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SHAPLEY-SHUBIK AND BANZHAF INDICES REVISITED

Annick Laruelle and Federico Valenciano

A B S T R A C T

We provide a new axiomatization of the Shapley-Shubik and the Banzhaf power indices

in the domain of simple superadditive games by means of transparent axioms. Only

anonymity is shared with the former characterizations in the literature. The rest of the

axioms are substituted by more transparent ones in terms of power in collective decision-

making procedures. In particular, a clear restatement and a compelling alternative for the

transfer axiom are proposed. Only one axiom di®erentiates the characterization of either

index, and these di®erentiating axioms provide a new point of comparison. In a ¯rst step

both indices are characterized up to a zero and a unit of scale. Then both indices are

singled out by simple normalizing axioms.

Key words: Power indices, voting power, collective decision-making, simple games,

axiomatization.
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1 Introduction

Shapley-Shubik (1954) proposed the specialization of the Shapley (1953) value to assess the

a priori measure of power of each agent in a collective decision-making procedure modelled

as a simple game. Assuming their interpretation of power as the chance to be critical for the

passage of a decision, Banzhaf (1965, 1966) criticized the weights that the Shapley-Shubik

index gives to coalitions of di®erent sizes and proposed his own index. These indices had

no axiomatic foundation till Dubey (1975) and Dubey and Shapley (1979) axiomatically

characterized them on the class of simple games. Since then, several axiomatizations of

both indices have been proposed (Owen (1978, 1982), Bolger (1982), Lehrer (1988), Haller

(1994), Feltkamp (1995), Nowak (1997), Albizuri and Ruiz (1999) and Khmelnitskaya

(1999)). The main motivations of these papers are either the mathematical challenge of

¯nding a self-contained characterization in subclasses of TU-games (like simple games or

simple superadditive games) or the lack of intuitive appeal of some axioms. In the process

new indices have even been proposed (Deegan and Packel (1978), Johnston (1978), Holler

and Packel (1983)). However it can be said that so far no power index is characterized

by means of an intuitively compelling set of axioms (Felsenthal and Machover (1995)).

Moreover, the axiomatic approach by itself is insu±cient to settle the question of the

choice of a power index (Laruelle (1999)).

The aim of this paper is to provide an axiomatization of the Shapley-Shubik and the

Banzhaf indices as measures of power in collective decision-making procedures. Conse-

quently our domain is the class of simple superadditive games. Indeed, the basic informa-

tion specifying a collective decision-making procedure, that is, which coalitions can make

a decision and which cannot, can be represented by a (0-1)-game, while monotonicity and

superadditivity are natural requirements that guarantee some consistency of the proce-

dure. With this aim in mind, we look for a set of clear and transparent axioms, that is,

assumptions that, whatever their plausibility, have a clear meaning and make sense one by

one, independently of the others. In particular, no importance is attached to the one/zero

values of the characteristic function of a simple game describing a decision rule beyond

the yes/no information they embody.

Our starting point and basic reference are the axiomatizations proposed by Dubey

(1975) and Dubey and Shapley (1979), who characterize both indices by a set of four

axioms. Three of them ("anonymity", "null player" and "transfer") are common to both

indices, while the fourth one ("e±ciency" and the below-called "Banzhaf total power")

distinguishes both indices. If mathematically very elegant, these characterizations are

not completely satisfactory in the context of simple superadditive games as models of

decision-making procedures. Indeed, the meaning of the "transfer" axiom is a bit obscure.
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Similarly the di®erentiating axioms for the Shapley-Shubik index and the Banzhaf index

lack of appeal in the context of collective decision-making procedures. On the one hand, as

often criticized, the "Banzhaf total power" axiom has some unavoidable ad hoc °avor: the

index it helps to characterize is partially within it. On the other hand, the corresponding

axiom for the Shapley-Shubik index, "e±ciency", obvious in other contexts and accepted in

this one by sheer habit, is no more compelling in this context (see Laruelle and Valenciano

(1999)).

In our system only "anonymity", which has a clear and compelling meaning, is pre-

served untouched. The rest of the axioms are substituted by more transparent ones. In

particular our axioms deliberately exclude in a ¯rst step any normalizing ingredient. This

allows us to characterize either index up to the choice of a zero and a unit of scale. The

traditional "null player" axiom is replaced by a more natural and clear assumption about

null players: just that this is the worst role any player can play in a game. "Transfer" is

reformulated in an equivalent but more transparent version stating that the e®ect on the

power of deleting a minimal winning coalition from the set of winning ones is the same in

any game in which this coalition is minimal winning. This kind of "modi¯ed game", the

one resulting from a game by dropping just one minimal winning coalition, is crucial in

our axiomatic system. Then we show that transfer can be replaced by a simpler and more

compelling axiom just stating that the e®ect of dropping one minimal winning coalition

is the same for all players inside (resp., outside) this coalition. Our di®erentiating axioms

are two assumptions concerning again the e®ect of dropping just one minimal winning

coalition in a game. Our substitute for "e±ciency" states that when a minimal winning

coalition is dropped, the total loss in terms of power of the players within this coalition is

equal to the total gain of the members of the complementary coalition, while our substitute

for "Banzhaf total power" states the same in terms of average (instead of total) loss and

gain. By means of these axioms the Shapley-Shubik and Banzhaf indices are characterized

up to an additive and a positive multiplicative constants. In other words, up to the choice

of a "zero" and a "unit of scale" for the measure of power. Stripping our axioms in this

way of any normalizing component helps to clarify the role and meaning of each of them.

We also discuss the absolute/relative issue and show how adding two purely normalizing

axioms, the Shapley-Shubik index and the Banzhaf index are singled out. Finally, we deal

with the extension of the indices to make comparison of power in games with di®erent

numbers of players.

The paper is organized as follows: in Section 2 the basic game theoretical background

together with Dubey's, and Dubey and Shapley's characterizations are brie°y reviewed.

In Section 3 we present our axioms and in Section 4 their relationships with the traditional
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ones are established. Section 5 contains the main result of this paper: the characterization

of both power indices up to a multiplicative and an additive constants. In Section 6 the

absolute/relative issue is discussed. Then by adding two normalizing axioms we single

out both indices. Section 7 deals with the extension of the indices to compare the power

of players in situations involving di®erent numbers of players. Finally, Section 8 closes

this paper with some remarks emphasizing the main conclusions of this work and a brief

discussion on some lines for further research.

2 Background

We recall here the necessary de¯nitions to model a collective decision-making procedure.

A cooperative transferable utility (TU) game is a pair (N; v), where N = f1; :::; ng denotes
the set of players and v a function which assigns a real number to each non-empty subset

or coalition of N , and v(;) = 0. The number of players in a coalition S is denoted s. A
(0-1)-game is a game in which the function v only takes the values 0 and 1. It is a simple

game if it is not identically 0; and obeys the condition of monotonicity: v(T ) ¸ v(S)

whenever T ¶ S. In these games a coalition S is winning if v(S) = 1, and is losing if

v(S) = 0. A winning coalition is minimal if it does not contain any other. A player i is

said to be a swinger in a coalition S if S is winning and S nfig is not. A player i is said to
be a null player if she or he is not a swinger in any coalition, that is, if v(S) = v(S n fig)
for all S. In a simple game v; W (v) (resp., M(v)) will denote the set of winning (resp.,

minimal winning) coalitions, and w(v) (resp., m(v)) its number. Any of these sets, W (v)

or M(v), fully characterizes the game v. For any coalition S µ N , the S-unanimity game,
denoted (N; uS), is the simple game

uS(T ) =

8<: 1 if T ¶ S
0 otherwise.

A TU game is superadditive if v(S [ T ) ¸ v(S) + v(T ) whenever S \ T = ;. In
the context of simple games, the superadditivity property is equivalent to the condition:

v(S) + v(N n S) · 1 for all S ½ N . Let SGn denote the set of all simple superadditive
n-person games. When N is clear from the context we refer to game (N; v) as game v.

As a collective decision-making procedure is speci¯ed by the voting body and the

decision rules, it can be modelled by a (0-1)-game whose winning coalitions are those

that can make a decision without the vote of the remaining players. We assume that the

decision rules are consistent in the following sense. The unanimity of the players can make

a decision. Any subgroup of a group of voters that cannot make a decision cannot either.

Two nonintersecting groups of voters cannot make decision at the same time. Therefore,
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under these conditions, collective decision-making procedures can be modelled as simple

superadditive games.

A power index is a function © : SGn ! Rn that associates with each simple superaddi-

tive game v a vector or power pro¯le ©(v) whose ith component is interpreted as a measure

of the in°uence that player i can exert on the outcome. To evaluate the distribution of

power among the players the two best known power indices are the Shapley-Shubik (1954)

index and the Banzhaf (1965) index. For a game v, the Shapley-Shubik index is given by

Shi(v) =
X
SµN
(S3i)

(s¡ 1)!(n¡ s)!
n!

(v(S)¡ v(S n fig)), i = 1; :::; n. (1)

The Banzhaf index is given by

Bzi(v) =
1

2n¡1
X
SµN
(S3i)

(v(S)¡ v(S n fig)), i = 1; :::; n. (2)

The Shapley-Shubik index was ¯rst axiomatized by Dubey (1975). Dubey and Shapley

(1979) proposed the ¯rst axiomatization of the Banzhaf index. Theorem 1 below contains

their results for the domain of simple superadditive games.

Anonymity (An): For all v 2 SGn; any permutation ¼ of N , and any i 2 N ,

©i(¼v) = ©¼(i)(v);

where (¼v)(S) := v(¼(S)).

Null Player (NP): For any v 2 SGn and any i 2 N , if i is a null player in game v;
then

©i(v) = 0:

Transfer (T): For any v; w 2 SGn such that v _w 2 SGn;

©(v) + ©(w) = ©(v ^w) + ©(v _w);

where (v ^w)(S) := minfv(S); w(S)g and (v _w)(S) := maxfv(S); w(S)g.

Shapley Total Power or "E±ciency" (ShTP): For all v 2 SGn,
nX
i=1

©i(v) = 1:
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Banzhaf Total Power (BzTP): For all v 2 SGn,
nX
i=1

©i(v) =
1

2n¡1

nX
i=1

X
SµN
S3 i

(v(S)¡ v(S n fig)):

Theorem 1 Let © : SGn ! Rn; then

(i) The only © that satis¯es anonymity (An), null player (NP), transfer (T) and

Shapley total power (ShTP) is the Shapley-Shubik index.

(ii) The only © that satis¯es anonymity (An), null player (NP), transfer (T) and

Banzhaf total power (BzTP) is the Banzhaf index.

3 More transparent axioms

Now we revise Dubey and Shapley's axioms. That is, their axioms are discussed one by

one, and substitutes for almost all of them are proposed: only anonymity (An) will be

kept unchanged. The meaning of this axiom is clear and compelling: the power of each

player in a simple superadditive game does not depend on how the players are labelled.

With respect to the null player (NP) axiom it should be noted that, despite its apparent

plausibility, this axiom isolated just states that the power of any null player in any game

is the same. Postulating that this power is zero means more than just this only once one

adds something else. For instance, that the power of any player in any game is greater

or equal than zero. But this is none of Dubey and Shapley's axioms. In fact, in their

system NP only yields its full meaning together with the other three axioms. So, we will

use instead the following axiom, that we call "null player*" in order to avoid a confusing

and unnecessary multiplicity of names1:

Null Player* (NP*): For all v 2 SGn, and all i 2 N;

i is a null player in v, for all w 2 SGn; ©i(v) · ©i(w):

The axiom is clear and compelling, and makes full sense by itself without requiring

the company of any other. It states that being a null player is the worst role any player

can expect to play, the role that yields a minimal measure of power. Mind the equivalence

postulated in the axiom: it excludes trivial °at measures of power, so, it really says that

being a null player is strictly the worst.

The transfer (T) axiom plays in the context of simple games the same role that linearity

plays for general transferable utility games. It has often been considered opaque (Roth

1We will do the same with our reformulation of transfer, and its abreviation.
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(1977), Stra±n (1982)), and it is particularly obscure in the context of collective decision-

making (Felsenthal and Machover (1995)). We will use an equivalent but more transparent

formulation of this condition. For it and for our other axioms, we need the following

de¯nition that plays a central role in our axiomatization.

De¯nition 1 For any game v 2 SGn such that v 6= uN , and any S 2M(v), the modi¯ed
game v¤S is the game such that W (v

¤
S) =W (v) n fSg.

Thus the modi¯ed game v¤S results from v by deleting just one single coalition S from

the list of winning ones2. Avoiding starting from the unanimity game and dropping a

minimal winning coalition guarantee that v¤S 2 SGn. It makes sense for the measurement
of power to evaluate the e®ects of modifying a decision-making rule in such a way that a

coalition that previously could make a decision cannot any more.

Now transfer can be reformulated like this:

Transfer* (T*): For any v; w 2 SGn; and all S 2M(v) \M(w) (S 6= N) :

©i(v)¡©i(v¤S) = ©i(w)¡©i(w¤S) (for all i 2 N):

This axiom postulates that the e®ect (gain or loss) on any player's power of eliminating

a single minimal winning coalition from the set of winning ones is the same in any game in

which this coalition is minimal winning. If equivalent to transfer as it will be proved later3,

it seems less opaque. Note that this condition requires, for any S, a relation involving

all games with S as a minimal winning coalition and their modi¯ed forms. Instead we

propose a condition that involves each game and its modi¯ed form. As we will show the

following condition can replace transfer in our characterization.

Symmetric Gain-Loss (SymGL): For all v 2 SGn, all S 2 M(v) (S 6= N), and all

i; j 2 S (resp., i; j 2 N n S),

©i(v)¡©i(v¤S) = ©j(v)¡©j(v¤S):

This assumption states that the e®ect of eliminating a minimal winning coalition is

the same for any two players belonging to it and for any two players outside it. This

axiom is a form of symmetry postulated for each pair v and v¤S . It is worth noting that

this condition is satis¯ed by any semivalue (Weber (1979, 1988), see also Einy (1987)) and

even by any weak semivalue (Calvo and Santos (1999)) in a weaker form.

2This is the "deletion" used by Weber (1988).
3In fact Dubey and Shapley observe that their axiom can be restated in terms of the e®ect of "changing

the status of a single coalition from minimal winning to maximal losing".

8



Now let us consider the di®erentiating axioms in Dubey and Shapley's axiomatization.

What we have called "Shapley total power" is in fact the usual "e±ciency" in the domain

of TU games restricted to simple superadditive games. This condition is so compelling in

the context of TU games that it is often uncritically accepted as natural in any subclass

of TU games. But when simple superadditive games are interpreted as models of collec-

tive decision-making procedures and value as a measure of power, this condition lacks a

compelling interpretation. In this case the 1/0 values of the characteristic function is just

a means to presenting the list of winning and losing coalitions. Thus, a priori, there is no

reason to assume that there is any "cake" of a unit of power to distribute among the play-

ers. Moreover, the situation is similar to that of NP commented above: this "e±ciency"

isolated just states that the total aggregated power of the players is the same in any game.

If the lack of a compelling story for e±ciency in this context, by sheer habit, may

be not perceived at ¯rst sight, the corresponding axiom for the Banzhaf index, that we

have called "Banzhaf total power", raises suspicion at ¯rst sight: the solution it helps to

axiomatize is partly within the axiom.

We will use instead the following two axioms:

Constant Total Gain-Loss Balance (CTGLB): For all v 2 SGn and all S 2 M(v)
(S 6= N), X

i2S
(©i(v)¡©i(v¤S)) =

X
j2NnS

(©j(v
¤
S)¡©j(v)):

Constant Average Gain-Loss Balance (CAGLB): For all v 2 SGn and all S 2
M(v) (S 6= N),

1

s

X
i2S
(©i(v)¡©i(v¤S)) =

1

n¡ s
X

j2NnS
(©j(v

¤
S)¡©j(v)):

Both axioms again concern the e®ect of dropping a minimal winning coalition from

the list of winning ones. Constant total (resp., average) gain-loss balance postulates that

the total (resp., average) loss of the players in the deleted coalition equals the total (resp.,

average) gain of the players outside it. It is remarkable how close these two axioms are

in their form and requirement: just one word -total/average- separates them. As to their

appeal it seems quite balanced. In fact both conditions are very particular cases of the

following principle involving the average gain and loss and satis¯ed by the semivalues:

¸-Average Gain-Loss Balance: For all v 2 SGn and all S 2M(v) (S 6= N),

¸s
1

s

X
i2S
(©i(v)¡©i(v¤S)) = (1¡ ¸s)

1

n¡ s
X

j2NnS
(©j(v

¤
S)¡©j(v));

where ¸ = (¸s)s=1;2::;n¡1, is a collection of constants ¸s 2 (0; 1):
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It can be shown that each collection ¸ is associated to a particular semivalue. Constant

total gain-loss balance is the particular case ¸s =
s
n ; while constant average is the particular

case ¸s =
1
2 .

These axioms turn out even close to our formulation of transfer (T*) or its substitute

(SymGL). All these axioms postulate something concerning the e®ect of eliminating one

minimal winning coalition on the measurement of power, while the corresponding axioms

in the other existing characterizations do not have anything in common. In Section 5 we

discuss the meaning of this fact.

4 Old and new axioms' relationships

Before proceeding with the main results, we establish some relations between our axioms

and Dubey and Shapley's that will be useful in the proof of the main theorems.

Note that our null player* is neither weaker nor stronger than traditional null player.

The next proposition shows that our substitute together with anonymity implies that all

null player roles are interchangeable or equivalent in the sense of yielding the same measure

of power, the basic meaning of null player as commented before.

Proposition 1 Anonymity (An) together with null player* (NP*) implies that for all

i; j 2 N , and all v;w 2 SGn, if i is a null player in v, and j is a null player in w, then
©i(v) = ©j(w):

Proof. Let i be a null player in a game v, and let w be any other game. Let ¼ be the

permutation on N interchanging i and j, that is,

¼(k) :=

8>>><>>>:
j; if k = i;

i; if k = j;

k otherwise.

Then by NP* and An we have ©i(v) · ©i(¼w) = ©¼(i)(w) = ©j(w), and the conclusion
follows immediately.

For the sake of completeness we prove the equivalence of transfer and our reformulation

of it.

Proposition 2 Transfer (T) and transfer* (T*) are equivalent.
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Proof. ()) Let v; w 2 SGn; and S 2 M(v) \M(w) (S 6= N). Then v¤S ; w¤S 2 SGn and
v = v¤S _ uS and w = w¤S _ uS . Then, by T, we have

©(v) = ©(v¤S _ uS) = ©(v¤S) + ©(uS)¡©(v¤S ^ uS)
©(w) = ©(w¤S _ uS) = ©(w¤S) + ©(uS)¡©(w¤S ^ uS):

Note that v¤S ^ uS = w¤S ^ uS = (uS)¤S , hence T* follows immediately.
(() Conversely, let v; w 2 SGn s. t. v _ w 2 SGn: Note W (v ^ w) = W (v) \W (w)

and W (v _ w) = W (v) [W (w). That is, W (v _ w) nW (w) = W (v) nW (v ^ w): This
means that reaching w from v _ w takes dropping one by one exactly the same winning
coalitions (a minimal one in the current game each time) than reaching v ^w from v. By

T* the e®ect on the index of deleting a minimal wining coalition is the same in any game,

consequently, ©(v _w)¡©(w) = ©(v)¡©(v ^w):

As to our substitute for transfer, that is, symmetric gain-loss, it is independent of

transfer. That is, it does not imply nor is implied by transfer. But the following proposition

and next example show that our condition is weaker than transfer if anonymity is assumed.

Proposition 3 Anonymity (An) together with transfer* (T*) implies symmetric gain-loss

(SymGL).

Proof. First observe that for any game v, any permutation ¼, and any S 2 M(¼v),

it is (¼v)¤S = ¼(v¤¼(S)). This can easily be proved checking that both games have the

same set of winning coalitions. Now let v 2 SGn, S 2 M(v), and i; j 2 S (i 6= j).

Let ¼ be the permutation on N interchanging i and j, as in the proof of Proposition

1. Then ¼(S) = S, so that S 2 M(v) \M(¼v). Then, by T* and An (note that now
(¼v)¤S = ¼(v

¤
¼(S)) = ¼(v

¤
S)), we have

©i(v)¡©i(v¤S) = ©i(¼v)¡©i((¼v)¤S) = ©i(¼v)¡©i(¼(v¤S))
= ©¼(i)(v)¡©¼(i)(v¤S) = ©j(v)¡©j(v¤S):

The proof for i; j 2 N n S is entirely similar.

The following example shows that the converse is not true.

Example: Let © : SG3 ! R3 be the index that associates to each three person game

the vector below (in the other cases just extend © anonymously):

If M(v) = ff1gg then ©(v) = (1; 0; 0);
if M(v) = ff1; 2g ; f1; 3g ; f2; 3gg then ©(v) = (0:8; 0:8; 0:8);
if M(v) = ff1; 2g ; f1; 3gg then ©(v) = (0:9; 0:3; 0:3);
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if M(v) = ff1; 2gg then ©(v) = (0:6; 0:6; 0);
if M(v) = ff1; 2; 3gg then ©(v) = (0:2; 0:2; 0:2):
Then © satis¯es AN and SymGL. But, for each two person coalition, ©i(v)¡©i(v¤S),

depending on the game, takes the values 0:5; 0:3 and 0:4. Thus © does not satisfy T*.

The following proposition shows that "constant total power" would be perfectly justi-

¯ed as an alternative name for constant total gain-loss balance. In other words, this axiom

captures exactly the essential meaning of the Shapley total power or "e±ciency" axiom

commented above: the sum of the power of all the players in any game is the same.

Proposition 4 Constant total gain-loss balance (CTGLB) is equivalent to requiring that

for all v; w 2 SGn, P
i2N

©i(v) =
P
i2N

©i(w):

Proof. First note that CTGLB can be equivalently restated like thisX
i2N

©i(v) =
X
i2N

©i(v
¤
S):

Thus it is implied by the above constant-sum requirement. To see the converse note that for

any game v, by repeatedly applying (:)¤S , that is, by repeatedly deleting minimal winning

coalitions one by one, the N-unanimity game uN is ¯nally reached. So, by repeatedly

applying the former equality, one getsX
i2N

©i(v) =
X
i2N

©i(v
¤
S) = ::: =

X
i2N

©i(u
N ):

Thus constant-sum follows immediately.

Finally, the following lemma, that gives the e®ect of dropping a minimal winning

coalition on both power indices, will be of use in the proof of the main theorem. It shows

that the e®ect depends on the size of the coalition and the number of players for the

Shapley-Shubik index while it only depends on the number of players for the Banzhaf

index.

Lemma 1 The e®ect on a player's power (measured by either index) of dropping one

minimal winning coalition S 6= N in any game v is, respectively, given by

Shi(v)¡ Shi(v¤S) =
8<:

(s¡1)!(n¡s)!
n! if i 2 S;

¡s!(n¡s¡1)!
n! if i 2 N n S;

(3)

Bzi(v)¡Bzi(v¤S) =
8<: 1

2n¡1 if i 2 S;
¡ 1
2n¡1 if i 2 N n S.

(4)

Proof. It easily follows from formulae (1) and (2), observing that for any S 2 M(v)
(S 6= N), the di®erence between v and v¤S is that in v¤S any i 2 S is not a swinger in S
any more, while any i 2 N n S becomes a swinger in S [ fig.
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5 Main characterization

Now, we have the main result in this paper: by replacing in Dubey and Shapley's systems

their axioms by ours, both indices are characterized up to the choice of a zero and a unit

of scale for the measure of power.

Theorem 2 Let © : SGn ! Rn; then

(i) © satis¯es anonymity (An), null player* (NP*), symmetric gain-loss (SymGL) and

constant total gain-loss balance (CTGLB) if and only if it is © = ®Sh+·1, for some ® > 0

and · 2 R, where 1 : = (1; :::; 1) 2 Rn:
(ii) © satis¯es anonymity (An), null player* (NP*), symmetric gain-loss (SymGL)

and constant average gain-loss balance (CAGLB) if and only if it is © = ®Bz + ·1, for

some ® > 0 and · 2 R.

Proof. (i): (() Let © = ®Sh+ ·1, with ® > 0 and · 2 R. Since Sh satis¯es An, NP*
and (Lemma 1) SymGL and CTGLB, it follows easily that so does © = ®Sh+ ·1.

()) Conversely, let © be an index satisfying An, NP*, SymGL and CTGLB. By An,
NP* and Proposition 1, the value of the index for any null player in any game is the same.

Let · denote this number and let ©0 be the index ©0 := ©¡ ·1. It is immediate that ©0
satis¯es all the four axioms and also NP. Denote ® :=

©0i(u
N )

Shi(uN )
= n©0i(uN) (by An this

value does not depend on i, and by NP and NP* it is positive). We will prove by induction

on the number of winning coalitions that for any v 2 SGn, ©0(v) = ®Sh(v):
If w(v) = 1, it means that v = uN , and ©0(uN) = ®Sh(uN) by the choice of ®.

Now assume ©0(w) = ®Sh(w) for any game w with a smaller number of winning

coalitions than v. Two cases are possible.

1st case: m(v) = 1; i.e., v = uS for some S. Then by SymGL and CTGLB,

s(©0i(u
S)¡©0i((uS)¤S)) = (n¡ s)(©0j((uS)¤S)¡©0j(uS)) (8i 2 S; 8j 2 N n S):

Now, for any j 2 N n S, by NP, ©0j(uS) = 0 = ®Shj(u
S), and, by the induction

hypothesis, ©0((uS)¤S) = ®Sh((u
S)¤S): Then, by Lemma 1, for any i 2 S and j 2 N n S;

©0i(u
S) = ®Shi((u

S)¤S) +
n¡ s
s
®Shj((u

S)¤S)

= ®(
1

s
¡ (s¡ 1)!(n¡ s)!

n!
) + ®

n¡ s
s

s!(n¡ s¡ 1)!
n!

= ®
1

s
= ®Shi(u

S):

So, the claim is proved for the case m(v) = 1:

2nd case: m(v) > 1; i. e., there are at least two di®erent minimal winning coalitions

S and T in game v. This means that by dropping ¯rst S, and then T; or the other way

round, the same game is reached:
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v

. &
v¤S v¤T

& .
(v¤S)¤T = (v¤T )¤S

For any game w 2 SGn, any S 2 M(w) (S 6= N) and any i 2 N , denote by ¢S;i(w)
the loss of player i when the minimal winning coalition S is dropped, that is

¢S;i(w) := ©
0
i(w)¡©0i(w¤S):

By SymGL and CTGLB it is

s¢S;i(w) = ¡(n¡ s)¢S;j(w) (8i 2 S; 8j 2 N n S):

On the other hand, by the induction hypothesis, these di®erences are ®-times the ones

given by (3) (Lemma 1) for any game in both paths "below" v. This means that each

time a coalition of size r is dropped in either path (at least beyond the ¯rst step, in which

S or T is dropped), the power of any player within (resp., outside) it decreases (resp.,

increases) in ® (r¡1)!(n¡r)!n! (resp., ®r!(n¡r¡1)!n! ). As the origin v and the end (v¤S)
¤
T = (v

¤
T )
¤
S

are the same, for each player the sum of these di®erences must be the same for both paths.

Let then i 2 S \ T and j 2 T n S (such i and j do exist, for the game v is superadditive).
Then, setting equal the e®ects on i and on j; respectively, through either path we obtain:

¢S;i(v) +¢T;i(v
¤
S) = ¢T;i(v) +¢S;i(v

¤
T );

¢S;j(v) +¢T;j(v
¤
S) = ¢T;j(v) +¢S;j(v

¤
T ):

Now, by SymGL, ¢T;i(v) = ¢T;j(v) and ¢T;i(v
¤
S) = ¢T;j(v

¤
S), then

¢S;i(v)¡¢S;j(v) = ¢S;i(v¤T )¡¢S;j(v¤T );

and by SymGL and CTGLB, ¡s
n¡s¢S;i(v) = ¢S;j(v) and

¡s
n¡s¢S;i(v

¤
T ) = ¢S;j(v

¤
T ). Then,

the former equation yields

¢S;i(v) +
s

n¡ s¢S;i(v) = ¢S;i(v
¤
T ) +

s

n¡ s¢S;i(v
¤
T ):

From which it follows that ¢S;i(v) = ¢S;i(v
¤
T ) = ®

(s¡1)!(n¡s)!
n! . Therefore,

¢S;k(v) =

8<: ® (s¡1)!(n¡s)!n! if k 2 S;
¡® s!(n¡s¡1)!n! if k 2 N n S.
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This, together with Lemma 1 and the fact that by the induction hypothesis ©0(v¤S) =

®Sh(v¤S), entails that ©
0(v) = ®Sh(v), too. Thus, ¯nally, © = ©0 + ·1 = ®Sh+ ·1:

(ii): (() Let © = ®Bz + ·1, with ® > 0 and · 2 R. Bz satis¯es An and NP*.
From Lemma 1 it follows immediately that it satis¯es also SymGL and CAGLB. Then it

is immediate that © = ®Bz + ·1 satis¯es also the four axioms.

()) The proof of the converse is very similar to that of the second part of (i), and
follows the same steps. Let © be an index satisfying An, NP*, SymGL and CAGLB. By

An, NP* and Proposition 1, the value of the index for any null player in any game is the

same. Let · denote this number and let ©0 be the index ©0 := ©¡ ·1. Then ©0 satis¯es
all the four axioms and also NP. Denote ® :=

©0i(u
N )

Bzi(uN )
= 2n¡1©0i(uN) (by An this value

does not depend on i, and by NP and NP* it is positive). Proceeding by induction on the

number of winning coalitions we will prove that for any v 2 SGn, ©0(v) = ®Bz(v):
If w(v) = 1, it means that v = uN , and ©0(uN) = ®Bz(uN) by the choice of ®.

Now assume ©0(w) = ®Bz(w) for any game w with a smaller number of winning

coalitions than v. Again we distinguish two cases.

1st case: m(v) = 1; i. e., v = uS for some S. Then by SymGL and CAGLB,

©0i(u
S)¡©0i((uS)¤S) = ©0j((uS)¤S)¡©0j(uS) (8i 2 S; 8j 2 N n S):

Now, for any j 2 N n S, by NP, ©0j(uS) = 0 = ®Bzj(u
S), and, by the induction

hypothesis, ©0((uS)¤S) = ®Bz((u
S)¤S): Then, by Lemma 1, for any i 2 S and j 2 N n S;

©0i(uS) = ®Bzi((u
S)¤S) + ®Bzj((u

S)¤S)

= ®( 1
2s¡1 ¡ 1

2n¡1 ) + ®
1

2n¡1 = ®
1

2s¡1 = ®Bzi(u
S):

So, the claim is proved for the case m(v) = 1:

2nd case: m(v) > 1; i. e., there are at least two di®erent minimal winning coalitions S

and T in game v. This means that, as in the second part of (i), by dropping S and T in

either order the same game is reached. Now setting ¢S;i(w) := ©
0
i(w)¡©0i(w¤S) as in (i).

By SymGL and CAGLB it is

¢S;i(w) = ¡¢S;j(w) (8i 2 S; 8j 2 N n S):

On the other hand, by the induction hypothesis, these di®erences are now ®-times the

ones given by (4) (see Lemma 1) for any game in both paths "below" v. Thus each time

a coalition of size r is dropped in either path (beyond the ¯rst step, in which S or T is

dropped), the power of any player within (resp., outside) it decreases (resp., increases) in

® 1
2n¡1 . As both the origin and the end are the same, for each player the sum of these

di®erences must be the same for both paths. Let then i 2 S \T and j 2 T nS (such i and
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j do exist, for the game v is superadditive). Then, setting equal the e®ects on i and on j;

respectively, through either path we obtain:

¢S;i(v) +¢T;i(v
¤
S) = ¢T;i(v) +¢S;i(v

¤
T );

¢S;j(v) +¢T;j(v
¤
S) = ¢T;j(v) +¢S;j(v

¤
T ):

Now, by SymGL, ¢T;i(v) = ¢T;j(v) and ¢T;i(v
¤
S) = ¢T;j(v

¤
S), then

¢S;i(v)¡¢S;j(v) = ¢S;i(v¤T )¡¢S;j(v¤T );

and by SymGL and CAGLB, ¡¢S;i(v) = ¢S;j(v) and ¡¢S;i(v¤T ) = ¢S;j(v¤T ). From which
it follows that ¢S;i(v) = ¢S;i(v

¤
T ) = ®

1
2n . Therefore,

¢S;k(v) =

8<: ® 1
2n if k 2 S;
¡® 1

2n if k 2 N n S.

This, together with Lemma 1 and the fact that by the induction hypothesis ©0(v¤S) =

®Bz(v¤S), entails that ©
0(v) = ®Bz(v), too. Thus, ¯nally, © = ©0 + ·1 = ®Bz + ·1:

In view of Proposition 3, we have as an immediate corollary of the previous theorem

the following one, closer to that of Dubey and Shapley, in which their axioms have been

stripped of their normalizing secondary ingredients and their di®erentiating axioms have

been substituted by ours.

Theorem 3 Let © : SGn ! Rn; then

(i) © satis¯es anonymity (An), null player* (NP*), transfer* (T*) and constant total

gain-loss balance (CTGLB) if and only if it is © = ®Sh+ ·1, for some ® > 0 and · 2 R.
(ii) © satis¯es anonymity (An), null player* (NP*), transfer* (T*) and constant av-

erage gain-loss balance (CAGLB) if and only if it is © = ®Bz + ·1, for some ® > 0 and

· 2 R.

Some comments are worth here. First, the proof of the theorem sheds some light on

the crucial role that the modi¯ed game plays in our characterization. Axiomatizing an

index on the ¯nite set SGn requires the support of some structure, and in this case the

most natural and signi¯cant structure is that of a lower semilattice with uN as minimal

element, if SGn is provided with the partial order v · w , W (v) µ W (w). Then an

axiomatization can be naturally grounded one way or another on some kind of inductive

axioms involving this partial order. This can be done implicitly, as in Dubey's transfer,

or explicitly, as in our transfer* and other axioms, using the basic step v! v¤S (note that

v and v¤S are "consecutive" in the sense that v < v¤S and there is no game w such that

v < w < v¤S).

16



Second, observe that in the proof of Theorem 2 the superadditivity of the game has

been used. This raises the mathematical question of the validity of these results in the

domain of general simple games, without requiring superadditivity. The answer is positive

at least for Theorem 3 (note that under T* the case m(v) > 1 in the second part of (i) and

(ii) is trivial, for this yields directly ¢S;i(v) = ¢S;i(v
¤
T )). As to Theorem 2, the question

remains open.

Finally, the question of the independence of the axioms can be addressed. The following

examples show the independence of any of the axioms we have used with respect to the

others in either system (in brackets the uninteresting for obvious "yes" and "noes"), but

that of transfer* and symmetric gain-loss with respect to anonymity, null player* and

constant average gain-loss balance, still unsettled.

Example An NP* SymGL T/T* CTGLB CAGLB

©i(v) = Shi(v) + ·i (·i 6= ·j) No Yes Yes Yes Yes (No)

©i(v) = Bzi(v) + ·i (·i 6= ·j) No Yes Yes Yes (No) Yes

©(v) = 0 Yes No Yes Yes Yes Yes

©(v) = Bz(v) Yes Yes Yes Yes No (Yes)

©(v) = Sh(v) Yes Yes Yes Yes (Yes) No

©(v) = Bz(v)P
i2N Bzi(v)

Yes Yes No No Yes (No)

9©(v)? Yes Yes No No (No) Yes

6 Normalization

Thus, we have two families of power indices de¯ned up to two constants on SGn,

SH := f®Sh+ ·1 : ® > 0; · 2 Rg ;

BZ := f®Bz + ·1 : ® > 0; · 2 Rg :

Any two indices in the same of either of these two families are indistinguishable through

the axioms we have used so far and are equivalent in the sense that they rank identically

the power of any two players in any two games. Moreover, any such a pair di®ers only in

the zero and the unit of scale. In principle these two degrees of freedom are natural in any

measure.

This allows to make a clear classi¯cation of some indices that have been proposed in the

literature. The Banzhaf index (® = 1 and · = 0), the "raw" Banzhaf (® = 2n¡1 and · = 0)

and the Rae (1969) index (® = 2n¡1 and · = 2n¡1) belong to BZ, while this family does not

contain the "normalized" Banzhaf index, nor the Coleman indices (Coleman (1971, 1973),
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see also Brams and A®uso (1976)). Therefore the "normalized" Banzhaf index, which is

obtained by multiplying the power of a player in di®erent games by di®erent constants,

is by no means equivalent to the Banzhaf index, it displays di®erent properties (and

paradoxes). This trivial fact does not seem to have been well understood in the literature.

Similarly, Brams and A®uso (1976) do the same mistake with the Coleman indices that

they consider as equivalent to the normalized Banzhaf index (see also Felsenthal and

Machover (1995)).

There has been some discussion in the literature on the issue of the character absolute

or relative of the power indices. It has sometimes been argued that relative indices were

those which add up to 1 (see Roth (1977), Felsenthal and Machover (1995)). We try to

make this point clear by subdividing the above families into smaller equivalence classes

from the absolute/relative point of view, from which not any pair of indices in the same

family are equivalent any more.

An index © : SGn ! Rn is relative if what matters in the information summarized by

© are the proportions ©i(v)
©j(w)

, for any two players and any two games. An index is absolute

if what matters in the information summarized by © are the di®erences ©i(v) ¡ ©j(w),
for any two players and any two games. Consistent with this distinction, we have the

following

De¯nition 2 Let ©;ª : SGn ! Rn, then

(i) © and ª are relatively equivalent, written © »R ª; if

8v;w 2 SGn; 8i; j 2 N :
©i(v)

©j(w)
=
ªi(v)

ªj(w)
:

(ii) © and ª are absolutely equivalent, written © »A ª; if

8v; w 2 SGn; 8i; j 2 N : ©i(v)¡©j(w) = ªi(v)¡ªj(w):

To avoid the problem of dividing by zero, the relative equivalence condition should be

rewritten more properly like this

8v;w 2 SGn; 8i; j 2 N : ©i(v)ªj(w) = ªi(v)©j(w):

It is immediate to check that both are equivalence relations. Thus, they subdivide any

family of indices into equivalence classes. The following proposition (whose easy proof

we omit) states that in either family relatively equivalent indices share the "zero", but

possibly not the "scale", while absolutely equivalent indices share the "scale", but possibly

not the "zero".
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Proposition 5 Let ©;ª : SGn ! Rn be both in the same of any of the two families SH

or BZ. Then

(i) © »R ª if and only if there exists a constant k > 0 such that © = kª:
(ii) © »A ª if and only if there exists a constant k such that © = ª+ k1:

Therefore each of the two indices, Sh or Bz is relatively (resp., absolutely) equivalent

to any index obtained by multiplying it by a positive constant (resp., adding to it a

constant). Consistently with these subdivision of the families, the following purely and

properly speaking normalizing axioms, together with those that characterize the families

SH and BZ, permit to single out the classes of indices relatively equivalent and absolutely

equivalent to Sh and to Bz:

Zero Power (ZP): For any i 2 N , minv2SGn ©i(v) = 0.

Unit of Power (UP): For any i 2 N , maxv2SGn ©i(v)¡minv2SGn ©i(v) = 1.

The ¯rst axiom sets the zero by stating that this is the minimal power of any player,

while the second one ¯xes the unit of scale as the range of power of any player. Adding

any of these axioms or both to the ones that characterize the families SH and BZ, one

or both degrees of freedom are eliminated. ZP sets the zero, and UP the scale. Whence

the following results are straightforward:

Theorem 4 An index © : SGn ! Rn satis¯es anonymity (An), null player* (NP*),

transfer* (T*) or symmetric gain-loss (SymGL), constant total gain-loss balance (CT-

GLB), and, respectively,

(i) zero power (ZP) if and only if it is © = ®Sh, for some ® > 0.

(ii) unit of power (UP) if and only if it is © = Sh+ ·1, for some · 2 R.
(iii) zero power (ZP) and unit of power (UP) if and only if it is © = Sh.

Theorem 5 An index © : SGn ! Rn satis¯es anonymity (An), null player* (NP*),

transfer* (T*) or symmetric gain-loss (SymGL), constant average gain-loss balance (CAGLB),

and, respectively,

(i) zero power (ZP) if and only if it is © = ®Bz, for some ® > 0.

(ii) unit of power (UP) if and only if it is © = Bz + ·1, for some · 2 R.
(iii) zero power (ZP) and unit of power (UP) if and only if it is © = Bz.

The comparison with Dubey and Shapley is interesting here. Their systems include

indistinctly and implicitly some normalizing principles embodied in their axioms. In their

systems null player, Shapley total power and also Banzhaf total power embody some
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normalizing implications that only come into e®ect once they combine with the other

axioms. Our systems instead separate carefully any normalizing principle from the intrinsic

properties of the proposed measure.

As to the absolute/relative issue, we stress the fact that from this point of view (in

the unique precise sense that we can think of for this dichotomy), the situation is entirely

symmetric for both indices. In other words, we see no grounds to say that Sh is relative

while Bz is absolute. Both indices can be used in principle as relative or as absolute

indices.

7 Variable number of players

So far the number of players considered has been ¯xed. We deal now with the speci¯cation

of indices to assess the power of players in voting procedures involving any number of

players. This entails comparisons of the power of di®erent players in di®erent processes

involving possibly di®erent numbers of players.

To deal with a variable number of players the framework needs to be adjusted. One

option is assuming a universe of players as in Shapley (1953). Alternatively one can

use the domain SG := [n¸1SGn. Thus an index in this case is a collection of maps © =
f©n : SGn ! Rn: n = 1; 2; :::g. Assuming the axioms that characterize the aforementioned
families for each number n of players -that in what follows to avoid ambiguity we call SHn

(resp., BZn) and similarly Shn (resp., Bzn)-, it yields the family of indices given by

collections f©n = ®nShn + ·n1 : n = 1; 2; :::g (resp., f©n = ®nBzn + ·n1 : n = 1; 2; :::g),
where ®n are positive numbers and ·n arbitrary numbers. To single out an index from

this family some principles must be postulated relating the power of players in games with

di®erent numbers of players. Natural references for such a comparison are what intuitively

are the extreme roles: null players and dictators.

Null Players Equivalence (NPEQ): The power of any two null players in any two

games, whatever their number of players, is the same.

Dictator Players Equivalence (DPEQ): The power of any two dictators in any two

games, whatever their number of players, is the same.

Adding the ¯rst principle to the former systems yields that for all m;n ¸ 0, ·n = ·m.
Adding both equivalence principles yields in addition that for all m;n ¸ 1, ®n = ®m. So,
we have the natural extension of Theorems 2 and 3.

Theorem 6 Let © = f©n : SGn ! Rn: n = 1; 2; :::g ; then
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(i) © satis¯es anonymity (An), null player* (NP*), transfer* (T*) or symmetric gain-

loss (SymGL) and constant total gain-loss balance (CTGLB) on SGn (for any n ¸ 1),

and the null players (NPEQ) and dictator players (DPEQ) equivalence principles if and

only if it is, for some ® > 0 and · 2 R,

© = f©n = ®Shn + ·1 : n = 1; 2; :::g :

(ii) © satis¯es anonymity (An), null player* (NP*), transfer* (T*) or symmetric gain-

loss (SymGL) and constant average gain-loss balance (CAGLB) on SGn (for any n ¸ 1),
and the null players (NPEQ) and dictator players (DPEQ) equivalence principles if and

only if, for some ® > 0 and · 2 R,

© = f©n = ®Bzn + ·1 : n = 1; 2; :::g :

Finally, adding similar normalizing assumptions to those used in the former subsec-

tion, both indices, that is, Sh = fShn: n = 1; 2; :::g and Bz = fBzn: n = 1; 2; :::g are
characterized. Note here the di®erence between Banzhaf and "raw" Banzhaf. The ¯rst

one is singled out (up the two constants) adding the former two simple equivalence prin-

ciples. But for "raw" Banzhaf no simple equivalence principle together with null players

equivalence principle characterizes it.

8 Concluding remarks

In some sense this paper is a new turn of the screw, twenty years later, in the original

motivation of Dubey and Shapley's to ¯nd a set of axioms from which to derive the Banzhaf

index comparable to that obtained by Dubey (1975) for the Shapley-Shubik index:

"..up to now, the S-S index has attracted the lion's share of attention from game the-

orists, partly because of certain perceived naturalness in its mathematical foundations and

partly as a by-product of research devoted to its parent solution concept, the "Shapley

value" for general cooperative games. With the idea of redressing this imbalance, we have

undertaken here to investigate the Bz index from a mathematical point of view." (Dubey

and Shapley, 1979).

The original motivation of this paper was in fact redressing this imbalance even further.

In particular, Dubey and Shapley's pair of di®erentiating axioms for the Shapley-Shubik

index and the Banzhaf index seemed to us rather asymmetric concerning their appeal.

On one hand, "e±ciency", with the favorable prejudice from most game theorists. On the

other, a strange axiom with some ad hoc °avor. For us it was clear from the very beginning

that e±ciency was arguable in the context of simple games as models of decision-making
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procedures (Laruelle and Valenciano (1999)), but balanced substitutes for e±ciency and

the corresponding axiom for Banzhaf were needed to show how super¯cial this asymmetry

was.

In this search we were driven to ¯nd transparent alternatives for Dubey and Shapley's

axioms, stripping them of their "normalizing" secondary ingredients. Our formulation

of transfer seems more transparent than Dubey's and sheds some light on the meaning

of this condition. Then transfer was replaced by a more simple and compelling assump-

tion, symmetric gain-loss. In the case of the dichotomy "e±ciency" (or, in our more

neutral terms, "Shapley total power") versus "Banzhaf total power", this is achieved by

the alternative dichotomy "constant total/average gain-loss balance". These axioms are

remarkably close, both being a special case of a general principle satis¯ed by the semival-

ues. Moreover, both have a clear meaning and are similarly compelling. Thus both indices

appear on a same footing when they are interpreted as measures of power in collective

decision-making procedures. Moreover, our characterizations, separating neatly the purely

normalizing conventions, contribute to a better understanding of the common mistake of

considering equivalent the Banzhaf index, its "normalization", the Coleman indices and

the Rae index.

It is worth stressing the crucial role that the modi¯ed game, resulting from dropping

just one minimal winning coalition in a game, plays in our axiomatic systems. It arose

involved in what we think is a more clear and transparent way of stating Dubey's transfer.

But signi¯cantly it appears also in other axioms as "symmetric gain-loss", "constant total

gain-loss balance" and "constant average gain-loss balance". While in the traditional

characterization the corresponding axioms (namely "transfer", "e±ciency" and "Banzhaf

total power") do not share any common feature. Interestingly enough, this modi¯ed game

appears also naturally if Young's (1985) coalitional monotonicity is restricted to simple

games.

Finally, the results presented in this paper suggest several lines for further research.

First, investigating the meaning of the axioms used here in the domain considered by us in

Laruelle and Valenciano (1998), that is, the convex hull of the set of simple superadditive

games, interpretable as lotteries on collective decision processes. Second, a similar critical

review of the axiomatization of other semivalues as well as of other power indices proposed

in the literature would be interesting. Third, it is worth studying the possibility of adapting

or extending our axioms to the domain of general TU games.
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