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A PROCEDURE FOR SHARING RECYCLING COSTS

José Alcalde and José Angel Silva

Abstract

This paper examines a situation in which the production activities of different
agents, in a common geographical location, create waste products that are either
of a similar biological or chemical composition or offer commercially compatible
combinations. What we propose here, therefore, is a cost-sharing model for the of
recycling of their waste products. We concentrate, however, on the specific case
in which the agents’ activities are heterogeneous.

We first examine, from a normative point of view, the cost-sharing rule, which
we shall call the multi-commodity serial (MCS) rule. We introduce a property,
that we call Cost-Based Equal Treatment, and we demonstrate that the unique
rule verifying the Serial Principle and this property is the MCS rule. We then
deal with the analysis of the agents’ strategic behavior when they are allowed to
select their own production levels, in which case the total cost is then split, in
accordance with the MCS rule. We show that there is only one Nash equilibrium,
which is obtained from an interactive elimination of dominated strategies.
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Journal of Economic Literature Classification Numbers: C71, C72, D62, D63.



1. Introduction

Advanced societies are continually seeking economically feasible ways of reducing
on the amount of pollution they create. One of the most practical solutions is the
imposition of clean-up models (recycling) for both urban and industrial residues.
In this paper, we concentrate on the specific case in which the polluters, whether
consumers or firms, are located within a given geographical area and their residues
are all sent to one common dump. In such a situation, there is generally the
possibility of converting much of their waste into “residual products” that could
be commercialized for other uses. In many industrial areas, several firms dump
their waste matter into one common pit. In such a cases, the cost involved in the
eventual cleaning up of such sludge can be quite high. It is already well known
that several waste products from different industrial processes can be recycled
into the production of new agricultural products, principally fertilizers, which
can then be used within the same geographical area. Simply spreading such by-
products on barren areas of land would help to improve their fertility. Both the
US and the EEC impose restrictions on the dumping of industrial efluents that
are generally based on limits to their heavy metal content. The reason given
for the imposition of such restrictions is that whilst the cleaning up of organic
matter is relative inexpensive, and in certain cases even costless, the cleaning
up of chemical wastes is generally quite expensive, especially when such residues
contain heavy metals. In other words, the clean-up cost is directly related to
the sort of chemical elements they contain. Furthermore, the composition of a
firm’s inorganic residues correlates highly with its field of activity. For instance,
Chromium is found in the residues of leather-producing factories. Textiles and
toy factories produce Cadmium, Zinc, Nickel and Copper among other elements.

Whenever it is decided that the cost of cleaning up a common pit must be cov-
ered by the polluters themselves, it immediately becomes necessary to establish
just how the total cost should be split among the different agents. One prop-
erty that such a cost-sharing model should always satisfy is a sensitivity to the
proportion of each individual agents’ contribution in relation to the total cost.
The cost distribution that is finally imposed should be directly related to the
cost involved in reducing, converting or recycling the individual residues of each
firm. This paper focuses on the problem of designing a cost-sharing model that
reflects, as faithfully as possible, this desired sensitivity to each agent’s individual
contribution to the total cost.

There is a long history to the study of cost-sharing in joint-projects. The



most common approach to the problem has been the normative study of cost-
sharing (or surplus-sharing) procedures. Cost-sharing problems can be modeled as
cooperative games with transferable utility. A viable solution for these problems,
in other words, a cost-sharing rule, would be a value function for this transferable
utility game.

The literature published so far on the matter provides us with an interesting
study of different examples of economic situations in which the key question is how
the cost of a joint-project is to be shared. Billera, Heath and Ranaan (1978) have
studied the pricing of telephone systems. Cost-sharing solutions, inspired by price
systems had be also studied for airport runways (Littlechild and Owen (1973)),
irrigation networks (Aadland and Kolpin (1998)), or public facilities (Loehman
and Whinston (1974)), among others. The reader is referred to the surveys by
Tauman (1988) or Young (1994) for more examples on this matter.

The particular model that we are interested in is the classical Aumann-Shapley
pricing model. Each individual 1, in a set of n agents, demands (i units of some

the agents should split the cost of production, according to a function C, whose
domain is RY.

Following this formulation of cost-sharing problems as atomless cooperative
games, Moulin and Shenker (1992) introduced the serial cost-sharing rule. The
main difference between Moulin and Shenker’s model and that of Aumann-Shapley,
is that the goods that the agents demand are homogeneous in the former model,
whereas this is not necessarily the case in the latter.

In this paper, we re-formulate the serial cost-sharing rule and apply it to the
original Aumann-Shapley model. This problem was recently analyzed by Fried-
man and Moulin (1999). These authors present a generalization for the serial
cost-sharing rule to the case in which goods are not homogeneous. Their proposal
reflects the original formulation given by Aumann and Shapley (1974), based on
measuring the marginal cost along a path. The rule proposed by Friedman and
Moulin also reflects the serial principle implicit in the Moulin-Shenker formula.
In fact, when all of the agents’ demands coincide, the Aumann-Shapley and the
Friedman-Moulin rules propose the same proportional share of the total cost.
Loosely speaking, we can say that both of the above-mentioned mechanisms pro-
pose sharing the total cost according to the measure of the marginal cost along a
path which depends exclusively on the agents’ demands. Figures 1.1 and 1.2 show
the paths for the Aumann-Shapley and the Friedman-Moulin rules in the case of
there being just two agents, and when the agents’ demands are summarized in



the vector (3;1).

In this paper, we propose a cost-sharing procedure, which we shall call multi-
commodity serial rule, and which is formulated in accordance with the original
serial idea presented by Moulin and Shenker. This rule proposes a sharing of
the total cost by measuring the marginal cost along a path. The main difference
between the interpretation of our proposal and those of Aumann-Shapley and
Friedman-Moulin, is in the way the path to be used is defined. Our path is
cost-dependent (as we shall explain later on), whereas the paths presented by the
above-mentioned authors are not.

The justification of a certain path, for the purpose of interpretation, is made
on the basis of how heterogeneous goods should be compared. In our opinion,
one aspect that must be taken into consideration is the fact that the problem is
formulated in terms of a cost to be shared. We therefore believe that any way of
comparing the goods must be formulated in terms of the particular cost function
that characterizes the problem. Examples 2.2 and 2.3 should help us to clarify
this aspect.

Our first aim, therefore, is to present a cost-sharing rule that reflects the
comparison of heterogeneous goods according to the cost function that the agents
face. The way in which we compare two different goods is based on the cost of
producing each of these goods separately. As such, given two goods, I and J, we
shall consider that gj units of i is equivalent to g units of j whenever the cost of
producing only ¢j units of i coincides with that of producing just gj units of j.

Let us now analyze of the properties that characterize our rule. We find that
the multi-commodity serial rule is the only cost-sharing procedure that satisfies
Cost-Based Equal Treatment and the Serial Principle. (See Theorem 3.3). The
first property establishes that in the case of two goods i and j, and when the two
agents produce (; and ¢j respectively, they must contribute equally to the total
cost of production, assuming that g; and g; are equivalent. The second property
was formally defined by Sprumont (1998) and, loosely speaking, establishes that
an agent’s contribution to the total cost does not depend on the production levels
of other agents who might produce more (according to the above comparison).

The second question is the study of the agents’ behavior when the cost is
shared according to our rule. We propose a model in which the agents decide their
own individual production levels and the total cost is shared according the multi-
commodity serial rule. When the agents behave strategically, we show that there
can only be an equilibrium outcome after an iterative elimination of the dominated
strategies. This result is similar to the strategic conclusions for the serial cost-



sharing in Moulin and Shenker (1992), when agents produce homogeneous goods.

The rest of our paper is structured as follows: Section 2 introduces the basic
model and definitions. In section 3 we present a formal definition for the multi-
commodity serial rule and characterize it as the only cost-sharing rule that satisfies
Cost-Based Equal Treatment and the Serial Principle. A study of the agents’
strategic behavior is done in Section 4, our conclusions are presented in Section
5, and finally, some technical proofs are given in Appendix 1.



Figure 1.1: Aumann-Shapley Path




Figure 1.2: Friedman-Moulin Path

2. The framework

also call firms. Each agent i produces a certain good, such that, given a vector
of agents’ production q 2 R, we can identify its i-th component with agent
I’s production level. As a consequence of the agents’ production activities, the
environment is being polluted and a clean-up plan is imposed, the cost of which
will be divided among the agents who generate the wastes. Let C : R} ¥ R be a
function which associates the cost of recycling the residuals with the production
level of each firm. We assume that C is continuous, strictly increasing in each
good i, C (0) = 0 and limg x 2 Ci(q) = limg; x 2 Cj(q) for each i, j 2 N, where
Ch (q) is the evaluation of function C at the point whose h-th component is gy, and
all other components, except the h-th, is zero. Note that Cy, (q) can be interpreted
as the cost of producing only agent h’s demand, regardless of the other agents’
demands, so that we refer to this expression as agent h’s stand-alone cost at g.
Let C denote the set of functions that satisfy the above properties.

Given a cost-sharing problem - i.e. a cost function C, and the firms’ production
levels - we shall now propose a cost-sharing method for the recycling the agents’
residuals based on their production levels. So, we shall describe a vector X =



P
(X1;::0; X450 015Xp) such that 5, Xi = C (0). Our main interest is in defining a
general procedure that provides a solution to any specific cost-sharing problem.
These procedures are known as sharing rules.

De..nition 2.1. A sharing rule is a function X : C £R7 ¥ R" that associates a
vector >$:(C; q) with each cost function C in C and each production level of g 2 R}
so that ., Xi (C;q) =C (q).

The choice of a given cost-sharing procedure is generally based on the prop-
erties it satisfies. In this section, we shall present two properties, both of which
can be defined as the result of a comparison of different schemes, by the agents,
based on their production levels, to ensure its fair treatment. As we shall see (in
Theorem 3.3), both properties, together, characterize the multi-commodity serial
rule. This way of splitting the total cost can be considered an extension of Serial
Cost Sharing (Moulin and Shenker (1992)) to the case of heterogeneous demands.

In the case of homogeneous goods, it is usually assumed that cost sharing
mechanisms have to satisfy a symmetry property, namely: if two agents’ demands
coincide, then they should have the same share of the cost. This comparison
can not be extended, in a trivial way, to the heterogeneous case, although we
shall propose that the cost function does provide us with a way of making such
comparisons. In general, when agents have to share the cost of joint-consumption,
it is quite common for the agents to use the cost of their own consumption to argue
how much each one should pay. Furthermore, no agent agrees to pay more share
of the cost than any other whose consumption is more expensive that her own
consumption. In accordance with our notation, we shall state the following axiom:

Axiom 1. : Let X be a cost-sharing rule. We shall say that it satis..es Cost-
Based Equal Treatment (CBET) if, and only if, X; (C;q) = X (C;q) for all cost
functions C 2 C and production levels g 2 RY such that C; (q) = C; ().

Note that, in the case of homogenous goods, symmetry and CBET are equiv-
alent terms. It seems natural, therefore, to take the cost function of each agent
as a value for the comparison of their demands. In our novel way making these
comparisons, we assume that two agents’ demands are equivalent whenever the
cost of producing each one’s individual demands is the same, regardless of the
cost of the other agents’ productions.

The following examples demonstrate that the Aumann-Shapley Friedman-
Moulin cost-sharing rules fail to satisfy CBET.
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Example 2.2. Let N = f1;2g, and let the cost function be C (qs; d2) = (a1 + 302)°.
It is clear that, by observing the symmetry notion in the case of homogeneous
goods, the total cost should be split equally whenever q; = 3g,. In fact, this is also
the case with the Aumann-Shapley rule, although it is not so with the Friedman-
Moulin rule. For instance, if we assume that § = (3; 1), then the Aumann-Shapley
formula would be:

Z,
XS CH=8 oo gt
o @g;
Which results in:
XP°(C; @) = X5° (C;8) = 18

The Friedman-Moulin rule, however, taking into account the fact that & > &,, we
obtain the following expression:

Z o 6c
XM (Ca) = ~— (t; min ft; d,g) dt
70 @aa
&2 acC
XM (Ca) = — (;t)dt
o 00

whose results are:
XM (C; ) =24, and XM (C;8) =12

Note that the above example shows that the Friedman-Moulin rule does not
satisfy re-scaling, i.e., the way in which the cost is shared depends on the type
of units that are chosen to measure the levels of output. (For a formal definition
of this property, the reader is referred to Axiom 3 in Tauman (1988) tauman.)
It is well known that the Aumann-Shapley rule satisfies this property. This is
no longer true, however, when the form in which two different measurements are
related is not linear, as the next example demonstrates:

Example 2.3. Let N = f1;2g, and let the cost function be C (qs; 92) = (91 + 02 2,
We can assume that q; units of good 1 produce the same amount of pollution as
g3 units of good 2. The same argument that is used to justify the property of
symmetry in the homogeneous case can be used to argue that the total cost should
be split equally among the two agents whenever q; = g3. This property, however,
is not satis..ed by the Aumann-Shapley rule. To demonstrate this, let us assume
that ¢ = (4;2). The share proposed by the above rule is therefore:
112

XS (Ci) = 2, and X2 (Ci) = =57
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As we shall see (Theorem 3.3) the multi-commaodity serial rule satis..es Cost-Based
Equal Treatment.

The second property that we deal with is the Serial Principle. This property
was formally introduced by Sprumont (1998). The underlying idea of this axiom
is the inter-personal comparisons made by the different agents among themselves,
regarding the cost-sharing. We now present the intuition beyond this principle.
Assuming that the agents use the cost function as a tool to made such comparisons;
let us study the case of an agent who produces a certain quantity gj, which, in
turn, generates an external effect, in term of costs, to the others. The question
to be settled is just how much each agent should accept to pay considering the
externalities caused by that one agent. Notice that these externalities depend
not only on this agent’s demand, but also does on others’ demands. This fact
induces to consider reasonable that the share of the total cost corresponding to
this agent would not be sensitive to increases on others’ demands, when they are
(comparatively) higher than the one made by such an agent.

Axiom 2. Let X be a cost-sharing rule. We say that it satis..es the Serial Prin-
ciple (SP) if, and only if, for each agent i 2 N, each cost function C 2 C and any

two production vectors g, q° 2 R?,
a

©
q} = ¢ for j =i and for all j such that X; (C;q) < X; (C;q)

and a

©
q; . g; for all j such that X; (C;q) . X (C;q)
imply that X; (C;q) = X; (C; ).

3. The Multi-Commodity Serial Rule: De..nition and Char-
acterization

In this section we introduce the multi-commodity serial cost-sharing rule, and
show that this is the only cost-sharing rule that satisfies CBET and SP, the two
axioms introduced in the previous section. Before introducing our rule, however,
we must present an additional notation. Given ¢ and ¢" 2 R", let g ™ q° denote
0 —

the minimum among these vectors, i.e., ¢~ ¢" = g¥ such that, for each i,

min fgi;q’g. Given q 2 RY, and agent i, let L (q) = fj 2 N : C; (q) < Ci (q)g.

11



Finally, for each g in R}, and agent 1, let gf 2 R} denote the vector that satisfies
Cj(qf) =Ci(q) forall j 2N.!

De..nition 3.1. The multi-commodity serial cost-sharing rule is a function XM :
C£RT ¥ R" which associates a vector X™* (C;q) to each cost function C in C,
and to each production level g 2 R7, such that for each i 2 N,

2 S 1 ] i ¢
C@@”™a) i max C gf™q (3.1)

X[ (C;q) = S
o (Ca) N i jLn (9)] i2Ln()

h2Li(q) Lfig

where, for any set A, jA]j denotes its cardinality. By convention, we assume that
maXjzr,q) C df ~q =0 whenever L (q) = ;.

The formula used to describe the multi-commodity serial rule in the above
expression can be explained in a simple, intuitive way, with the help of an iterative
argument. Let us assume that q is such that C1(q) - ::: - Cij(q) - ::: - Ch(Q).
In such a case, each agent has to pay %C (g5). Note, however, that this does not
cover the total cost. The difference, C (q) § C (q5), is finally covered by all the
agents except firm 1. To share this deficit among them, each agent from 2 to n,
is charged an extra n+1 [C @5 ™) i C(@f)] It is clear that, in general, the total
cost is not readily covered. The part that remains to be paid, C (q) i C (g5 ™ 0q),
must therefore be charged to agents 3 to n, complying with the above criterion. In
other words, these agents must be charged an extra n+2 [C@ ™9 i Ca5 ™)l
which is the difference between the total cost paid by agents from 4 to n, and so

forth. The next example will clarify this procedure.

Example 3.2. Let N = f1;2;3g, C(q) = @ + P&z + 6§ + 0102 + 0102 + 0205,
and q5=(9;16;1). In such a case, C3(q) < C1(q) < C2(0). 45 = (LL;1); 9 =
9;9; 3,05 = (16;16;2). Then, each agent is charged %C (g§) = 2. But agents 1
and 2 have also got to pay 2 [C (5 ) i C (a5)] = 3[C (9;9;1) i C (1;1;1)] =50,
and ..nally, agent 2 is also charged the remainder of the outstanding cost, which
is,C(@57q) i COf™g)=C(916;1) j C(9,9;1) =71. Then,

XM (C;q) = (2 +50;2 + 50 + 71;2) = (52;123;2)

The next theorem characterizes the multi-commodity serial rule by axioms 1
and 2.

!Under the assumptions made on C, for any cost function C 2 C, each agent i 2 N, and any
production level for this agent @i, gf is always unique.

12



Theorem 3.3. The multi-commodity serial rule is the only cost-sharing rule that
satis..es CBET and SP in C.

Proof. It is clear that the multi-commodity serial rule verifies the two ax-
ioms.

On the other hand, let X : CER} ¥ R" be a cost sharing rule satisfying axioms
1 and 2. To demonstrate that there is no other rule but the multi-commodity serial
rule that satisfies these two axioms, we shall proceed by induction. Let g 2 R be
a vector of agents’ demands and C 2 C a cost function. Without loss of generality,
and for notational convenience, let us first assume that

Ca(@ - :::-GCi(@) -2 - Ca(@). (3-2)

This assumption implies that g§ 5 ¢, hence SP means that X; (C; q) = X; (C; qf).
Moreover, CBET implies that X; (C;qf) = %C (a5). Note that, by SP, this means
that

X1 (C:q") = %C (@%) for any o' = g such that ¢} =g

Now, consider the vector q5*q. In this vector, the first component coincides with
01 whereas the other components coincide with those of q5. By SP, we know that

X2 (C;q) = X2(C; 05 ™ q). Furthermore, by CBET, X; (C; 05 q) = X2(C;05 ™ q)
for all i 2. Sirrge the cost has to be fully covered, iibshould be satisfied

that C(g370q) = o Xi (G377 0) = X (Clgz ™)+ o Xi(Clgz ™ q) =
X1(C;q) + (n § 1) X, (C;05™q), so that by considering Agent 1’s contribution,
Agent 2’s share would have to be

. —_ 1 - e N - i e )
X(C)=-—7 1 C@"0 i -C@m)
therefore,

X (i) = =7 [C (@~ 0) § C @]+ C (@)

and, following the convention that q§ = 0, agent 2’s share can therefore be ex-
pressed as

X
nijk+1
1

£ e [ ¢o
X2(C;q) = Ca”™d)iC a;:1"™¢

k=

2We use the following notation for vectorial comparissons. q 5 g’ means that q; - q? for all
i:q - q'means that g; - q(iJ for all i, and gj < q; for some j and, finaly q < ' means that g; < q(iJ
for all i.
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We now assume the following induction hypothesis: For all agent i = 1;:::;h j
1,
X
Xi(C;q) =
k=1

e i C g

nik+1l O °0) i Okiz "0

Let us argue what the share of agent h should be. Note that, by Axiom 2,
Xn(C;0) = Xn(C;a5 ™ q). Hence, by Axiom 1, Xj (C;gp™0) = Xn (C;a5 ™)
for all j _ h. Since G(a5 ™~ 0) = (ng h) Xn (C; 5 Nax+  iop Xi (C5 07 ™ 0). So,
Xn (Ciar ™M) = n—fh C@”™d)i i, Xi(C;ga™0q) . Hence, by the induction
hypothesis, agent h’s share has to satisfy

. #
XX

¢o

1 £ i
N N\ — e N - e Nn - e /\
Xn (G057~ 0) = =y C @ q)'i<hk:1—”ik+1 C@"™0iC a7

Henceforth,

¢o

£ i
Xh(C;q) = C@”™a)iC a1

ey N k+1
which is the expression of the multi-commodity serial cost sharing rule given in
Definition 3.1 B

4. Strategic Behavior and the Multi-Commodity Serial Rule

The previous section has shown that, based on the agents’ production levels, the
share of their cost, in accordance with the multi-commodity serial rule, satisfies
some nice properties, with regard to the equity aspect. It tells us nothing, however,
about how the agents select their own production levels. In this section, we shall
do a game-theoretical study of the agents’ production decisions. Let us imagine
that each agent decides its own output level, and let us assume that the total
cost is shared in accompliance with the multi-commodity serial rule, and this is
unanimously accepted by all the agents. The question that arises is: Is it possible
to know the production level that each will have? Or, more precisely, is there
a theoretical game analysis of agents’ behavior that could provide us with an
accurate prediction of the agents’ individual choices? This section will provide
positive answers to both of these questions.

We shall now describe the mechanism that the agents face. As assumed in Sec-
tion 2, there is a set N of firms which produce n different goods and face a cost

14



function C in C. Each agent has preferences defined on R2. A bundle for agent
I, (0i; Xj) is interpreted as the situation in which firm i produces ¢; and has to
assume a cost of Xj units. Agent i’s preferences are assumed to be non-decreasing
in @j, non-increasing in Xj, nowhere locally satiated, continuous, convex and rep-
resentable by utility functions. We shall denote the set of preference orderings
we have just defined by U. We shall use, throughout, a utility representation
Ui (0i; Xi) instead of the cumbersome binary relation notation. Finally, we shall
introduce some additional assumptions relating to the cost function and to the
agents’ preferences:

Assumption 1. C is a smooth and strictly convex function.

Assumption 2. C satis..es cross-monotonicity, i.e., for each ¢ 2 R!,,, and any
two agents i and j in N,
C . o
g_q (@) is increassing in g; (4.1)
i
Assumption 3. The utility function is bounded: For each agent i, there exists
a production level, say ¢ such that

Ui (@ Ci () < U; (0;0)

We must comment, here, on our assumptions. Convexity is also assumed in
Moulin and Shenker (1992) serial, and it guarantees the existence of a best-reply
correspondence for each agent. Smoothness is a technical assumption, which is
adopted to simplify the proofs presented in this section. Remark 1 in the Ap-
pendix 1 provides arguments on how to proceed with these proofs in non-smooth
environments. Assumption 2 only imposes that each agent’s marginal cost must
increase when the another’s demand increases. Note that Assumption 2 is satis-
fied by polynomial cost functions satisfying monotonicity and convexity. Finally,
with regard to Assumption 3, we must note that it is not a strong assumption. To
be more specific, it is only satisfied when the cost function is not upper-bounded,
(i.e., for each agent i, limg v 1 Ci(q) = ).

We shall now study the agents’ behavior when they are faced with the multi-
commodity serial cost-sharing mechanism, and individual strategies are based
on their own demands. In other words, given N, the set of agents with util-
ity functions U; in U, and a fixed cost function C in C we define the game

15



agent’s strategy space is therefore R.. Finally, given a vector of agents’ strategies,
g, each agent i pays X{"* (C;q) and obtains an utility level of U; (gi; X{"* (C; q)).

Moulin and Shenker (1992), analyze the case of homogeneous goods and show
the existence of cost sharing mechanisms, inducing dominance solvable game
forms. They define a cost-sharing rule, which they call a serial rule, and which
coincides with the multi-commodity serial rule when goods are homogeneous. Our
next result extends this same idea to the case of heterogeneous goods.

Theorem 4.1. Let C be a cost function in C, and let us assume that each agent’s

is dominance solvable.?

Before providing a formal proof of Theorem 4.1, we shall provide two lem-
mas that are essential to our argument for the construction of a sophisticated

Lemma 4.2. (Moulin and Shenker (1992))
Let h; () and h, (,) be two increasing and strictly convex functions, form R
into itself, and which coincide up to .,
hi(,))=hy(,) forall ,,0 -, - .o.

5

For every utility function U; in U, the (unique) maximizers of U; (_;h; (.)) on
R+, denoted by _;j, j = 1;2; are on the same side of _o,

>1>>OO>2>>O’and>1:>00>2:>0

Before enunciating the next lemma, let us introduce another notation. Let 1 be
an agent, S a set of agents, ; L S )L Nnfig, and let & be a production level. We
shall now construct the function G : R+ ¥ R which selects, for any production
level of Agent 1, say @i, a vector whose j-th component is ¢}, the j-th component
of g, if J does not belong to S, and the minimum between & and ¢j if j 2 S.

3Dominance Solvability was first introduced by Moulin (1979). This equilibrium concept
is a special case of sophisticated equilibria, introduced by Farquharson (1969). The idea of
dominance solvability for a game is that the Nash equilibrium outcome is unique under iter-
ated elimination of dominated strategies. The reader is referred to Moulin (1979) for a formal
definition.
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Lemma 4.3. Let C be a cost function in C that satis..es Assumption 1. Then,
for each set of agents S, ; i S 1 Nnfig, and production level &, the function f
de..ned by T (gi) = X" (C; G (q;)) is a continuous and strictly convex function
on g;.

Note that continuity of the multi-commodity serial rule comes from the con-
tinuity of the cost function and the expression 3.1. Strict convexity of ¥ comes
from the strict convexity of C. A formal proof of this strict convexity is provided
in Appendix 1.

We can now present a formal proof of Theorem 4.1. But let us first introduce
the following notation. Let ¢; 2 R. We shall denote by g% a vector whose i-th
component is (j and is infinity for all the others.

Proof of Theorem 4.1.

Throughout the proof, C will be a strictly convex function in C, and utility

functions (Uq;:::;Ui;::0;Up) in UM, We first define, inductively, an outcome
(@: %), 1 2 N, and we show that ¢ = (G;:::;6) is a Nash Equilibrium for the
game j (C;Ug;: i Ui 00 Un). We then show that there is only one outcome left

after the successive elimination of strictly dominated strategies in that game.
Let g;; be agent i’s agreement demand, namely the unique solution to

max Us (i; %™ (C; a1) (4.2)

Let us choose the agent 1 with the lowiest Ci §4i1), whom we shall denote by %;.
We then set ¢, = @, and &, = X/ 'C;d% , and solve (for all agents except
Y1 ), the program i i ¢
max Ui ai; X" C; a7 ~of (4.3)

Since the two functions X{" (C;qf) and X{"* IC; (1‘121 N qie¢ coincide up to 6§,
and are strictly convex with respect to (j, we can apply Lemma 4.2. We therefore
observe that the unique solution, namely @;, , cannot be smaller than g;.

We now choose an agent 1 in N n¥%; whose solution to Program (4.3) has the
lowest Cj (05,) and we denote thisI agent by %g. We set 4, as the corresponding
solution to (4.3) and R, = X2 "C; ¢ N6, .

To complete the inductive argument, let us assume that we have constructed

i . . 5
the sequence §y,; %y, up to i = k. We now compute, for all i in Nn  %; , the
i=1

17



solution Gigkrny O the program
A A A ! L
max Ui gi X{™* C; 4 "o (4.4)
j=1
Jeet 1 be an agent whose solution to Program (4.4), G;. 1y, has the lowest
Ci qie@ +1) »~and let us denote this agent by Y+1. Observe that C, I(ﬂik

e . .
Cypry ., - This follows from Lemrga 43.’2. We take @y, _as the solution to

1 — ymcs . k 1 A
(4.4) for agent Ya+q and Ry, =X C; j=1 @%; Vs -

us now select a player I and consider the two functions
3 3 - -

mcs Vv 1 e © . it @
3 3 - -
V
ho(Li) = X™ C @t "L

Note that these two functions coincide at [0;6;]. Furthermore §; maximizes
Ui (Li; b1 (Li)) on R+. Thus Lemma 4.2 implies that € also maximizes U; (_i; h2 (. ))
on R4, which is the Nash equilibrium property we require.

We shall now show that ¢ is the only outcome that is left after the successive
elimination of strictly dominated strategies. It is now sufficient to construct, for
each agent i, a decreasing sequence of closed intervals l;o of vanishing length:

£ o
Iio = [aio; bio] T[ a‘i(°+l); bi(°+l) = Ii(°+l)

such that every strategy in Ry n Iy is strictly dominated in the initial game
i (C;Uq;:::5Ui; 101, Up) and where a strategy in ljo n Ii(°+l) is strictly dominated
when each agent’s strategy in that game is restricted to ljo.

Since the agents’ preferences are convex, and C is strictly convex, it holds that
for each agent there is only one production level, &, > 0, such that U; (&;; Ci (&%)) =
Ui (0;0). Let us define l;; = [a4; bjo] = [O; &ip)-

Clearly, any strategy Qi for agent i that is greater than €, is dominated by
her strategy q; = 0. This is because U; (0i; Ci (0F)) must be decreasing in &,
and, since C satisfies cross-monotonicity, Ci (q7) - X{"* (C; &) for any ¢ such that

& = G-

18



The sequence ;o is now defined inductively as follows:
o1y and bi(0+1) are the lowest and the greatest solutions, respectively, to the
equation 3 3 3 - -

. mcs . 1 N\ ae —
q-ll)gi | 3 j&ga q:, — -

= MU X gt A

(4.5)

o
Observe that if every other agent j is using a strategyin ghe interval ajo;bjo |

a1 e
jeidjs N0 and

then agent I’s share of the total cost is between X" C;
X" C; jei bjl ~ g7 . Therefore her strategy g0 which solves the right-hand
side of (4.5), strictly dominates any strategy below ;.. y or above b, 4y. One
can easily observe, by induction, that a;o is non-decreasing in ©, that bjo is non-
increasing in ©, and that 8 - Qjo - Djo.

Let aj (bj) denote the limit of a0 (bjo respect.), as © tends to infinity. By
continuity of the utilities and of XM, Property (4.5) is maintained at the limit.

Hence, for all i, the followmg holds for & =a or b.
3 3 -

. mcs -V 1 ANn@age —
Ui @i i jesdt N =

4.6
:rnq?_XUi qi;Xim"s C; bl Aq? ( )

J&i "]

We shall now verify that @ = b. Let us first choose an agent. Wlt@ one of) the
lowest value C; (af), whom we shall denote by ¥%;. Since Cy, a%l - Ci(a) -
Ci (b) for all i, the two functions

3 3V - -
— mcs . 1 AN €
hl (: 1/41) - xl/Al C’ 1220 a‘j s
3 3 - -
h ( ) = X/mes C: Vv bl N €
2\sYn - Y1 ' j&%l j Y
coincide on [0; ay,]. Specifically:
A A 1 | A A | |
PaN PaN
mcs . — mcs . 1 A L€ — mcs . 1 A L€
Xy o (Ca)=X,” G a; ay, =Xy~ C; b; ay,,
J&Y J&Y

Hence, from (4.6), a, maximizes U, (,%;h2(,%)) on R+. By Lemma 4.2,
ay, %s also the @@ly maxllrmzer of Ug (Lya;h1(Ly,)) as well. From (4.6) again
Uy, a%l,hl ay, =Uy by, hy(by) , hence a,, =h,, , as desired.
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The proof of a; = b; follows from an induction argument. ket there be an 1 such

that 3y = by, for all j such that C; 'af < Cj (&). Then X[™ C; = g ab ~ °

X" C; jei bjl N7 for all | in [0;a;]. The above argument can be repli-
cated to show that aj = b;. B

5. Conclusions

In this paper we have studied the problem of how the cost of recycling the residuals
generated by several firms should be assigned. We have examined the problem
from both, an axiomatic approach and a game theoretical approach.

The first question that we dealt with is how heterogeneous goods should be
compared. Our proposal is the adoption of the cost function as the key to the
comparison of different production levels. The main justification for this is the
very nature of the problem: Since we have to share production costs, the particular
functional properties of the cost function cannot be forgotten when comparing
production levels. In keeping with this concept, we have proposed a cost-sharing
rule that reflects the general idea of considering equivalent production levels that
are associated to the same production cost.

We adapted the underlying idea of two classical properties, relative to equity
in sharing costs, to the case in which comparisons are cost-dependent (in the
sense that we explained above), and formulated the notions of Cost-Based Equal
Treatment and the Serial Principle. Our study of such properties has shown that
there is only one accurate method of sharing the cost of recycling residuals. We
call this model the multi-commodity serial rule.

Finally, we examined the agents’ behavior when each firm selects its own
production level and knows that the total cost will be shared in accordance with
the multi-commodity serial rule. We find that there is only one production level
supported by an equilibrium.

6. Appendix 1

Axiom 2 introduced the notation of g as the production vector in which firm
I considers that all the other firms produce at the same level as it does. We
now show that, under Assumption 1, the function that selects, for each (j, the
production level for firm 1, the vector qf is differentiable.
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Lemma 6.1. Let C be a smooth function in C, and let E : R, ¥ R" be such
that for any ® _ 0, E; (®) = ®, and C; (E (®)) = C; (E (®)), for each j. Then,
each E; is dicerentiable in R

Proof. Let us now construct the auxiliary function F : R} ¥ R, defined by
F@ =Ci() i Cj(q). Note that F (q) = 0 if, and only if, g = E; (¢;). Fur-
thermore, since C is strictly increasing and differentiable, we have that, for any
production level ¢, and any firm h,

@c (a)

>0
@agn

The implicit function F (q) = 0 is therefore differentiable and so we get

eF (@)
@gn

&0

for any q and h. We can therefore apply the Theorem of the implicit function at
the surface F (q) = 0. By observing that F (q) = 0 if, and only if, g; = E;j (G;),
the result follows. B

Lemma 6.2. Let § 2 R7, and let S be a set of ..rms, ; 1 S % N, such that
i 2 S. Consider now, the function E : R, ¥ R" be such that for any ® _ 0,
E; (®) = E; (®), for each j in NnS, and Ep, (®) = &, for each h 2 S. Then, the
function A: R, ¥ R such that A(®) = C E (®) is convex for any smooth and
strictly convex function C in C.

Proof. We shall show that A is always locally convex. This fact guarantees the
convexity of such a function.

First, note that by Lemma 6.1, Ej is differentiable for each j in S. This implies
that, for any ®,
dE; (®),

d®

for every | sufficiently small, and t 2 |® j y; ® + p[. Furthermore, since C is strict
convex, we have that, for each t and ®,

Ei®+1) i B (®) %

3 - 3 -

A@®+t) jA® = C E@®+t) jC E®) >
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L

> @C E® =

> e EBETDiE®) ¥
J]

J2NnS 3 ~

-~

, JCEO® w@) _dke
& T Td ' de
j2Nns 0g;

Function A is, therefore, a local convex function for all ®, which means that it
is convex. H

Lemma 6.3. Let f; and T, be two strictly increasing, dicerentiable and strictly
convex functions applying R+ in R. Let a be such that f;(a) = f,(a) and f,(x) <
T1(x) for each x < a. Then, the function f : R+ ¥ R de..ned by
” fi(x) if
_ 1(x) ifx - a
T= £ ifx. a

is strictly convex.

Proof. We should first note that, since f,(X) < f;(X) for each X < a, the function
T, § T, must be non-increasing in ®, hence:

af; (a) i df; (a)‘

dx dx (6.1)

Let us now construct the function
%)

6 (X) = f1(x) ifx - a

fi(@) + B9(x ja) ifx_a

Note that such a function is convex, and strictly convex for X < a. Moreover,
since T, is strictly convex, we have that

df2(a)

f2(x) . f2(a) + X

(x1ia)
and, for X > a, and by considering Expression (6:1), we have that

dfi(a)
dx

f,(x) . fo(a) + Xia)=0().
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Function T can therefore be expressed by
T (x) = maxfg; (x) ; f2 (X)g

which is convex by the convexity of g; and f,. Strict convexity comes from the
fact that this property is satisfied by g; for X < a and T, for values of X that are
greater than a. l
We can now provide a formal proof of Lemma 4.3.
Proof of Lemma 4.3.
Let ¢ 2 R} be a production vector, and let S be a set of firms, ; 1 S %2 N,
such that i 2 S. Consider now, the function f : R+ ¥ R defined by
A A ! '
N\
f () = X" C; TR (6.2)
i2s
We shall show that f is strictly convex for any set S. We shall proceed by induction
on the cardinality of S.
Let us first assume that S is the empty set. Then, Expression (6:2) can be
rewritten as

f @) ==C@).

Now, by applying Lemma 6.2, we have that T is strictly convex in (.
Let us now suppose that S contains only one agent. Without loss of generality,
we shall assume that S = f1g. In such a case, T follows the expression

f(q) = * LC (o) if & . of
' a[C @~ o) 1 C@)]+5C (&) if 8 <of

We must note, here, that f is continuous.

Let 1 (Gr) = £C (¢2), and F> (4:) = =57 [C (@ ~ ) i C (@)] i £C (69). Since
C is strictly increasing, we have T, (0i) < f1(0i) for each g; such that 4 < qf;
Moreover, f,(qi) = f1(0i) when i = 4f. Since C is strictly convex, the two
functions f; and T, are also strictly convex. Then, Lemma 6.3 confirms that f is
strictly convex.

To conclude our proof, we shall assume that f is strictly convex for any set S
with a cardinal K < n j 1. We will show that it is also strictly convex for S having

and § _ @ for any h in Snflg. By the induction hypothesis, the function
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3 3 - -
V
K () = X" ¢ Ezz J-l N7 is strictly convex in gj. We shall define the
function f, by
" AA ! ! AA ! 14

1
L@="p © & Ngic & g AT E@D),
Jj2s j=2

where E;j (&) is the i-th component of @f, i.e., the value & for which C; (§]) =
Ci (&) holds. Combining the strict convexity of cost function C and the results
established in Lemma 6.2, we confirm the strict convexity of function f,.

Given the demands of the agents in Snflg, the function f can be expressed

by 1

f (q) — fk (ql) if q'f > qle
' fo(q) ifdf<qf’

Note that f is continuous, f, (¢;) < X (q;) for each g; such that § < g¢; moreover,

T2 (0i) = 1 (Qi) when ¢f = &;. By Lemma 6.3 we can therefore conclude that T is

strictly convex. B

Remark 1. Lemma 4.3 assumes the smoothness of the cost functions. We should
point out, however, that such an assumption is only introduced to simplify the
proofs that we have presented here, but is not indispensable for the formal proofs.
In fact, Lebesgue’s Theorem guarantees that the functions we have analyzed
throughout this appendix are dicerentiable almost everywhere. Henceforth, given
a point in which some function is not dicerentiable, we can analyze the local be-
havior of such a function at the referred point, relative to the subgradients of the
function at that point. The question is: Which subgradient should be chosen? If
we simply consider the limit of the gradients for any succession of points, in the
function domain, as being increasing and converging to the point in question. The
reader can easily verify that this argument yields the desired results. Obviously,
if we do not assume dicerentiability, we lose the simplicity of the proofs. We can
only hope that the reader will share our opinion that what is gained in simplicity
out-weighs any possible loss from the introduction of this additional assumption.
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