all t > to. But this expression is equivalent to

In(pe+1) In(e) In(e)
—ln(g; > on T 1 for all t > ty, where mip) 0.
hus,
1 1
BPe) o g gy 2E)
t—oo In(py) t—oo In(py)
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The above Lemma is useful to classify discrete distributions in three cat-
egories which include five subcases. This unifies the analysis of both finite
and differentiable stage games and it summarizes our main contributions to
the study of repeated games with unknown horizon.

The first category consists of these distributions whose second order con-
vergence speed is one but the first order convergence behavior varies among
0, v, and 1, for v € (0,1). In all of these three subcases cooperation is
always attainable in probabilistic horizon Generalized Prisoners’ Dilemma
games with differentiable stage games, but this is not the case for finite stage
games. The former subset, when the convergence speed is zero, stands for
leptokurtic distributions, under which cooperation is never possible in finite
stage games; when the first convergence speed is 7y, cooperation in finite stage
games depends on this value; and finally, cooperation is always sustained in
the third case. The positive Poisson distribution, the geometric distribu-
tion and the harmonic distribution defined above are examples of this first
category.

The second and third categories describe the beliefs of more pessimistic
players in the sense that they concentrate all the probability mass around a
fixed period. These situations are equivalent to a second order convergence
speed equal to a > 1 or infinity. An example for the former is p, = KA
where A € (0,1) and o > 1 and for the latter p, = KX where A € (0,1) (in
both cases K is a normalization parameter such that > p, = 1). Under both
categories cooperation is never possible in probabilistic horizon finite stage
games. However, in differentiable stage games, it depends on whether or
not the distribution is ultra-leptokurtic. This will be the case for the third
category and for the second one when a > 2 where cooperation is never
sustained.

Table 1 summarizes the five possible subcases according to the first and
second order convergence speed and it gives an example of distributions in
them.
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lzmt_wo]%
0 ~ € (0,1) 1
T — —
1 Pt = >oma pe=10=)""" | proxt™a>1
limtqw% a>1|p oA Ae (0,1),a > 1 none none
0 pr o< AN € (0,1) none none

Table 1: Probability distribution samples according to the first and second

order convergence speed

The next table summarizes the existence of cooperation in probabilistic

horizon games in the above five possible subcases.

limt_,oop;;trl
0 v € (0,1) 1
F = finite, D = Dif ferentiable F D (|F| D F|D
1 NC| C (|C| C c|C
limtﬂw% l<a<?2 NC | C none none
a>2 NC | NC none none

Table 2: Cooperation (C) and Non Cooperation (NC) according to the first
and second order convergence speed
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5 APPENDIX

PROOF OF THEOREM 1: Consider a distribution such that p; > 0 for all t.
By definition,

> (t—t
lim E[T|T > tg] —to = lim Zt_togo 0)Dt ®)
to—o00 to—o00 Zt:to Dy

Now, if both, the numerator and the denominator of (8) converge to zero
when t; tends to infinite, we have by Stolz’s Criterion that,

doictg1(t—to— Dpe — 3272, (t —to)p _

lim F T|T > t[) - to = lim
to—00 [ ] to—00 Z?ito-i-l bt — Z?Zto bt
o0
—  lim D t—tg1 Pt _
to—o0 ptO
o0
= lim L 9)
0700 Sor1 Pto

Notice that the denominator of (8) tends to zero for all distributions, so
that the proper use of Stolz’s Criterion depends on the numerator.

Next we consider the three different cases in the statement of the Theo-
rem,

Case 1: lim;_, p;tl =0=limy . E[T|T >t —-t=0

First we show that (9) is satisfied. It suffices to prove that the numerator

of (8) converges to zero. If lim; .o 222 = 0 then we have that for all e > 0

there exists an integer K such that p;—tl < € and hence ;’—;{ < €K for all
t> K.

Then,
[e'e) oo
lim S (t—to)p = lim prc > (t—to) 2 <
top—o0 = to—o0 i—to PK

oo
< lim pg (t — t0)6t7K =
to—o0 =

6150*K+1

= lim pg =0

to—oo” (1 —¢€)?
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Hence (9) is satisfied. Now, taking ¢ty > K we have,

o0

P

tetor1 Po 1St

and then limg, oo D7, 1) If’—t = 0 and by Stolz’s Criterion limy, .., E[T|T >
0
to] - to - 0

Case 2: limy o P54 =y = limyoo E[T|T > 1] — t = 2=

Here, we also show that (9) is satisfied by proving that the numerator of
(8) goes to zero. If lim; ., &2 gl = v we have that for any small € > 0 there
exists an integer K such that forallt > K, 0 <y —€ < % <v+4+e<l.

Hence (7 — €)% < BL < (y +¢)" ¥

Then,
0 < lim t—1 = 1 t—tyg)— <
= 1o £ ( 0)P tog{l)opK ;t ( 0)pK
=to =to
- —K _
< Jlim px g (t—to)(y+e) " =

(’7 + 6)t0*K+1

= lim =0
oo (T~ e)?
Hence (9) is satisfied. Now, taking ty > K we have,
Y—€ io: ( t—to = Pt
LI A S
L—y+e t=to+1 t=to+1 Pto
< f: (y+ et = 11
t=to+1 l—y—¢
The above expression implies that limy, .o D =, 1y 2 = - and by
0

Stolz’s Criterion that limy, . E[T'|T > to] —to = 2=

—
Case 3: limy_ p;tl =1=lim o E[T|T >t]—t =00
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The limit of the numerator of (8) may be here different from zero. If it is
greater than zero (or infinity) then trivially limy, . E[T|T > to] — to = 0.

On the other hand, if this limit goes to zero we use the Stolz’s Criterion
as in the previous cases and (9) is verified. Now, if lim;_, ., % = 1 we have

that for all € > 0 there exists a integer K such that p;—tl > 1 — e and hence
2> (1- ) K forallt > K.

Then, if tg > K

— D - 4 L—c€
Z _— > Z(l—E)t tO—T

g1 Po S0

This implies that limg, Zfito 1 ;"i = oo and then by (9) that lim;, ., E[T|T >
to
to] — to = OQ.

Now, the reverse implications are trivial since we have analyzed above all
the possible values of lim;_, p;—:l.
O]
PROOF OF PROPOSITION 6: To prove this result we will proceed in several
steps and to simplify notation we denote 6; = > " py,.

Step 1: The next five inequalities are equivalent
i) >0, 27 %In(py) > —o0
i) > a2 (3o pa) > —00

1) 3077, 27 In (Sl ) > o
iv) 3¢ >0, A > 0 such that [[,_, 022, p )ZHC > A, for all t

n=k t'n

v) 3 Ao > 0 such that [];_, (322, p)? > A2’ for all .
i)=-i): This implication follows from p, <> > p.

ii)=i): If lim; o 25 = 0 then we have that for all € > 0 there exists an
integer tq such that p, < e'~"p, for all ¢ > to. Then, for all k& > t,

o0 o0 N o0 B 1
;pn:pk;z_k <pk;5t =
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which implies,

= 1 - 1
In (an> <In (pkl — 6) = 27FIn (an> <27%In (pkl — 5)
n=k n=k

but then

Son(Sn) < St o) -

k=to k=to

= izkln(pk) + i2kln (1;) <

k=tg k=tg

< i 2 % In(py) +In <1 i 8)

k=to

Then, if ii) is verified,

—00 < 22 “In (an> <Zz *In <an>

k=to

< Z 27 In(pg) + In <1 i 6)

k=tg

Now, if we add the first {5 — 1 terms to the last term of the r.h.s. of the

above expression, we have i).

ii)<1iii): We will see that ii) is the double of iii). (Recall that 6; = >~ p,,

and 6; = 1):
27k1 = 27k1 27k1
Z n(ék > Z n(6) - Z 0 (6 1) =

= ZQ "In (6;) — 272 1In(6;) — 22 “In (6-1)

k=2

= 22 1n (6),) — ZZ_k_lln(ﬁk):

k=2
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t t
= ) 2% (&) -2 27 In(8) =
k=2 k=2

1 t
k=2

Then, when t goes to infinity, the behavior in the limit of both terms is
the same.

iv)=-v): We can consider that c<1. Let A be such that A3 < cA?. Then
A2 < A2, that implies A3 < A2"'. Thus, A2 < ¢A\?', and the implication
follows.

v)=-iv): Trivial.

ii)<>v): v) is equivalent to 3 Ag > 0 such that

zt: 2= In <§:pn> > 2 In()),

k=2 n=k

for all ¢, that is equivalent to Ay > 0 such that

t o0
> 2% (Zm) > In(Ao),
k=2 n=k

for all . But if every partial sum exceeds In()\g), then the limit must also
exceed it, i.e. Y oo, 27%In (307, pu) > In(Ag) > —00. On the other hand, if
the sum is finite, we select Ag such that In(\g) be equal to his sum. Since all
the terms of the sum are negative, each partial sum will exceed In(\).

Step 2: Sufficiency of proposition 6. (Based on BD(1995)’ proof). As
in the proof of proposition 5, by assumptions 1 and 2 there exists a > 0,
b> 0, ap > 0, and a vector v such that for all & < aw, m;(s* + av) > aa and
¢i(s* + av) < ba?.

Assume that {a;}9°, is a sequence of scalars such that the next properties
are verified: 0 < oy < ap, and

2
bOét = a0p11041
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for all ¢t. Then, for all 4,

Gi(s* + o) < bof = abpprp < Gpami(st 4 apav) <

< (i(” - t)m) mi(s* + auy1v) <

n=t

N > et Pn

= (BIT|T > t] = t)mi(s* + 1)

mi(s" + appv) =

which ensure that the action profile {s* + aqqv}2, is a subgame perfect
equilibrium and there exists a cooperative equilibrium. Thus, we have to
prove that there exists a sequence of scalars verifying the above two proper-
ties.

Recursive substitution in baf = ad; 10441 allows us to find a general
expression of oy given ay:

B (b)ztll w1
Gy = | — aq ? ,
a Hn:Z 52 "
Given that condition (7) is satisfied, stament iii) is also verified. Then,
0 < @ (b’
"= be \ ad

Then, just taking oy sufficiently small we ca n guarantee that
0 <oy < ap.d

t—1

Step 3: Necessity of proposition 6. The proof is similar to the one of
BD(1995) if we replace ; by %' (Recall that any distribution {p;}°, and

their continuation probability {3;}:°, verifies that (§; = %o;ti';). O
n=t—1£"n
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