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Implemenation, Elimination of Weakly Dominated Strategies
and Evolutionary Dynamics

Antonio Cabrales and Giovanni Ponti

Abstract

This paper studies convergence and stability properties of Sjostrém’s
(1994) mechanism, under the assumption that boundedly rational players
find their way to equilibrium using monotonic learning dynamics and best-
reply dynamics. This mechanism implements most social choice functions
in economic environments using as a solution concept one round of dele-
tion of weakly dominated strategies and one round of deletion of strictly
dominated strategies. However, there are other sets of Nash equilibria,
whose payoffs may be very different from those desired by the social choice
function. With monotonic dynamics, all these sets of equilibria contain
limit points of the learning dynamics. Furthermore, even if the dynamics
converge to the “right” set of equilibria (i.e. the one which contains the
solution of the mechanism), it may converge to an equilibrium which is
worse in welfare terms. In contrast with this result, any interior solution
of the best-reply dynamics converges to the equilibrium whose outcome
the planner desires.

JEL CLASSIFICATION: C72, D70, D78.
KEYWORDS: Implementation Theory, Evolutionary Dynamics, Bounded Ra-
tionality.



1 Introduction

The theory of implementation studies the problem of designing decentralized
institutions (“mechanisms”) through which certain socially desirable objectives
can be achieved. These social arrangements should be able to operate in a wide
variety of environments, without extensive knowledge by the planner about
the agents’ preferences. Once it is ensured that agents respect the rules of
the mechanism, these rules are designed so that it is in the best interest of
agents to take those actions that lead to the socially desirable outcome. More
precisely, a social choice rule is implemented by a (game-form) mechanism if, for
every possible environment (preference profile), the solution (set of equilibrium
outcomes) of the mechanism coincides with the set of outcomes of the social
choice rule.

This definition implicitly assumes that agents are always able to play equi-
librium strategies. However, there is substantial empirical and experimental
evidence against this theoretical presumption. What we learn from experiments
is that subjects usually fail to play an equilibrium, unless they are given the
chance to acquire enough experience through repeated play. Furthermore, for
some games, players may still fail to play an equilibrium, even with experience,
specially if the equilibrium notion is fairly refined.?

In spite of this evidence, research in implementation theory has paid little
attention to the problem of how equilibrium is achieved.? One of the reasons
is that, in describing the mechanism to the agents, the planner has always the
option of explaining the reasons why the required actions correspond to “the
obvious way to play” the mechanism, (that, is, why it is in the best interest of
agents to follow the social rule dictat). However, since the planner should be
concerned with the performance of the mechanism when some (if not all of the)
agents are not as “rational” as expected, it is useful to test the mechanism’s
performance in the presence of some form of bounded rationality.

A more fundamental approach to these issues would require the planner to
take bounded rationality into account, when designing the game agents play.
This necessarily leads to an alternative definition of implementation which in-
cludes, among the variables which specify the “environment”, the learning pro-
tocols agents use, as well as initial conditions of the learning process. In this
respect, we propose the following definition: a social choice rule is dynamically
implemented by a mechanism if, for every possible environment, the limiting
set of outcomes, when the game is played repeatedly, coincides with the set of
outcomes of the social choice rule.

1See Cooper et al. (1991) for the prisoner’s dilemma, a strictly dominance solvable game;
McKelvey and Palfrey (1991) for the centipede game, a game with a unique Nash equilib-
rium; and Giith et al. (1982) for the ultimatum game, which has a unique subgame perfect
equilibrium.

2Noticeable exceptions are the papers of Muench and Walker (1984), Walker (1984), Jordan
(1986), Vega-Redondo (1989), De Trenqualye (1988,1989) and Cabrales (1997).



There is a caveat here. Why should we focus only on limiting outcomes?
The planner may also care about what happens on the way to equilibrium, as
the learning path may include outcomes significantly different than what the
choice rule prescribes. This, in turn, would require to fully characterize the
planner’s preferences, rather than specify the most preferred outcome, for any
given state of the environment. This is something the implementation literature
traditionally leaves unspecified, as it has focused on implementing “exactly”,
that is, designing games that produce the most desired outcomes in all states
of the world. The main advantage of this approach is that it avoids the thorny
problem of having “ad-hoc” preferences for the planner. Moreover, if the planner
does not discount the future and the game is played infinitely often, then it is
legitimate to look at limiting outcomes. This would be the case, for example, if
we consider the planner as the writer of a constitution which is concerned about
the welfare of many generations of users, each of those being equally important.

In this paper we study the dynamic implementation of Sjostrom’s (1994)
mechanism?®. First, we study the performance of the mechanism under mono-
tonic dynamics (Samuelson and Zhang 1992, Weibull 1995), which essentially
imply higher growth rates for those strategies which perform better.* We also
study the mechanism under best-reply dynamics (Matsui, 1992), a limiting case
of monotonic dynamic by which only strategies that are a best response to
the current mixed strategy profile grow. This choice of dynamics allows us to
understand the effects of increasing levels of responsiveness to past payoffs of
the players (which could be interpreted as a proxy for “sophistication”) on the
performance of the mechanism.

We concentrate on Sjostrom’s mechanism for several reasons. First, the con-
ditions for implementation are quite weak. Although the environments that are
permitted are not universal, they are rich enough for most economic purposes.
Furthermore, this reduction in the domain allows the author to implement the
social choice rule with a “bounded” game, that is, a game which does not exploit
equilibrium nonexistence to rule out undesirable outcomes.® Finally, the game
can be solved by one round of deletion of weakly dominated strategies, and then
another round of deletion of strictly dominated strategies. This feature of the
mechanism makes it particularly attractive since, under some assumptions of

3Sjostrom’s (1994) mechanism and the one proposed by Jackson et al. (1994) for separable
environments are very similar. Most of our results would generalize easily for that mechanism
as well.

4One particularly well known member of the family of monotonic dynamics is the so-called
replicator dynamics of evolutionary game theory (Taylor and Jonker, 1978). These dynamics
have been given a learning theoretic foundation by Borgers and Sarin (1997), and they can
also be interpreted as a model of imitation (Schlag, 1994).

5For example, in the canonical mechanism for Nash implementation (Repullo, 1987), if
agents disagree widely on the announced preferences, they have to play a game in which the
agent announcing the highest integer wins a prize. Jackson (1992) provides a good treatment
of this issue.



imperfect knowledge of agents,® the appropriate solution concept implies one
round of deletion of weakly dominated strategies, and then the iterated deletion
of strictly dominated strategies.

In Sjostrom’s (1994) mechanism agents are required to simultaneously an-
nounce their own preferences, together with the preferences of their two closest
neighbors. The mechanism is designed in such a way that the truthful report
of one’s own preferences is weakly dominant, as it does not affect one’s payoff,
except for a set of (so-called) totally inconsistent states, where it is (strictly)
preferable to report preferences truthfully. Since, for this mechanism, it is al-
ways advantageous to report the same preferences about your neighbors as they
report about themselves, the only equilibrium that survives the first round of
deletion of weakly dominated strategies i1s the truth-telling one.

However, there are many other Nash equilibria. In particular, for every
preference profile R, there is a component (i.e. a closed and connected set) of
equilibria in which all agents report the preferences for their neighbors indicated
in R, and report the preferences about themselves indicated in R with high
enough (this need not be very high) probability. This is because it is important
for the mechanism that all agents match their neighbors’ announcements about
themselves, but the report about oneself is only important in some unlikely
(totally inconsistent) state.

As for monotonic dynamics, we show (Proposition 4) that many equilibria in
all these latter components are limit points of trajectories of the learning dynam-
ics that have completely mixed initial conditions (that is, initial conditions that
give strictly positive weights to all possible messages). Even when the dynam-
ics converge to the “right” component of equilibria (i.e. the one which contain
the solution of the mechanism), they need not go to the “right” equilibrium.
This implies a welfare loss, since Nash equilibria in the same component are not
outcome equivalent. We also show by example (Proposition 2) that the initial
conditions that lead to these equilibria need not be close to the limiting point.
Similar considerations apply when we look at the structural stability properties
of the various equilibrium components, that is, when we study how the dy-
namic structure react to the introduction of (arbitrarily small) perturbations in
the vectorfield. In this respect, we use the example to show (Proposition 6) that,
although there is a unique structurally stable component (namely, the compo-
nent which contains the solution of the mechanism), the untruthful component
is stable for a non-negligible set of admissible perturbations.

As can be seen from figure 4, the less responsive the dynamics are to pay-
offs (the further the initial conditions from the “right” equilibrium), the more
difficult it is to converge to the desired solution. Only in the extreme case of
best-reply dynamics (in which the response to arbitrarily small payoff differences
is infinite), we show (Propositions 7-8) that any interior trajectory converges to

6Either because of payoff uncertainty, as in Dekel and Fudenberg (1990), or through lack
of common knowledge of rationality, as in Borgers (1994).



the pure strategy equilibrium in which players reveal their true preferences and
the outcome desired by the planner is achieved.

The fact that evolution need not eliminate weakly dominated strategies has
been known since, at least, Nachbar (1990). However, we are far from possessing
a sound theory on the evolutionary properties of weakly dominance solvable
games, as we have examples in which a single round of deletion is not allowed if
we want to characterize the limiting set of the evolutionary dynamics’, as well
as games in which only strategies which survive an (arbitrarily large) number of
rounds of deletion can be in the support of the limiting play.® Since the theory
has not proposed, so far, a suitable framework to explain these differences, it
is important to test the evolutionary properties of (game-form) mechanisms in
which the iterated deletion of dominated strategies plays such a crucial role.

The remainder of the paper is arranged as follows. In section 2 we introduce
some notation, we describe the mechanism and we make the assumptions about
the dynamics. In section 3 we fully characterize (for all interior initial condi-
tions) the set of limit points of any monotonic dynamic for the game in Figure
1, Sjostrom (1994), to be considered as a simplified version of the mechanism.
In section 4 we give local results on the convergence and stability properties of
the Nash equilibrium components of the general game. In section 5 we describe
the structural stability properties of the equilibria of the simplified mechanism.
Section 6 explores the dynamic properties of best-reply dynamics for this game.
Finally, section 7 concludes, together with an appendix containing the proofs of
the relevant propositions.

2 The model and the dynamics

We introduce few changes to Sjostrom’s (1994) model for analytical convenience.
First, we employ a Von Neumann-Morgenstern utility function instead of a
preference relation. The reason is that we need to specify the payoff functions
for mixed strategies, as the dynamics are defined on the mixed strategy space.
We also assume that the set of possible preference parameters is finite. This
is because the dimension of the pure strategy space is related with the set of
preferences. If we had an infinite dimensional pure strategy space, the dynamics,
which account for the relative frequency with which each pure strategy is being
used, would have to describe the evolution of a measure over an infinite space.
This seems an unnecessary complication for our purposes.

There is a set [ = {1,...,n},n > 3, of agents and a set A C R} of feasible
consumption plans. The preferences of agent ¢ € I are represented with a (Von
Neumann-Morgenstern) utility function v; : A x &; — R, where ®; specifies a
finite set of possible preference parameters. An element R; of ®; represents the

"See, for example, Samuelson (1993) and Gale et al. (1995).
8See, for example, the finitely repeated prisoners’ dilemma (Cressman, 1996), or the cen-
tipede game (Ponti, 1997).



preferences of agent i over A. A preference profile is a vector R = (Ry, ..., Rn),
which 1s assumed to be common knowledge among the agents. The following
assumptions refine the sets of feasible consumption plans and preferences pro-
files.

Assumption p.1. Free disposal. If a € A and 0 < @’ < a, then ¢’ € A.
Assumption p.2. The set of feasible consumption plans A is convex. For all
a,a’ € A and for all A €[0,1] then Aa+ (1 — A)a’ € A.

Assumption p.3.The preferences represented by R; € ®;are strictly convex.
For any a,a’ € R} and for all A € (0,1), if a # o' and v;(a, R;) > vi(d, R;),
then

vi(Aa + (1 = X)d’, Ry) > vi(a', Ry).

Assumption p.4. For any R; € ®; if ¢ > 0 and a # 0 then v;(a, R;) >
vi(O, Ri).

Assumption p.5. Preference reversal. For any R;, R, € ®; if R; # R! then
there are a,a@ € A such that v;(a, R;) > v;(a, R;) and v;(a, R) > v;(a, RS).

For any set B C ft' and any R; € ®; a choice correspondence is defined as
follows: ¢(B, R;) = {a € B| for all b € B, v;(a, R;) > v;(b, R;)}.

For any ¢ € 1, a soctal choice function for player 7 is a mapping f; : ® — A,
where f(R) = (f1(R),..., fn(R)).

Assumption p.6. Individual rationality. For all ¢ and R, f;(R) # (0,0,...,0).

A mechanism is a pair I = (M,«), where M = X;erM; and a(m) =
(a1 (m),...,an(m)) € A. M; is the message space of agent ¢ and « is the
outcome function. A mechanism and a preference profile define a game.

Let M_; = My x ... x Mij_1 X Mijy1 x ... x My,. Given a mechanism T
and a preference profile R, we say that m; is weakly dominated for some set
of messages F' = x;crF; € M if there exists a message m, € F; such that
viag(ml,m_y;), Ry) > vi(ai(my, m_;), R;) for all m_; € F_; and there is some
m*, € F_; such that v;(ay;(m}, m*;), R;) > vi(a;(my, m*,), R;). Define the set
U(F : (T,R)) = {m; € F;|m; is not weakly dominated in F for the game
(T, R)}. The message m; is a best response for player 4, to m_; € M_; if

vi(ai(mi, m_i), Rl) > vi(ai(mg, m_i), RZ)Vm; € M;.

A message profile m is a Nash equilibrium (NE) if m; is a best response to
m_; for all i € I. A message profile m € M is an undominated Nash equilibrium
(UNE) for the game (', R) if it is a Nash equilibrium and m; € U;(M : (T, R)).
Let UNE(T, R) = {a(m) € Alm is an UNE for the game (T, R)}.

We say that a mechanism I' implements a social choice function f in undom-
inated Nash equilibrium if for all R € ®, f(R) = UNE(T, R).

For the iterated deletion of weakly dominated strategieslet UN(T, R) = U;(M :
(T, R)), and if UF (T, R) has been defined for k& > 1.

Let Uf"'l(F,R) = Ui(xjerf(F,R) ([, R)). Let U2 (T, R) = N2>, U (T, R).
Let IWD(T', R) = {a(m) € Alm; € U (', R) for all i}.



We say that a mechanism I' implements a social choice function f with iter-
ated deletion of weakly dominated strategiesif forall R € ®, f(R) = IWD(T, R).

We now construct a mechanism.

Let M; = ®;_1 X ®; x ®;41, so that each individual announces the pref-
erences of her two neighbors, and let members of M; and M be denoted m;
and m respectively. A generic strategy is therefore m; = (R!_,, Ri, §+1).
A K-tuple of messages {mj,, ..., m;, } is totally consistent if whenever agents
i,k € {j1,...,Jr } both announce the preference of player j € I, then R; = R?.
On the other hand, a K-tuple of messages {m;, ..., m;. } is totally inconsistent
if whenever agents i,k € {j1,...,jx} both announce the preference of player
j €1, then R; + R?.

Consider R;, R; € ®;, where R; # R;. By assumption p.5 there are a,a € A
such that v;(a, R;) > v;(a, R;) and v;(a, R}) > v;i(a, R;). We can choose a and
a so that v;(a, R;) > vi(a’, R;) for all @’ in the line segment between a and a.
Given this pair (a,a) let 3;(R;, R}) = {b € R} |b = Aa+ (1 —N)a, for A € [0,1]}.
By construction, for all R;, R; € ®;, ¢(3i(R;, R}), R;) # c(8i(Ri, R}), R}). Let

¢(i,m) = (R}, R, ..., Rz»_l, R§+1, R;i%, ..., R~} and for every i and m_;,
define
fi(é(i,m)) if m_jistotallyconsistent
Bi(m_;) = ﬁZ(RZ_l, R +1) if m_;istotallyinconsistent

Now we can define « :

ai(m) = 4 c(Bilm=0), Ri) if Ri_, = R_}andRl,, = RIt]
' 0 otherwise

Let R be the true preference profile and R* an arbitrary preference profile.
To understand how the mechanism works, notice that the only time when the
choice of an announcement R: has any effect on i’s payoffs is when m_; is to-
tally inconsistent. In this case, the outcome is the optimal choice within the
set ﬁi(RZ:_l,RZ:H)) according to the announced R!. This is the reason why,
for player ¢, announcing her true preference R; can never hurt. Furthermore,
for every alternative announcement R! = R}, there is some totally inconsis-
tent m_; with RZ:_l = RZ and R§+1 = R and the set §;(.,.) is constructed
in such a way that c(ﬁZ(RZ, Ry, RZ) is strictly preferred to c(ﬁZ(RZ, R, RY).
Therefore, a message m; = (R:_,, R}, R§+1) is weakly dominated by a message
m; = (Ri_,, RZ», R§+1), i.e. untruthful announcements about oneself are weakly
dominated.

Once these weakly dominated strategies are eliminated and all agents an-
nounce the true preferences about themselves, Ri = RZ», it 1s strictly dominated
to announce untruthful preferences about your neighbors, R§+1 + Rz’+1 = RZE
or Ri_, # Ri_l = Rzij, since disagreeing with your neighbors is punished with
the 0 consumption bundle.

10



These two facts establish the main theorem in Sjostrom (1994).
Proposition 0. Let f be an arbitrary social choice function. The mechanism
described above implements f in UNE and in IWD.

It is important to notice, for the discussion we undertake below, that the set
of states in which not announcing the true preferences about oneself is weakly
dominated are themselves states that typically produce very bad outcomes for
other opponents (at least one of them will have 0 consumption and probably
many). If agents learn fast to avoid these (totally inconsistent) states, there
is no incentive to tell the truth about oneself. The mechanism we have just
described focuses on consensus announcements, since disagreement is punished
with 0 consumption; truth-telling is only rewarded in a set of states which need
not be very prominent in the minds of the players. This is precisely the reason
why, if agents are boundedly rational in the way we describe, convergence to
the social choice outcome function may fail to occur.

We now move on to the characterization of the evolutionary dynamics we
analyze.

Fix a given mechanism I' and a given preference profile R € ®. Let «** be
the probability assigned by agent ¢ to message m;, and z; € A; be a mixed
strategy for agent i (where A; denotes the |M; — 1]-dimensional simplex which
describes player ¢’s mixed strategy space). Let also x_; € A_; = XA, be a
mixed strategy profile for agents other than ¢, with z = (z;, 2_;) € A = X;er A
Finally, let w;(z;, 2_;) = Epmenrvi (o (my, m_y), Ri)Hjeijj.

We formalize player ¢’s behavior in terms of the mixed strategy z;(¢) she
adopts at each point in time. The vector #(t) will then describe the state of the
system at time ¢, defined over the state space A, with AY denoting its relative
interior, i.e. the set of completely mixed strategy profiles.

Assumption d.1 The evolution of #(t) is given by a system of continuous-time
differential equations:

"t = D" (x(t)) (1)

We require that the autonomous system (1) satisfies the standard regularity

condition, i.e., D must be ¢) Lipschitz continuous with 1) ) -, D" (2(t)) =

0.% Furthermore, D must also satisfy the following requirements:

Assumption d.2. D is a regular (payoff) monotonic selection dynamic.
.. _ B(e)

More explicitly, let g;(m;, z_;(t)) = R

m;. Then for all m;, m} € M; and all ll‘_l' € A_; 1t must be that

denote the growth rate of strategy

sign [gi(mi, v (1)) — gi(myj, w i ()] = sign fus(mi, 2 _i(1)) — w;(mi, 2 (t))]

Assumption d.2 1s commonly used in the literature to capture the essence of

9A useful implication of this regularity assumption is that the solution of the dynamical
system leaves A, as well as A%, invariant (and, a fortiori, forward invariant): any solution
path starting from A (A®) does not leave A (A®). This property will prove to be useful to
obtain some of the results of the paper.

11



a selective evolutionary process.'? Given the mixed strategy profile played at
each point in time, strategies with higher expected payoff grow faster than
poorly performing ones.
Assumption d.3. z(0) € A.°

Assumption d.3 is also standard in the evolutionary literature. It excludes
the possibility that the selection dynamic acts only on a subset of the strategy
space. This possibility arises because the system 1s forward invariant, and there-
fore a strategy that has zero weight at time zero would also have zero weight
at all subsequent times. If Assumption d.3 did not hold, the selection dynamics
would then operate on a different game.

3 An example.

We prefix the dynamic analysis of the mechanism with the following example,
taken from Sjostrom (1994), p. 504, which is intended to convey the essence
of our results. There is one unit of a single divisible private good, which has
to be divided among three players: 1, 2 and 3. Preferences of players 1 and
2 are increasing in the amount of the good they consume, and are common
knowledge for all players and the planner. There are two possible types for
player 3’s preferences, which are indexed by 0 and 1. Preferences of type 0 peak
at consumption 1/3; preferences of type 1 peak at consumption 1/2. Player 3’s
type 1s common knowledge among the players, but the planner does not know
it.

For preferences of type 0, the social choice function recommends the outcome
£(0) = (1/4,1/4,1/2); for preferences of type 1, f(1) = (1/3,1/3,1/3). Notice
that the social choice function is such that type 3 would prefer the outcome
f(1) when she is of type 0, and the outcome f(0) when she is of type 1. This
provides her an incentive to conceal her type, and therefore the planner needs
a nontrivial mechanism to elicit her true preferences.

The mechanism proposed by Sjostrom requires the three players to make
a simultaneous statement about the preferences of player 3. Let m}(m?),i €
I represent the message in which preferences of type 1 (type 0) for player 3
are announced by player 7. Figure 1 illustrates the outcome function of the
mechanism. As for its dynamic analysis, we shall focus on the case in which true
preferences of player 3 are of type 1, and assume that Figure 1 also represents the
game’s payoffs when player 3’s preferences are of type 1. We denote this game by
(. Player 1 picks a row, player 2 a column, and player 3 picks a matrix. We first
note that the mechanism leads to a game which is weakly dominance solvable, as
it can be reduced to a single outcome (the solution) by the iterated deletion of
weakly dominated strategies. Unlike in other weakly dominance solvable games,
the same outcome is selected independently on the order by which strategies are

103¢e, for example, Samuelson and Zhang, (1992) and Weibull (1995).

12



deleted. We start by deleting the weakly dominated strategy m3 for player 3
(the other agents have no dominated strategies at this stage). The reason is
that, like in the mechanism described in section 2, truthtelling about your own
preferences never hurts, and is strictly optimal when the opponents disagree
on your own type. Once m3 has been removed, strategies m? and m$ become
strictly dominated. The reason is that, like in the mechanism described in
section 2, if all the players tell the truth about their own preference, lying
about a neighbor is punished with 0 consumption.

my  my my  my
o[ I T 171 I 0 I 1
Moy ol g g
my | 0,22 10,0,3 my | 5,0,5 | 5,5, 3
mg my
Figure 1

Sjostrom’s Example: game G'.

The unique strategy profile selected is then (m},mi, m3i), that is, the pure

strategy profile in which the true preferences are consistently revealed (i.e. the
solution).

We begin by fully characterizing the set of Nash equilibria of game G. Since
each player has only two pure strategies in her support, we abuse our notation

1

setting @; =z, .1
Proposition 1 The set NE of Nash equilibria of G is the union of precisely
two disjoint components NE° and NE', where:

NE ={rcAlr; =23 =0,23 <
NEl={rcAlry=ay=1,23>

TN
——

Proof. See the Appendix. B
We now move on to dynamics. Denote by RE(G) the set of restpoints of
(G under any monotonic dynamic. Tt is straightforward to show that RE(()
contains (together with all the pure strategy profiles) only the following com-
ponents:
RE° ={x € Alx; =29 = 0,25 € [0,1]}
and

RE'={x € Alr; =29 = 1,23 €[0,1]}.

Our task is to study the asymptotics of a monotonic selection dynamic whose
initial state lies in the relative interior of the state space.

HThe fact that each player has only two available options also allows us to express the
dynamics in terms of the payoff difference between player i’s truthful and untruthful strategy,

which we call ATlj (z i (2)) (l.e. Alli(z i (2)) = v (mll,x i (t)) — uj (mio,x i (t)))

13



Proposition 2 Any interior solution x(t,x(0)) of a monotonic selection dy-
namics & = D(x) converges to NE.

Proof. See the Appendix. B

If initial conditions are completely mixed, we then know from Proposition 2
that the evolutionary dynamics will eventually converge to a Nash equilibrium
of the game. In the next section we show that this result generalize locally also
in the case of Sjostrom’s (1994) mechanism, as described in Section 2.

4 Local results for the general game

In the following Proposition 3 we characterize some components of Nash equi-
libria for the game induced by the mechanism. In particular, we show that any
message profile in which the agents are unanimous in the (arbitrary) prefer-
ence profile they announce, R* (more precisely, the preferences they announce
about their neighbors and themselves are taken from R*), is an equilibrium.
Furthermore, any mixed strategy profile in which agents mix between messages
consistent with R* and other messages that only differ in the announcements
agents make about their own preferences, is also an equilibrium, provided that
messages in R* are given a high enough weight. The equilibria in each of these
components are not payoff equivalent, since disagreeing with a neighbor (event
with nonzero probability in these mixed equilibria) results in a punishment.
Nevertheless, Proposition 4 shows that this punishment i1s not high enough to
prevent these equilibria to be the limit points of some interior path of any
monotonic selection dynamic.

Let m; = (R}_,, RY, R, ;) be a consensus announcement by agent i; U; =

maxg v; (fi (R), RZ) be the utility associated to the most preferred outcome from

the social choice function for agent ¢ with true preferences R;, and U;, =
maxg v; ( fi(R), R ) be the utility associated to the most preferred consump-

tion bundle among those that result from dividing the bundles assigned by the
social choice function by n. Let also .S; denote the set of all pure strategies in
which announcements about the neighbors agree with R*, i.e.

S; = {mi € Mi|R{_, = Ri_,, Ry, = Riy} (2)
where S; = {m; € M;|m; ¢ S;} denoting the complement of S; with respect to
M; and S_; = x;2;5; (S_; = ><]¢ZS ). Finally, denote by S * the following

Sk = {a;]a™ = 0, for all m; ¢ S; and X;ni* > ki, (3)

where we assume

(k)" > Um0 R : )
vi(fi(é(i, R*)), R ) vi(0, R;) + U, — v (0, Ry)
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for all 7 and all j # ¢. The set Sf’ is the set of all mixed strategies in which
¢’s announcements about her neighbors agrees with R*, and the probability of
announcing R is higher than &;

Proposition 3 For all R, R* € R and z; € Sf’, z is a Nash equilibrium of
(T, R).

Proof. See the Appendix. B

To understand the role of (4) in the proof of Proposition 3, notice that,
against any z_; € Xj¢i5fj the payoff for agent ¢ using strategy m; € S;
satisfies the following condition:

u(mi, v—;) > (I]Il;?kj)"_lvi(fi(fﬁ(i, R*)), Ri) + (1 - (I]Il;glkj)"_l)vi((), Ri). (5)
The reason is that, for all j # 4, l‘;nj > k;, which in turn implies a lower bound
(i.e. (minjg k;)"~!) on the probability with which m_; is totally consistent
with m; € S; and, therefore, the payoff v; (f; (¢(¢, R*)), RZ) is achieved. With the
remaining probability 1 — (min;x; k;)"~!, the worse that can happen to player i
is that her message does not match the announcements of her neighbors about
themselves, in which case her payoff is v;(0, R;). By the same token, against
any x_; € xj¢i5fj, the payoff for agent i announcing a message m/ € S; is at
most

u(my, x—;) < (mink;)" vy (0, Ri) + (1 — (mink;)" ") U; (6)

J#i J#i
because with probability at least (min;-; k;) each of the opponents will select
strategy mj, which in turn implies a lower bound on the probability with which
the payoffis v; (0, RZ) With the remaining probability 1—(minjx; k;)"~!, agent
¢ gets at most Uy, . The reason is that i1t is not possible that m; forms a totally
consistent announcement with m_;, since there must exist some j # ¢, such that

Rg # R} and Rg“ = Rj. From equations (5) and (6), it follows that
ui(mi,z i) —wi(mPz i) >
vi (0, Ri) — Uin + (ljnelzrllkj )" (vi(fi(@(i, RY)), Ri) + Uin — 20i (0, i), (7)
which implies u; (m;, #_;) — w;(m}, x_;) > 0, provided that (4) is satisfied.
Also note that, for all z_; € Xj¢i5fj if my,m; € 5, then w;(m;, 2_;) —
ui(ms,x_;) = 0. The reason is that, in playing any strategy in S;, agent ¢
rules out the possibility that totally inconsistent states occur (at least the an-
nouncements about ¢ have to coincide). These are the only states in which ¢’s
announcement about her own preferences makes a difference to her own payoff.

We shall now prove that elements in all the Nash equilibria components
characterized by Proposition 3 are reachable, i.e. are limit points for some
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interior solution. By Lipschitz continuity, there exists a constant K > 0 such
that for all m;, z_; and z’ we have that

lgi (mq, 2_i(t)) — gs(mq, 2, ()] < K

where the | . | denotes the norm of a vector. This in turn implies that, for all
hy > 0 with w;(m;, 2_;(t)) — ui(mj, x_;(t)) < —hy, there exists some hy > 0,
such that g;(m;, z_;(t)) — g;(m}, 2_;(t)) < —h,. By analogy with (7), for any
m; € 5; , it also must be

i — l‘/_2|,

*

ui(mi, o i )=ui(mf, o i) < Ui—v (07Ri)—Hj6=i95ij () (vi (fi (8(i, RY)), Ri) + Ui — 295 (0, Ri)) -
Therefore, if h, is a constant such that 0 < h, < m}i%nvi(fi((/)(i,R*)),Ri) -

v; (0, Rl), then there exists another constant H € [0,1), with

i —vi(0, Ry) + hy "t
I ( Ui — v;(0, Ri) + ) |

i vi(fi(6(i, R*)), Ri) + U; — 2v;(0, Ry)

such that, if l‘;nj (t) > H for all j and ¢, then strategies not in \S; are decreasing
at a rate not higher than —h,.

We also need to establish a link between the weight with which messages
m_; € S_; are played and the relative performance of strategies m; € S;. This
is done by means of the following function

=1 3 o) + 2 @

i#i mj Egj m;ES;

with X (¢) = max; [X;(¢)] . The function X;(t) accounts for the relative weight

of messages m_; € S_; in x_;, since only against these messages strategies

in S; yield different payoffs for player ¢. Therefore, the maximum difference in

payoffs between strategies in .S;, and therefore in growth rates by monotonicity,
is connected to X;(t), as shown in Lemma 3.1 Finally, let

= min< ex _KX(O) H
L { p( hy <x2”f<o>>2)}'

The constant L appears because we want to show that l‘;n’ () need not go
to one in the limit, even if there is convergence to the equilibrium component
to which m* belongs. For any m; € S;, the ratio

12Tn the appendix.



is the integral of the differences in growth rates (thus connected to the difference
in payoffs by monotonicity) between m; and m;. This integral depends on X (t),
as we show in Lemma 3. But X () depends on X (0) also, as well as on the growth
rates of strategies of i’s opponents in S_;. As shown in the following Proposition
4, also the weight of this latter strategies has an upper bound which depends
on hy, K and H. Thus, the constant L can be used to set an upper bound for
the integral of the difference in growth rates between strategies m; and m.
Also notice that X (0) can be made arbitrarily close to zero (and, therefore,
L arbitrarily close to 1) by selecting an initial condition in which the aggregate

weight of strategies in S_; is arbitrarily small.

*
m

Proposition 4 Assume that, forallie I, »;*(0)L > H. Then
a) Forall m; € S;, %((to)) < exp[—hyt]—Z— for all t and all i
i z; ' (0)

b) l‘;n:(t) > H for all t;
c) z’mz((tt)) < z’mi ((8))% for all t and all m; € S;.

Proof. See the Appendix. B

By Proposition 4a), for any i € I, the weight of any strategy in S; decreases
over time at a rate higher than h,. This is important because the strategies
against which not telling the truth about oneself is strictly suboptimal for player
iare all in S_;; if the weight of these strategies decreases over time, the payoff
advantage of the dominating strategy vanishes, making it possible for a domi-
nated strategy to be in the support of the limiting play.'3

By Proposition 45), the weight of m; is always high enough, which in turn
implies that messages in S_; yield lower payoffs than messages in S_;, since
an announcement about your neighbor that does not match her announcement
about herself is always punished.

In fact, Proposition 4a) and 4b) reinforce each other. While m} keeps a
high enough weight, the weight of strategies in S_; decreases. If strategies in
S_; decrease fast enough, the weight of m} will stay bounded away from zero,
provided that i (0) was high enough. (as the following Figure 2 shows, 2™ (0)
need not be very high).

Notice that Propositions 4a) and 4b) guarantee that equilibriain the “wrong”
components are attractors of interior paths. By Proposition 4¢), the limiting
weight of m} is less than 1 (provided L is sufficiently close to 1), and therefore
some mixed strategy equilibria are attractors as well, if the initial conditions
give sufficiently little weight to strategies in S_;. This guarantees that, even
if there i1s convergence to the “right” component, it need not be to the pure
strategy equilibrium (remember that the equilibria are not payoff equivalent,
as the mixed strategy equilibria have lower expected payoff because agents are
punished for announcing discordant preferences).

123ee Ponti (1997), Proposition 4.1.

17



Convergence to mixed equilibria may occur because payoffs to all strategies
in S; are “close”, if the weight of strategies in S_; is small. We know, by Propo-
sition 4a), that the weight of strategies in S_; is indeed decreasing. So, even
though m} has a payoff advantage, this advantage vanishes, and assumption d.2
(plus Lipschitz continuity) guarantees that it does not accumulate fast enough.

5 Stability with/out drift.

In the previous section, we have extended the convergence result of Proposition
2 to the general mechanism, showing that the limit points of the dynamics for
interior initial conditions are generally different from the outcomes intended by
the planner. We now go back to our example to test the stability properties of
the various equilibrium components.

Definition 1 Let z(t,z(0)) be the solution of (1) on state space A given ini-
tial conditions x(0). Let also C be a closed set of restpoints in A of the same
differential equation. Then:

(7)) C is (interior) stable if, for every neighborhood O of C, there is another
neighborhood U of C, with U C O, such that, for any z(0) € UN A (U OAO)
we have x(t,z(0)) € O;

(i¢) C is (interior) attracting if is contained in an open set O such that for
any 2(0) € ONA (O N AO) we have limy_, o z(t,2(0)) € O;

(#3i) C s globally (interior) attracting if for any z(0) € A (AO) we have
lim; 00 #(t, 2(0)) € O;

(#4i) C is called (interior) asymptotically stable if it is (interior) attracting
and (interior) stable.

To simplify the analysis, we set additional conditions on the dynamics, which
is the purpose of the following assumption, (which replaces Assumptions d.1-3):
Assumption d.5. The evolution of z (¢) is given by the following system of
continuous-time differential equations:

Dy (1), N) = ai(t) (1= (1)) AL () + X (8 — (1)) (8)

With/\ZO,ﬁlzﬁzz%andﬁgzﬁe(o,l).

In words: the evolutionary dynamic is now composed of two additive terms.
The first represents the standard replicator dynamic, while the second term
ensures that, at each point in time, each strategy is played with positive proba-
bility, no matter how it performs against the current opponents’ mixed strategy
profile (i.e. it points the dynamic toward the relative interior of the state space
A). Following Binmore and Samuelson (1996), this latter term is called drift:
it opens the model to the possibility of a heterogeneity of behaviors. Gale et
al. (1995), derive an analogous system in the following way. At each point in

T
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time, a fixed proportion of players (of measure I-I%\) is replaced by new individ-
uals whose aggregate behavior is represented by a generic, constant, completely
mixed strategy (i.e. f;), while the rest of the population aggregate behavior
follows the replicator dynamics. The relative importance of the drift 1s mea-
sured by A ,which we refer to as the drift level. We assume A to be “very small”,
reflecting the fact that all the major forces which govern the dynamics should
be captured by the evolutionary dynamic defined by D, which here takes the
form of the replicator dynamics.

We check how the model reacts to the introduction of such a perturbation.
The stability analysis of the replicator dynamics with drift will give us infor-
mation about the effects of small changes in the vector field on the equilibria of
the system defined by the replicator dynamic (in other words, it will test the
structural stability of such equilibria). To simplify the exposition, 51 and S5
have been chosen to be 1/2; since only the value of 83 turns out to be genuinely
significant.

We start by looking at the case of the replicator dynamic without drift
(i.e. when A = 0). We know from Proposition 2, that N E is globally interior
attracting, since it attracts every interior path under any monotonic selection
dynamic (of which the replicator dynamic is a special case). We now take
a closer look at the stability properties of each component of Nash equilibria
separately (i.e. NE® and N E1)) in figure 2.

Figure 2 shows a phase diagram describing trajectories of the replicator
dynamic starting from some interior initial conditions. The Nash equilibrium
component N E° (NEl) is represented by a bold segment in the bottom-left
(top-right) corner of the state space A. First notice that, as we know from Propo-
sition 2, all trajectories converge to a Nash equilibrium of the game. Moreover,
the diagram shows (consistently with Proposition 4) that there are some trajec-
tories of the replicator dynamic which converge to N E°, the Nash equilibrium
component in which both players 1 and 2 deliver the false message with proba-
bility 1. However, this latter component is not asymptotically stable, as can be
easily spotted from the diagram. Trajectories starting arbitrarily close to N EY,

provided x5 > %, will eventually converge to the truth-telling component.
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Figure 2
The replicator dynamic and game G
We summarize the key properties of these trajectories in the following propo-
sition:

Proposition 5 Under the replicator dynamic (i) NE' is interior asymptoti-
cally stable, whereas (ii) NE® is not.

Proof. See the Appendix. B

We now move to the analysis of the replicator dynamics with drift. of the
replicator dynamie with drift. Let 8 € (0, 1) be a generic element of the space of
the feasible perturbations. Figure 3 shows trajectories of the replicator dynamic
with drift under two different specifications of 3. Figure 3b) represents a situa-
tion in which, in the proximity of NE®, the drift against m? is uniform across
players, where in Figure 3a) the drift against mj is lower. As the diagrams
show, there is a local attractor close to NE! in both cases. Moreover, none of
the elements of NE° is a restpoint of the dynamic with drift in figure 35). In
contrast, in figure 3a) there is an additional local attractor which belongs to
NE" : trajectories starting close to NE” converge to it, as it happens in the
case of the replicator dynamics without drift.
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a) f=1/100 b) p=12

Figure 3
The dynamic with drift and game G

We are interested in the convergence and stability properties of (8) when
A — 0, considering two different configurations of the drift parameter 3 :

CASEA:f e 5[1&3@%

CASEB:fe (B3
Given m—ff‘@ &= 0222673, CASE A depicts a situation in which, for small
values of =, the drift against the untruth-telling strategy is substantially lower
for player 3 than for her opponents.

In the following proposition we characterize the set of restpoints of the dy-
namic with drift, together with their stability properties:

Proposition 6 Let RE(3) be the set of restpoints of (8) for A sufficiently close
to 0. The following properties hold:

a)v3 € (0,1), RE(B) contains an element of NE', which is also asymptoti-
cally stable. d

b) under CASE A RE(3) contains also two additional restpoints, both be-
longing to NE°, one of which is asymptotically stable.

Proof. See the Appendix. m

There is a striking similarity between the content of Proposition 6 and the
findings of Gale et al. (1995). They analyze the classic Chain Store game,
in one of whose equilibrium components a player selects a weakly dominated
strategy with positive probability. This component is reachable, as it attracts a
(non-zero measure) set of interior trajectories. Moreover, like our NEY, it fails
to be interior asymptotically stable, but for certain parameter values it may be
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asymptotically stable when the system is slightly perturbed. Given the failure of
asymptotic stability without perturbations, one would expect any perturbation
to move the system away from the unstable component and the weakly domi-
nated strategy to become extinct. Proposition 6 tells us that evolutionary game
theory does not provide a ground for such a claim. The intuition here is similar
to the one in Gale et al. (1995). When there is drift, strategies against which
the weakly dominated strategy does poorly will have positive weight at all times
and, therefore, the part of the dynamics that depends on payoffs pushes against
the dominated strategy. On the other hand, drift may provide a direct push in
favor of the dominated strategy (and more crucially, in favor of those strategies
of the other players which do well against the dominated strategy). When the
balance between these two forces is right, one gets a stable equilibrium with
non-negligible weight for the dominated strategy.

6 Best-Reply Dynamics and Sjostrom’s Mech-
anism

In this section, we consider an alternative scenario. Suppose that x(t) evolves
according to the following dynamics:

&= DBR(z) —x (9)

with BR(x) denoting the mixed strategy best-reply correspondence BR : A —
A. This alternative dynamic defines a (continuous-time) version of the classic
best-reply dynamics, often proposed as an alternative learning model to the
evolutionary dynamics studied hereto. We can give two interpretations to (9).
Following Matsui (1992), we can use (9) to approximate the evolution of an
infinite population of players who occasionally update their strategy, selecting
a best reply to the current population state z(t).!* Alternatively, (9) can be
regarded as the continuous-time limit (up to a reparametrization of time) of the
well known fictitious play dynamic.'® This dynamic accounts for the evolution
of players’ beliefs, when these beliefs follow the empirical frequencies with which
each pure strategy profile has been played (and perfectly observed) in the past,
and agents select, at each point in time, a pure strategy among those which
maximize their expected payoff, given their current beliefs.

14Gee also Gilboa and Matsui (1991).

15Firstly introduced by Brown (1951) as an algorithm to compute Nash equilibria, fictitious
play has been recently re-interpreted as a learning model in the works of Fudenberg and Kreps
(1993). Milgrom and Roberts (1990) extend some of the properties of fictitious play to the
more general class of adaptive learning dynamics. We prefer here the non-standard version
in continuous-time to be consistent with the rest of the paper. Nevertheless, in an earlier
version of this paper we prove that the same results still hold if the dynamics are defined in
discrete-time.
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Notice that, for some x € A, BR(x) can take infinitely many values. Thus,
uniqueness of the solution of (9) is not guaranteed. However, since BR(x) is
upper-hemicontinuous with closed and convex values, it can be shown'® that the
differential inclusion & € BR(z)—x has at least one (interior) solution (¢, z(0)),
which is Lipschitz continuous and defined, for any ¢ > 0.

We begin by characterizing the asymptotics of (9) in the case of Sjostrom’s
example, that is, game G.

Proposition 7 Any interior solution x(t,x(0)) of (9) converges to (1,1,1).
Proof. Since mj is weakly dominated by m}, we have i3 = 1 — 3, for any inte-
rior solution (¢, 2(0)) of (9). This in turn implies lim;_, o z3(t) = 1. Moreover,
for any 0 < e < 1/2, there exists some T'(¢) such that x3(t) > 3 + ¢, for any
t > T(g). We evaluate T'(¢) explicitly:

T(e) = {Oifxg(O) > % + elog [%3(2)} ifxs(0) < % +e (10)

By virtue of (10), T'(e) < oo, for ¢ sufficiently small. Since BR(z(t)) =
(1,1,1) for any t > T'(¢), any interior solution of (9) is characterized by the
following system of differential equations:

zi(t) =1—a;(t),i=1,2,3; (11)

for ¢ sufficiently large. This, in turn, implies lim; . z;(¢) = 1,i=1,2,3.1

Similar considerations hold for the general mechanism. By analogy with (2-
3), let S\z = {mz € M,; ‘RZ = Ez}, with §i = {mi € §¢ ’R?_l = ﬁi—laR§+1 = ]/:L\)i+1}
denoting the pure Nash equilibrium in which all agents consistently reveal
their true preferences (i.e. the “solution” of TI' given the true preference
profile ﬁ) For any given arbitrary preference profiles R € ®, with R # ]/%\,
mi = {m; ¢ S |Ri_, =R, {,Rl_{ =R, ,} is weakly dominated by m; =
{m; € S; ’Réfl =R, 4, R§+1 = R, }, which in turn implies that, for any inte-
rior solution (¢, z(0)) of (9)

lim 27" (t) = 0. (12)

t—oo

for any m; ¢ §i. Let A denote the face of A spanned by the restricted game
(T, 1%) ’><§< . An implication of (12) is that A is globally interior attracting for the

best-reply dynamics (9), as it contains the set of undominated mixed strategies.
Consider now the following system of differential equations:

16See Aubin and Cellina (1984), Chapter 2. On the stability properties of (9) see Hofbauer
(1997).
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() =1—a"(t),m; =3
T (t) = —x" (), mi # 5

7 (3

(13)

Since, for all 7, s; is the unique best reply for player ¢ in the restricted

game (T, R) (13) defines the unique solution of (9) for (not necessarily

><§L- ’
interior) trajectories starting from A and, therefore, for any interior trajectory
(9) starting from A, for ¢ sufficiently large. We have just proved

Proposition 8 Any interior solution of (9) converges to §;.

For best-reply dynamics we have shown that every interior solution con-
verges to the unique equilibrium whose outcome is the one the planner wants
to implement. This is so because completely mixed initial beliefs make the
weakly dominated strategies in which agents lie about their own type subopti-
mal. Furthermore, since initial beliefs are completely mixed, they will always
be completely mixed, so these weakly dominated strategies will always remain
suboptimal, will never be played and their weight in beliefs will eventually van-
ish. This implies that nonequilibrium strategies by which agents misrepresent
their neighbors’ preferences become also suboptimal, and agents will learn not
to use them.

The results obtained here are so different from those we derived in the previ-
ous sections essentially because the difference in growth rates between two pure
strategies, in the case of the best-reply dynamics (9), need not satisfy Lipschitz
continuity. The only strategies with a positive growth rate are best responses;
this implies that there is an infinite response of growth rates to changes in the
sign of the differences in payoffs, which is precisely what Lipschitz continuity
rules out.

To understand the effects of increasing levels of responsiveness to payoffs on
the performance of the mechanism, consider the following (monotonic) dynam-
ics:

s ) explou;(my, x—_;)]

T =g -1 14
> a"* explou;(my, x—;)] (14)

m€M;

The dynamic (14) has been proposed by Bjornerstedt and Weibull (1996)
to approximate the evolution of a population of agents who revise their pure
strategy imitating at random other agents in the same player position; the more
successful is strategy m; given the current population state (i.e. the higher is
u;(m;, x_;)), the higher is the probability of m; being imitated (i.e. the higher is
#"").17 Given the functional form (14), we can interpret o as a “responsiveness”

170n the evolutionary properties of (14), see also Weibull (1995) and Hofbauer and Weibull
(1996).
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parameter. For small o, (14) approaches (up to a reparametrization of time) the
standard replicator dynamics, whose dynamic properties are described in Figure
2: for large o, (14) approaches, at least for interior solutions, the best-reply
dynamics (9).

The phase diagrams of figure 4 trace the interior solutions of (14) in the
case of game (7, starting from the same initial conditions, under two different
realizations of o :

o oun el R =

aj) o=10
Figure 4
Increasing responsivness to payoffs.

As can be spotted by the diagrams, the higher is o, the smaller is the basin of
attraction of the untruthful component N E?. Furthermore, for any given initial
condition, the higher is o, the closer is the limit point of the corresponding
trajectory to (1,1,1). However, no matter how high is o, it still remains true
that i) NE attracts a non-negligible set of interior trajectories and ii) no
interior trajectory converges to (1,1,1).

Figure 4 helps us in understanding the limitations of the theoretical findings
of this section. For example, it is crucial that only exact best responses grow.
If small differences in payoffs did not lead to such a large effect on difference in
growth rates, then the results about monotonic dynamics would still hold.

7 Conclusions

We have argued that there is room for doubt about the practicability of one
the of the leading examples of implementation with iterated deletion of weakly
dominated strategies when agents are boundedly rational. As we said in the
introduction, there are only few papers that study implementation with bound-
edly rational players, so a deeper theoretical study with evolutionary tools of
other mechanisms studied in the literature would enhance our understanding of
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the performance of these mechanisms with this type of agents, a necessary step
before mechanisms are used in real life.

Further empirical study is at least as necessary. It would, for example,
help to answer the question about which of the dynamics assumptions is more
appropriate. In this sense, there is already some evidence on mechanism de-
sign and learning algorithms. Chen and Tang (1996) have done experiments
with the Basic Quadratic mechanism by Groves and Ledyard (1977) and the
Paired-Difference mechanism by Walker (1981). They estimate different learn-
ing models using experimental data, showing that variants of stimulus-response
learning algorithms (whose expected law of motion is the replicator dynamics)
outperform the generalized fictitious play model. This is also consistent with the
good performance that Roth and Erev (1995) show for stimulus-response learn-
ing algorithms in mimicking the behavior of a range of experimental data, which
includes other weakly dominance solvable games, like the ultimatum game.'®

But even more importantly, the empirical and experimental work would
help to design games with good convergence properties to the preferred social
outcome, by revealing how people adjust their play in games like that studied
in this paper, as well as in other mechanisms proposed by the literature. We
have already begun to do such experimental studies.

18In their paper, Roth and Erev (1995) show that these dynamics explain the data sig-
nificantly better, according to quadratic deviation measures and others, than a generalized
fictitious play model which can accommodate behaviors ranging from fictitious play to best
response dynamics by the estimation of a “forgetfulness parameter” which weights past infor-
mation. For the experimental evidence on learning rules, see also Tang (1996), Chen et al.,
forthcoming, and Mookherjee and Sopher (1996).

26



8 Appendix

Proof of Proposition 1. We already noticed that agent 3 has a weakly
dominated strategy (namely, m$). In particular, m3 (truth-telling) makes agent
3 (strictly) better off than m$ (lying), unless agents 1 and 2 coordinate their
actions completely, that is, unless they play m{ i = 1,2 with probability 1
or they play m] ¢ = 1,2 with probability 1, (in which case, 3 is completely
indifferent). This leads to the following lemma:

Lemma 1 No strategy profile in which x3 € (0,1) can be a Nash equilibrium
unless t1 = xo = 1 or x1 = x2 = 0, that is, unless agents 1 and 2 play the same
strategy with probability 1.

With this in mind, we construct the proof as follows: we fix the mixed
strategy of player 3 and check which mixed strategies for player 1 and 2 can
sustain a Nash equilibrium. Noting that

1

ATl = ug(my,z) — ur(mf, z) = E(l‘g(l‘g —1)+7x3—3) (15)
1

Ally = up(ms, x) — ug(m9, z) = E(I'l(flfg —1)+T7x3—3) (16)

we can make the following observations:

a) When z3 < %, m? (lying) yields a strictly higher payoff than m} for both 1

and 2, independently of what the other player does. Therefore, strategy profiles
in NE° (and only those) are Nash equilibria.
b) When z3 = 2, m{ yields a strictly higher payoff than m] unless x5 =
0, and z2 = 0 makes player 1 indifferent between m{ and mi (a symmetric
argument holds for player 2). This excludes the possibility of (1, 1, %) being
a Nash equilibrium of the game, leaving (0,0,2) € NE° as the unique Nash
equilibrium when z3 = %

¢) When z3 € (%, %) there are no Nash equilibria. The reason is that, in
this case, if 1 = 1, the best response of player 2 is xo = 0; if ;1 = 0, the best
response for player 2 is o = 1. However, neither (0,1, 2z3) nor (1,0, z3) can be
Nash equilibria when z3 € (%, %) by Lemma 1.

d) x3 = % By analogy with the case where z3 = %, it is an implication of
Lemma 1 that (1,1,1) € NE! is the unique Nash equilibrium when z3 = 3.

e) When z3 > 1 announcing m} (truth-telling) is optimal for ¢ = 1 and 2,
independently of what the other player does. Thus, strategy profiles in NE!
(and only those) will be Nash equilibria.

Since this exhausts all cases the result follows. B

Proof of Proposition 2. To prove the proposition, it is enough to show that
any interior trajectory converges. The reason is that, once convergence has been
proved, we can apply the standard result “convergence implies Nash under any

monotonic selection dynamics” (see, e.g. Weibull, 1995, Theorem 5.2 (7).
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We start by observing that the dynamic is forward invariant. This implies
that x,(¢) is always defined and positive, for any nonnegative ¢t. By monotonicity,
x5(t) is also a positive, increasing function of ¢ and bounded above by 1 (since
m3 is a weakly dominant strategy). Therefore, x4 (¢) must converge (this already
implies convergence of player 3’s mixed strategy). Let zf= lim;_. o x;(t), when
such a limit exists. Three alternative cases have to be discussed:

a) z = 0. If 25 = 0 there must be a time ¢’ such that a3(t) < 2 for ¢ > ¢'.
This implies that there is a k > 0 such that for all ¢’ > ¢, AIL;(z(t)) < —k for
¢ = 1,2. This implies, by monotonicity, lim;_ o, x;(t) = 0 for i = 1,2, thus
z* = (0,0,0).

b) x5 = 1. By a similar argument, monotonicity implies z* = (1,1, 1).

c) x € (0,1). We want to prove that x5 cannot converge to a value within
this range unless the system converges to a Nash equilibrium. To do so (given
the special features of our example) it is enough to show that, if z% € (0,1), then
both players 1 and 2 select, in the limit, the same pure strategy. Given that this
implies convergence of the full mixed strategy profile, the result follows. More
formally, what we need to prove is contained in the following lemma;:

Lemma 2 If 25 € (0,1) then:

either
xzf =0,i=1,2(CASE Ohereafter)
or
wf=1,i=1,2.(CASE 1)

Proof. Assume, for the purpose of contradiction, that neither of the above
statements is true. In this case, there must exist a sequence {t;},-, and a
positive constant e> 0 such that either x;(ty) > €,9 = 1,2 or z;(tx) <1 —¢€,i =
1,2 for all k (in other words, assume that the system stays infinitely often
an € away from the faces of A in which player 1 and 2 play the same pure
strategy). We already noticed that these are the only faces of A in which both
pure strategies for player 3 yield the same payoff. If the system stays away
from these faces infinitely often along the solution path, then the integral of the
payoff difference Allz(x(t)) goes to infinity as ¢t goes to infinity.

To show this, notice that AIl;(z(¢)) is a continuous function of x(t) defined
over a compact set (A). In the case of player 3, such function takes the following
form:

z1(t) — 22(1)” + 21(t)(1 — 21(1) + 22(t) (1 — 22(t))
6

Alls(x(t)) = ( (17)
Take gy = maxier sz ;en_,[lgi(mi,xz_;(¢))|], i.e. the highest possible growth
rate (in absolute value) over all strategies and players (we know a max exists,

since also g;(.) is continuous in A). Then define 71, 72, 73 and 74 as follows:
In[2]y.
gm )’

71 solves eexp [~gu 1] = 5 (i.e. 11 =
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To solves (1 —e) exp [—guTo] = £ (ie. 7 =

2 9m
141
73 solves eexp [gy73] =1 — 5 (le. 73 = In] Q;Jr ])’
T4 solves (1 — e) exp [gMT4] -1— % (i.e. = In [92;:26])

Let O = min[r, 72, 73, 74] be the lower bound for the time interval in which,
after each t3, § < x; < 1—5,i = 1,2 and therefore All3(z(t)) still remains

bounded away from 0 (i.e. AHg( ) > (T > 0,Vt € [tg, ty + OT]). Denote
by G. = {;v € AJATI3(x) > 6(1 -3 } Now define 7;(z(¢)) the time derivative of

the log of the ratio between the probabilities with which each of player ¢’s pure
strategies are played, which can be expressed in terms of the difference in the
growth rates:

%’(ﬂf(t))E%In< zi(t) )ZW) (L—@it) )

1—2(t) zi(t)  L—xi(t)  2(t) — (z:(t)?

Also v3(z(t)) is a positive number bounded away from 0 infinitely often since,
by assumption d.1, is a continuous function of x(¢) defined on a compact set,
which preserves the same sign of Allz(x(¢)). This implies that we can always
define a constant g. = mingeq, v3(z(t)), with g. > 0 by assumption d.2. Also
by assumption d.2, v3(z(t)) > g. <= Allz(x(t)) > 6(1
value of v3(z(t)) over time we then obtain:

tk+3‘r s t+0T
. - _
tlg](r)lo ))dt Z / ))dt > ge» / dt = oo

k=1"1tk

U22) If we integrate the

which implies that 25 = 1, which leads to a contradiction.m

To summarize, Lemma 2 shows that, if 3§ € (0,1), z1(¢t) and z3(¢) must
converge (and therefore x(t) must converge to a Nash equilibrium). Since this
exhausts all cases the result follows. ®

Proof of Proposition 3. We begin by noting that, against any m_; € M_;, all
strategies m; € S; yield the same payoff, as they only differ in i’s announcement
about herself. Since supp[z_;] C S_;, totally inconsistent states (the only states
where announcements about ¢’ excluded.

For all #;, such that ;ﬁ’f > 0 only if m; € S; we have,

i@, e ) > Wi oy (fi(@(i, R)), Re) + (1= Tz oy (0, Ry).
For all T; # f{,,

.I“ z Z I‘ UZ I’Z, _1 (1 — Z JJ ) |: j#z;n]*ul((),]:?z) + (1 *Hj;,gil?;n

m; €S, m; €S,

Then
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w0 0) — i@ ) > (1= Sy, 50 [ (il fi(6(, BY)), Bi) = 04(0, i)
(1= T ) (030, Ry) — Um)}

which is greater than zero since, by (4),

Uin — vi(O,ﬁ’i)
vi(fi((i, R*)), Ri) — vi(0, R;) + Uin — v:(0, R;)

The following lemma will be useful in the proof of Proposition 4.

Wjpiay? > ik >

Lemma 3 . Let any m;,m}, € S; and x;. Then

i (mza z) gz( —i) > _2KXi-
Proof.
Let :% i Such that 27 = &7 for all m; € S;\m}; &7 = 0 for all m; € Sj;
and i‘j a: T4 ijes LM |
Since u (ml, i) = ul(m ,x—;) for all z_; € S™*, then g¢;(m;,_;) =
gi(mi, &—).

By Lipschitz continuity we have that,

gi(mi, x ;) — gi(mi, &) > —Kl|ov_; — &4 (18)
gi(mi, &) — gilmi, x ;) > —Klo_; — & (19)
Since g;(m;, 2—;) = ¢gi(m},2_;) and |r_; — _;| = X,, the result follows by

adding up inequalities (18) and (19). ®
Proof of Proposition 4. By contradiction.

Suppose that a) is the statement that stops being true earliest, that it does
so for agent i and strategy m; € S; and that the boundary time is ¢’. Then it

must be (g1
x’mi() = exp[—hyt'| ——.
;" (0) z; " (0)

Notice that, for all t,
Body Math

wilmis4(8)) = wim—(0) < 00, Ry (8) + U1~ Wy 1)
— (w00 B, RO (1) - 03(0, R (1~ Iy <t>>)
= U — (0, Ri) — Tz (1) (vi(fi(¢(i,R*)) Ry) + Uy = 200, Ry) )
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Since b) is true for t < ¢/,
wilma, @i (8) ~ug(mi, @ i(8)) < Us=vi(0, )= B (0il fi(0, RY), Ri) + U = 20i(0, i) )
Thus,
wi(mi, x_i(t)) — ui(mi, z_;(t)) < —hay,
which, by assumption d.2 and the definition of h, and hg, implies that
gi(mi,z_i(t)) — gi(mi, x_i(t)) < —hg.

Given z." (t') < H, if we integrate g;(m;,z—;(t)) — g;(m},x_;(t)) from 0 to ¢/,
we obtain the following:

i (1) n_ H
- < exp[—hgt' | ——.
7" (0) am0)

This is a contradiction.

Suppose that b) is the statement that stops being true earliest, that it does
so for agent 7, and that the boundary time is ¢. Then, it must be true that
" (') = H.

K2

Notice that Lemma 3 implies that, for all m; € S;\{m}},

gi(mj, x—i(t)) — gi(ms, 2—i(t)) > 2K X,(t). (20)
Since a) holds for ¢ < ¢, (20) implies that

gi(m?,x_;(t)) — gi(mi, 2_i(t)) > —2K ( exp[—2hyt]—2—

m’*

> 2K (exp[Qh {—H X (0)
ECRITNE

By integration,

©ex —2KX(0) H?
O o) T 2Ry (@(0)?

(1) b)), 1)
(0) 70" 1— 27" (0)

This implies xZn? (t') > H (using the assumption a::r“ (0) L > H ), which is a
contradiction.
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Suppose that ¢) is the statement that stops being true earliest, that it does so
@ () w(0)
z t(t) — w;i(0) L°

for agent 7, and that the boundary time is . Then it must be
By Lemma 3, for all m; € S;\{m}},
Since a) holds for ¢ < ¢/, (21) implies that
gi(mi, x—i(t)) — gi(m7, x—i(t)) > —2K (exp[—%gt]fif{%)
z. * (0

> 2K (exp[—2h {—2—Xx(0) ).
@M )2

By integration,

which implies that
z!" (t) - ;' (0) 1
v (t) o x"(0) L

which is a contradiction. Since this exhausts all cases the result follows. B

Proof of Proposition 5. (i) We know, from Proposition 2, that &3 > 0 in
any interior point. This implies that, if there is a time ¢ such that ) > % for all
t' > t. From equations (15-16) we have that, whenever z3(t) > 1 , All;(z) > 0
for players 1 and 2. This implies that, if there is a time ¢ such that z3(t) > 3>t
for i = 1,2 and, therefore, x(t) must converge. Since convergence must be to a
Nash equilibrium and z; and x5 have been increasing, x must converge to NE!.
To show the stability of NE! it suffices to show that there is a neighborhood
of NE! such that, for all z(0) in this neighborhood, there is a time ¢ such that
x3(t) > 3. Let

2
1

25(0) = lexp l_m] <

DN | =

2 12

. From (15-16) we also have that —1 < All(z) < 1 for ¢ = 1,2, thus
exp[—t](1 — €;) < z;(t) < exp[t](1 — €;). (22)
Since Allz(x) < w, (22) implies

3(t) _ (1~ en)(exp[~t](1 — exp[t](1 — 1))
1‘3(t) 6 '
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Thus,
£3(t)  (L—e)(exp[—t] —(A—e)) (A—-e)(=t+e)
25(l) 6 ” 6

This implies that

Note that, for t = €,

r3(e1) > exp [w} exp [_m] % ~ exp [%] % -

DN | =

6 12 12

Which is what we wanted to show.

(i1). Assume x3(0) > 2. Since d3(t) > 0 for all ¢, x3(t) must converge.
Furthermore, since 3(0) is larger than 2, z3(t) must converge to a number larger
than 2. We know that 2(t) converges to a Nash equilibrium by Proposition 2.
Since there is no equilibrium in NE° with z3 > £, z(t) cannot converge to a
point in NE°. Since z3(0) can be arbitrarily close to 2 and therefore to the set

NE°, this set must be unstable. m

Proof of Proposition 6. The proof is constructed as follows. We first
characterize the limit of the set of rest points RE(3), and then analyze the
stability properties of each of its elements.

We start by observing that, given 8 € (0,1), any rest point must be com-
pletely mixed, and it also must be x5 > 3, as All3(.) is always positive in the
interior of the state space A (because mj is a weakly dominated strategy).We
also know, by continuity of the vectorfield with respect to A, that every limiting
rest point of the dynamic, as A goes to zero, must lie in the set of restpoints of
the unperturbed dynamic RE (G).

First, we analyze the limit set of rest points under CASE 0. In this case,
both players 1 and 2 play their strategy m{ with probability 1, that is x; = 0,
for i = 1,2. Setting 1 = 0 yields the following equation:

I 12 (% — xl)

N (Q—21)BFa1—23(7—22)) (23)

and an analogous expression can be obtained for 52. Denote by 29 a limiting
value in a rest point, if a limit exists, for x3. When the limiting values for x;
and xo are zero we have:
. T; 6
lim —=—— 24
z;—0A—0 A (3 — 7.1?%) ( )
Notice that, in this case, if a rest point exists, it must be z9 < %, since £ > 0.
We set %\i = O,substitute % with the expression in (24), solve for w3, and
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substitute z;,7 = 1,2 and A by their limiting value of zero. The solutions for =
take the following form:

o 1473+ /1— 546 —499)
3= 10

_ 1+78— /1 B(46 — 49P)
10

-0
andZs =

Remember that 29 must be a real, positive number, with 3 < 29 < % For the
expression under the square root at the numerator to be nonnegative, it must

be that g € [0, %9\/% ~ .0222673} , which determines the feasible range for

both roots. Within this interval of values for 3, #3 (#3) is a strictly decreasing
(increasing) function of 8, which has a minimum and a maximum, whose values

are %ﬁ (0) and 5 <15_2‘/%) respectively. As § — %, both solutions

35
converge to 15_325 30

We now deal with the subset of limiting rest points under CASE 1, i.e. with
limiting values for x; = 1 for ¢ = 1,2. The equations corresponding to (23-24)
are now the following:

(1—.’1?1) o 12 (1‘1—%>
A o (Txs + x2(l —x3) — 3) (25)
. N S T ) (26)

where z} denotes a limiting value for x5 (if a limit exists). By analogy with

CASE 0, we know from (26) that, if a rest point exists, it must be z3 > %

There is a unique feasible solution for x3,V3 € (0,1) which has the following
form:
3+468+4+ /9 —1608(1 — )
10 '

Following the same procedure for the remaining rest points of the unperturbed
dynamics (i.e. the pure strategy profiles which belong to RE (G) and do not
satisfy either CASE 0 or CASE 1) does not add any element to the limiting set
of rest points of the perturbed dynamics. This should not be surprising, as any
other rest point of the unperturbed replicator dynamics is unstable with respect
to the interior. Since this exhausts all cases, the result follows.

We now move to establish the stability properties of each limiting restpoint
separately. The Jacobian matrix for the dynamic system is as follows:

A1
I3—

(1 _ 2I1)AH1 Y —(1—371)12271(1—163) (1—:161):;;(74-.%2)
J(z,\) = W (1 — 2x5)AIl, — A (1—wz)910;(7+z1)
(172z2)élfzg)a:3 (172m1)élfa:3)a:3 (1 _ 2333)AH3 2

We analyze CASE 0 first. We know that, in this case, we have two restpoints,
which we call #° = (0,0,49) and #° = (0,0,%3). We evaluate the Jacobian
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when z1,x2 and A are equal to their limiting value (i.e. 0). The corresponding

—347ay —3+7x]
12

eigenvalues are {0, — 5, } There are then two (identical) negative

eigenvalues (since any limiting 2§ < % for CASE 0), while the third eigenvalue is
equal to zero. To determine the stability properties of the perturbed system, the
sign of the eigenvalue whose limit is zero becomes crucial given that continuity of
J(.) ensures that the other two will be negative, for any A sufficiently small. We
now linearize the rest points (as a function of \) around NE°. We set (), 6) =
(61)\, S, 29 + 63)\) , where 6 = (61,02,63) denotes the vector collecting the
coeflicients of the linearized system. We then evaluate the following expression:

. Odet (J(x )\)’~(>\5))
0(,.0 & — A |z,
¢ (x3,0) = limy ER

We do so because det (J(z, )\?) , which is equal to zero Vo € NE°, will preserve
the sign of the third eigenvalue, given that the sign of the other two will stay

constant (and negative) when x is sufficiently close to NE® and X is sufficiently
small. For CASE 0 we get the following result:

—54 +29(252 +29429) + (61+62) (9 ~ 3929 +63(23)" —49 (xg)s)
864

¢O (l‘g, 5) =
(27)

We first notice that (27) does not depend on é5. To evaluate sign (¢°(z9, §)) we
only need to get estimates of §; and 89, the linear coefficients which measure
the responsiveness of the equilibrium values of z;,7 = 1,2 to small changes in A.

We do so by setting limy_q =% D(z, \) = 0, and solving for {61, 82,23} .

F(\,6)
There are two alternative set of solutions, each of them corresponds to each of

the restpoints. In particular:

23 — 498 — 74/1 — 3(46 — 493)

5 =89 = -
A . 23 — 496+ 74/1 — (46 — 498
55 \/8 ( )

We evaluate the numerator of (27) for both sets of solutions, obtaining the
following expressions:

3 (—7+3225—34352+(495—23) \/1—46/6+4962)

o(B) = T (28)
. 2863 — 1474765 + 88288262 — 154624433 + 8235438% + k /146 3+ 4932
#(B) = 1000
(29)

with k = (3887 — 601238+165669 32 — 117649 53) )

Both ¢°(3) and ¢°(3) are plotted in Figure 5. As the diagram shows, ¢°(3)

0 234@}
’ 49

is always negative in the domain { , whereas (;30(6) is not. In conse-
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0 -0

quence, " is asymptotically stable whereas z" is not.

CASE A CAZEE
() . . . 8
};‘3@;} 0.2 0.4 0.6 0.s 1
=20
—-40
F8)
—&0

Figure 5
Asymptotic stability of the dynamic with drift

We now move on to CASE 1. Here we have a unique rest point, which
we call 2! = (1, 1,@%) .The eigenvalues of the unperturbed dynamics are as
follows:{O, 1_513, 1_—3213} As in CASE 0, there are two (identical) negative
eigenvalues (given that xs > %), and the remaining eigenvalue equal to zero.
By analogy with CASE 0, we define Z(\) = (1— 68X, 1— 62\, 29 + 63\)and
solve limy_,q d%\ f)(x,)\)‘ ) = 0 to get estimates of §. The unique feasible

(A6
solution (corresponding to the unique limiting equilibrium), takes the following
form:

3 (27453+ 9—166+1652)
2

The function corresponding to (28-29) takes now the following form:

5= 6} =

with & = 9—1604. The function él(ﬁ) is also plotted in Figure 5. As the diagram
shows, ¢!(3) stays negative V3 € (0,1). Thus, #! is asymptotically stable under
any drift configuration. B
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