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1. EVOLUTIONARY DYNAMICS AND EQUILIBRIUM ANALYSIS

Since Adam Smith (1776) introduced the notion of natural price as ì...the

central price, to which the prices of all commodities are continually

gravitating...î it is difficult to think of an idea more extensively applied in

economics than the idea of an equilibrium. Yet, it is even more difficult to name

another concept about which interpretation has been more controversial.

Compare, for example, the alternative equilibrium notions proposed by Walras

(1874), Cournot (1838), Marshall (1916), Keynes (1936), Arrow and Debreu

(1954), Hahn (1973), Lucas (1972) and Cass and Shell (1983). In other words,

despite its pervasive use in economic modeling, many questions concerning the

foundational aspects of equilibrium analysis remain. Questions that are too

serious to be dismissed as mere academic puzzles. Market fluctuations and

imperfections are endemic in real-life economics. From the unemployment

equilibria of Keynesian memory to the various real business cycle and

disequilibrium theories proposed in later literature, the focus on equilibrium

analysis has been continuously challenged on various grounds and from

different perspectives.

Clearly, game theory cannot avoid considering the foundational aspects of

equilibrium analysis, since it is an equilibrium concept, namely Nash

equilibrium, which has made its fortune. In this respect, we follow Binmore

(1987-8) in distinguishing between two alternative justifications of equilibrium

analysis which have been maintained by game-theoretic tradition:

ï an eductive justification, which relies on the agentsí ability to reach

equilibrium through careful reasoning. Since agents are fully rational, they

can always correctly predict (and optimally respond to) their opponentsí

behavior;

ï an evolutive justification, which relies on the possibility that boundedly

rational agents reach equilibrium by means of some adjustment process.
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The aim of this paper is to survey this latter methodological approach. In

particular, we focus on those papers that follow the evolutive justification using

evolutionary dynamics to describe how imperfectly rational players adjust their

behavior in reaction to a changing environment. In other words, this evolutive

approach tries to answer the (supposedly simple) question:

how do people learn to play?

We shall break this grand question into smaller pieces. By doing so, we will

introduce the main assumptions on which the evolutionary paradigm followed

by this literature is based.

ï Where do we learn? The environment in which agents operate is modeled by

an infinitely repeated game. Moreover, the set of feasible behaviors

coincides with the strategy set of the stage game. In this respect,

evolutionary games differ from other strategic frameworks like differential

games (in which the current payoff is a function of time) or supergames (in

which strategies are defined over time-paths). Clearly, any justification for

such a drastic assumption, apart from mathematical tractability, contains

serious weaknesses. It is almost impossible to consider two situations as

being absolutely identical,1 or in which future consequences are completely

neglected. However, when interaction is anonymous (i.e. it takes place

among a large population of agents who have no prior knowledge of the

identity, the history, or any other relevant characteristics of their opponents)

this framework appears to be more justifiable. This is why the literature has

focused almost entirely on this case.

ï What do we learn (from)? We follow Selten (1991) in distinguishing three

classes of learning models.

(i) Rote (individual) learning models, in which success and failure directly

influence choice probabilities.

                                          
1Models of learning in which games are similar are those of Li Calzi (1995) and Romaldo

(1995).
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(ii) Imitation (social) learning models, in which success and failure of others

directly influence choice probabilities.

(iii) Belief learning models, in which experience has only a direct effect on

playersí beliefs.

This survey deals with models of the first two categories, in which players

need not know (or care) much about the game they play, other than the payoff

they (or other agents in the population) obtain.2

ï How does memory affect learning? A distinguishing feature of this

literature is that agents have no memory. All the quantitative features of the

adjustment process are completely characterized by the current state of the

system.3

In their standard form, evolutionary models are based on the assumption that

agentsí behavior is genetically encoded in the genes which characterize each

agentís type. The evolution of a population of competing types is subject to

natural selection, which links game payoffs (ìfitnessî) to growth rates of each

type in the population. This evolutionary paradigm has a long tradition in the

history of economic thought, from the seminal contributions of Marshall (1916)

and Schumpeter (1936) to the work of Nelson and Winter (1982) and their

followers. However, despite their intuitive appeal, the interest on evolutionary

dynamics has been mostly confined to specialists. There are at least three

reasons for this state of affairs:

                                          
2See Battigalli et al. (1992) and Fudenberg and Levine (1998) for comprehensive surveys on

belief learning models.
3Some might regard this assumption also as unreasonable. Look at the case in which the

dynamics exhibit limit cycles, as in Ponti (forthcoming). This would imply that agents are not
able to recognize the cycle and modify their response accordingly. As Fudenberg and Levine
(1998: p. 3) argue: ìwe suspect that if cycles persisted long enough the agent would eventually
use more sophisticated inference rules that detected them; for this reason we are not
convinced that models of cycles in learning are useful descriptions of actual behavior...î .
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_  lack of microfoundation, that is, a formal link between this biological

metaphor and explicit models of social interaction;4

_ lack of generality, because the formal analysis is often restricted to very

specific dynamics (namely, the so-called Replicator Dynamics);

_ lack of convergence results, that is, lack of characterization of the

asymptotic properties of the adjustment process. This, essentially, translates into

lack of predictive power.

The potential of evolutionary dynamics outside the narrow bounds of

specialistic interest lies in the extent to which these theoretical gaps are being

filled. The aim of this survey is to acknowledge a more general audience of

some new theoretical results on these matters which, in our opinion, improve

our understanding on the working of evolutionary dynamics and substantially

enlarge the feasible fields of applications of evolutionary techniques.5

The remainder of this survey is arranged as follows. In section 2 we choose

the notation and set up the relation between dynamics and game payoffs. In

section 3 we review the literature which derives some evolutionary dynamics

starting from explicit models of social interaction. Section 4 deals with

convergence results, considering more general adjustment processes (namely,

monotonic dynamics) than the classic Replicator Dynamics. Finally, section 5

explores the recent literature on evolutionary dynamics with drift. This approach

allows more flexibility in describing the dynamics by introducing arbitrarily

small perturbations. In consequence, we can study evolutionary models in terms

of their structural stability properties.

                                          
4 This is how Bˆrgers (1996) describes the difficulties in applying pure evolutionary

techniques to study social evolution. First, it is not practically feasible, given the state-of-the
art knowledge in genetics, to derive predictions of human behavior by appealing to its genetic
determination. Moreover, the way in which genes affect behavior appears to be very
complicated. Finally, the adaptation of human genes occurs too slowly to derive predictions of
some interest for the social scientist.

5A clear signal of this renewed interest is the growing literature which reviews the state-of-
the-art of the discipline. Among others, see Fudenberg and Levine (1998), Samuelson (1997),
Vega-Redondo, (1996) and Weibull (1995,1997).
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2. CONTINUOUS-TIME EVOLUTIONARY DYNAMICS

Let Γ ≡ ℑ ,Si ,ui{ }  be a normal form game, where ℑ ≡ {1,... ,I} is the finite set of

players with generic element i ; S i ≡{1,... ,K i} is the finite set of player i ís pure

strategies with generic elements h and k; ui :S → ℜ  is player iís (VNM) payoff

function, with S ≡ ×i ∈ℑ Si  denoting the set of pure strategy profiles with generic

element s. Thus, the set of player iís mixed strategies is the Ki −1 -dimensional

unit simplex ∆ i ≡{σi ∈ℜ +
K i : σ i

k =1
k ∈ Si

∑ }, with ∆ ≡ ×
i∈ℑ

∆ i  (∆ −i ≡ ×j≠ i ∆ j ) denoting the set

of mixed strategy profiles (of i’s opponents). Generic elements of ∆ −i  and ∆  are

denoted by σ− i  and σ ≡ σi ,σ−i( ) respectively. Finally, let ∆0  (∆ −i
0 ) be the relative

interior of ∆ (∆ −i ), that is, the set of completely mixed strategy profiles (of i’s

opponents).

Player iís behavior is described by the mixed strategy she adopts at each point

in time, ri(t) ∈∆ i, with r(t) ≡ ri (t)( ) denoting the vector collecting such

probabilities.

ASSUMPTION 1. For any given r 0( ) ∈∆ , r(t)  evolves according to the following

system of continuous-time differential equations:

Ý r i
k (t) = fi

k r(t)( ) . (2.1)

We refer to the autonomous system (2.1) as the selection dynamics, i. e. the

term that captures the relevant forces governing the playersí strategy revision.

Taylor and Jonker (1978) propose two alternative interpretations for the

dynamics (2.1).

ï There is a single agent for each playerís position i . At each time t, player i

randomly selects a pure strategy k ∈ Si  using a probability distribution,

ri(t) ∈∆ i. This probability distribution evolves according to (2.1) as a result

of some (unmodeled) learning adjustment process.
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ï There are I populations of agents, one for each playerís position i. Each agent

is genetically programmed to play a pure strategy k ∈ Si . An (unmodeled)

natural selection process adjusts the relative frequencies of each type in each

population according to (2.1).

The latter interpretation follows more closely the biological metaphor on

which these dynamics have been originally proposed, whilst the former

considers these adjustment processes as mimicking some form of individual

learning. Both these interpretations will be formally derived in section 3.6

DEFINITION 1. The function f ≡ fi( ) is said to yield a regular dynamic if the

following conditions are satisfied:

i) fi
k: ∆ → ℜ  is Lipschitz continuous7 for all i and k;

ii) fi
k(σ) =

k ∈ Si

∑ 0  for all and i and σ ;

iii) lim
σ i

k → 0

fi
k σ( )
σ i

k  exists for all i and k.

These regularity assumptions imply that growth rates γ i
k σ( )≡ fi

k σ( )
σi

k  are

continuous on ∆0  and that the system (2.1) has a unique solution ρ(r(0),t )

through any initial state r 0( ) which leaves ∆ , as well as ∆0 , invariant. In other

words, all trajectories starting from ∆  (∆0 ) do not leave ∆  (∆0 ). This can be

interpreted as a ìno creation/no extinctionî property. A pure strategy which is

played with positive probability at time zero will also be played in any finite

time. On the other hand, if a strategy is not played at time zero, it will never be

used.

                                          
6One of the aims of Taylor and Jonker (1978) was indeed to establish a formal link between

the equilibrium concept of Evolutionary Stable Strategy (Maynard Smith and Price (1973) and
some evolutionary dynamics which did converge to it. Cressman (1992) provides an excellent
survey of this research field.

7Sometimes (e. g., in Cressman (1997)) the condition of Lipschitz continuity is replaced by
the stronger requirement of continuous differentiability. In this case the dynamics are defined
as smooth regular.
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To complete the description of the dynamics we also need to establish a

formal link between the selection process and the game payoffs. We do so by

introducing the Replicator Dynamics (RD hereafter), that is, a regular dynamic

(2.1) where, ∀ k ∈ Si , ∀ σ ∈∆ ,

fi
k (σ ) = σi

k u i k, σ−i( )− ui σ i ,σ −i( )( ). (2.2)

For the RD success breeds success, since only strategies which pay off ìmore

than averageî have a positive growth rate.8 Nachbarís (1990) monotonicity

condition should be interpreted in the same spirit.

DEFINITION 2. A function f is said to yield a monotonic dynamic (MD) if

∀ h,k ∈ Si , ∀ σ ∈∆ ,

u i (h ,σ− i ) ≤ u i (k ,σ −i ) ⇔ γi
h (σ) ≤ γi

k (σ)  . (2.3)

Condition (2.3) generalizes an appealing property of the RD. For any given

pair of pure strategies, the relative frequency of the more successful grows at a

higher rate. Samuelson and Zhang (1992) extend the condition of monotonicity

to mixed strategies introducing the notion of aggregate monotonicity.

DEFINITION 3. A function f is said to yield an aggregate monotonic

dynamic(AMD) if, ∀ σ i , ′ σ i ∈∆ i , ∀ σ* ∈∆ ,

ui(σ i ,σ−i
* ) ≤ ui( ′ σ i ,σ −i

* ) ⇔ γi
k (σ *)σ i

k

k ∈ S i

∑ ≤ γ i
k (σ *)

k ∈ S i

∑ ′ σ i
k  . (2.4)

According to (2.4), if σ i  yields a lower expected payoff than ′ σ i  against σ− i

* ,

then the vector f σ*( ) should point ìmoreî in the direction of ′ σ i  than σ i .

                                          
8This dynamic was first introduced by Taylor and Jonker (1978). While equation (2.2) refers

to the multi-population case (i.e. assigns one set of differential equations to each player
position), Taylor and Jonker (1978) deal with the single-population case only. The multi-
population RD was first introduced by Taylor (1979). See also Cressman (1992) for a multi-
population model in which agents can play mixed strategies.
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It follows from the above definitions that RD ⊂ AMD ⊂ MD .9 Some useful

properties of MD are listed in the following

                                          
9See Weibull (1995), chapter 5.
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PROPOSITION 1. Suppose that f  satisfies condition (2.3) and consider the

associated MD (2.1).10

i)  If σ ∈∆  is stable,11 then σ  is a Nash equilibrium of Γ .

ii) If σ ∈∆  is the limit for some interior solution, then σ  is a Nash equilibrium

of Γ .

PROOF. See Weibull (1995), Theorem 5.2 (b,c).

3. ECONOMIC MICROFOUNDATION

There are two basic ìstoriesî which have been proposed to justify the use of

evolutionary dynamics in the context of economic learning. Not surprisingly,

each story follows closely one of Taylor and Jonkerís (1978) interpretations

mentioned earlier in this paper. We shall look at each story more in detail in the

remainder of this section.

3.1. THE ÌINDIVIDUAL LEARNINGÎ STORY: LEARNING BY REINFORCEMENT

To present this first class of models, we use as a reference the paper by

Bˆrgers and Sarin (1997). In their model, agents use mixed strategies. A very

                                          
10As it turns out, Proposition 1 holds for a larger class of evolutionary dynamics than MD,

namely weakly payoff positive dynamics. The condition of weak payoff positivity requires that
at least one pure strategy which yields a payoff above average (provided that such a strategy
exists) has a positive growth rate. We restrict our attention to MD, since the results surveyed
in this paper refer to this class.

11Loosely speaking, a state σ  is called (Lyapunov) stable if trajectories starting arbitrarily
close stay sufficiently close. If σ  is also attracting, i.e. is the limit point for all trajectories
which start sufficiently close, then σ  satisfies the stronger condition of asymptotic stability.
For more formal definitions, see Weibull (1995).
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simple rule links the current payoff with the mixed strategy which will be

used in the subsequent round. In particular, pure strategies which perform well

against the opponentsí actions are reinforced, and the probability with which

they are selected grows accordingly.

In contrast with a typical evolutionary biological model, here alternative

strategies compete in the agentsí minds as populations of ideas. As Bˆrgers and

Sarin (1997: p. 3) observe: ìDecision makers are usually not completely

committed to just one set of ideas, or just one way of behaving. Rather, several

systems of ideas, or several possible ways of behaving are present in their mind

simultaneously. Which of these predominate, and which are given less attention,

depends on the experiences of the individual...î. This approach is not new, as it

follows the tradition of Estesí (1950) ìstimulus sampling theoryî of behavioral

psychology, subsequently formalized by Bush and Mostellerís (1951,1955)

stochastic learning theory, and by the theory of ìadaptive economic behaviorî

proposed by Cross (1973, 1983).12

In describing Bˆrgers and Sarinís results on the relationship between the

stochastic process they analyze and the deterministic dynamics studied in this

paper, we modify slightly their assumptions to allow a higher degree of

generality. Anna and Beppe are two individuals playing an infinitely repeated

game. At each point in discrete time n ∈ (0,1,2,...), each player selects an action

using a probability distribution, ri(n) . It is assumed that, at each round,

Anna/Beppe knows only about the action s/he plays and the payoff s/he obtains.

Suppose that, at round n, Anna has played her pure strategy k ∈ SA  and Beppe

has played his pure strategy k* ∈ SB . Under these circumstances, Anna will

update her mixed strategy as follows:

rA
k (n +1) = vA (k ,k *),r(n)( )+ 1 − v A (k,k *),r(n)( )( )rA

k (n) ,

(3.1)

                                          
12Papers on reinforcement learning are also those by Bendor et al. (1991), Bˆrgers and Sarin

(forthcoming), Sarin (1995) and the experimental studies conducted by Roth and Erev (1995),
Mookherjee and Sopher (1997) and Erev and Roth (1998).
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rA
h (n +1) = 1 − v A (k,k * ), r(n)( )( )rA

h(n)  for all h ≠ k , (3.2)

with v i :S × ∆ → (0,1) satisfying v i(s,σ) = α i(σ ) + βi(σ)ui(s), where α i: ∆ → ℜ  and

βi :∆ → ℜ +  are Lipschitz continuous functions.13 In words: the change in

probability ∆rA
k (n) ≡ rA

k (n +1) − rA
k (n)( ) is proportional to a given increasing linear

transformation of the payoff Anna received in the stage game, with coefficients

which may depend on the state variable r(n), up to a rescaling that constrains

rA (n +1) to be in the unit simplex.14

Denote by E ∆rA
k r[ ] the expected value of ∆rA

k (n), given that the state at time n

is r(n) = r . From (3.1-2) we derive the following :

E ∆rA
k r[ ]= E vA (k, k* ),r( )r[ ]+ 1 − E vA (k, k* ),r( )r[ ]( )rA

k( )rA
k + 1 − E vA (k, k* ),r( )r[ ]( )rA

k( )rA
h

h≠ k
∑

= E v A (k,k *), r( )r[ ]1 − rA
k( )rA

k − rA
k E vA (k, k* ),r( )r[ ]rA

h

h≠ k
∑

= α A (r) +βA (r)uA (k ,rB )( )1 − rA
k( )rA

k − rA
k αA (r) + βA (r)uA (k,rB )( )rA

h

h≠ k
∑

= rA
kβA (r) uA (k ,rB ) − uA (r)( ),

(3.3)

which implies

PROPOSITION 2. For each player i ∈ ℑ , the expected motion of the discrete-time

dynamics (3.1-2) is aggregate monotonic.15

                                          
13A similar expression holds for Beppe.
14Notice that the probability of the selected action at time n is always increasing, i.e.

∆rA
k
(n) ≡ v A (k, k*

), r(n)( )1 − rA
k
(n)( )> 0. In other words, for the learning dynamic (3.1-2) every

experience is positively reinforced. Also notice that v i  is a function of the state variable σ.
Following Bˆrgers et al. (1998), this accounts for environmental conditions that may affect the
individual learning process.

15Since the stochastic process is defined in discrete time, aggregate monotonicity is defined

substituting 
∆ri

k (n)

ri
k (n)

 for γ i
k  in (2.4).



14

3.2. THE ÌCULTURAL EVOLUTIONÎ STORY: LEARNING BY IMITATION

We now move on to the literature which identifies cultural (or social)

evolution with the ability to observe and successfully imitate other agents.

These models follow the biological metaphor more closely, since they look at

the aggregate behavior of a population.

To present this alternative approach, we refer to Schlag (1998). Suppose

there are two large populations, one population of Annas and one population of

Beppes, playing an infinitely repeated game. Within each round, agents select

an action before they play against a randomly matched opponent. Between

rounds, each agent knows about the strategy and the payoff of another agent in

the same player position, randomly selected by symmetric sampling.16 Each

agent then updates her current strategy using a rule which maps from current

payoffs and actions of both sampling and sampled agent to the action which is

to be played by the sampling agent in the following round.

Schlag (1998) begins by proposing a class of updating rules that agents might

eventually select if required to choose a rule, once and for all, before entering

into the matching and sampling scenario. He defends this class of rules on the

basis of a set of axioms by which he characterizes bounded rationality. Such

rules exhibit the following properties:

ï they are imitative, in the sense that an agent never switches to an action that

has not been observed in the current period;

ï the probability of switching to an action which performed better is

proportional to the difference in payoffs between the action of the sampled

agent compared with the action currently used by the sampling agent.

 We refer to these rules as proportional imitation rules. Under these rules,

imitation occurs only if the realized payoff of the sampled agent was higher.

                                          
16By ìsymmetricî sampling the author means a matching scheme in which the probability

with which agent x samples agent y must be equal to the probability with which y samples x.
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More formally, let X i ≡ max
h, k ∈ SA

h* ,k * ∈ S B

ui(h, h*
) − ui(k, k*

)  be the maximal payoff difference

for player i. Assume that, at round n, an agent in Annaís position, after having

played strategy h ∈ SA  against h * ∈ SB , samples an agent who has played k ∈ SA

against k* ∈ SB . Under these circumstances, the sampling agent will revise her

strategy from h  to k  with probability

˜ β A uA (k,k
*
) − uA (h,h

*
)( ) if uA (h,h* ) ≤ uA (k ,k *) , and

0 otherwise,

where ˜ β A ∈ 0,
1

X A

  

 
  

  

 
 
 
 is a fixed constant.

Next step is to consider an environment in which agents of the same

population use the same proportional imitation rule and to look at the expected

motion of the frequencies with which the various actions are played. By analogy

with (3.3), we obtain

E ∆rA
k r[ ]= ˜ β A uA k, rB( )− u r( )( )rA

k
. (3.4)

This, in turn, implies

PROPOSITION 3. For each population i ∈ ℑ , the expected motion of the discrete-

time dynamics (3.4) is aggregate monotonic.

As for the related literature on social evolution, Binmore and Samuelson

(1997) propose another model in which agents base their strategy revision on

imitation. However, their model has also some similarities with the ìindividual

learningî approach of section 3.1, since switching occurs only if the current

payoff is lower than the payoff received in the previous round. In other words,

the updating rule is based upon an endogenous aspiration level equal to the
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previous round payoff.17 Under these assumptions, they show that the expected

motion of the frequencies with which each pure strategy is played follows the

RD. Bjˆrnerstedt and Weibull (1995) consider a model in which agents receive a

ìnoisyî signal on the realized payoffs of a sample of other agents in the

population. In this case, if the support of the noise is sufficiently large, then the

resulting dynamic is monotinic.18

3.3. EXPECTED MOTION VS. ASYMPTOTIC BEHAVIOR

We have just derived evolutionary dynamics as expected motions of two

alternative stochastic processes based on different models of social interaction.

As it turns out, for both models, the same evolutionary dynamics also

approximate the stochastic process as the time scale gets to its continuous limit,

since both stochastic processes converge in probability to the corresponding

(aggregate monotonic) deterministic dynamics. To show this, we shall focus on

Bˆrgers and Sarinís (1997) learning model, although a similar result can be

proved also for Schlagís (1998) imitation dynamics.19

To construct its continuous-time limit, we modify the system (3.1-2) as

follows: conditional of any realization (k ,k
*
) at time n

rA
k
(n +1) = θv A (k,k

*
), r(n)( )+ 1 − θvA (k, k*

),r(n)( )( )rA
k
(n),

(3.1í)

rA
h (n +1) = 1 − θvA (k, k* ),r(n)( )( )rA

h (n), for all h ≠ k ,

(3.2í)

where θ ∈ (0,1] measures the ìreal timeî interval between two repetitions of the

game. Let R θ(n) ∈∆  define the state of the system at time nθ  for a given initial

                                          
17Se also the related works on aspiration learning by Bjˆrnerstedt (1993), Banerjee and

Fudenberg (1995) and Ponti and Seymour (1997).
18See also Cabrales (forthcoming).
19See Schlag (1998), Theorem 3.
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condition R θ(0) ∈∆ . Consider now the following system of differential

equations:

fi
k
(σ ) = βi(σ ) ui (si

k
,σ− i) − ui (σ)( ) (3.5)

with βi  as in (3.1-2). Since βi  is Lipschitz continuous, the associated dynamic

(2.1) is AMD.20

To establish the relationship between the discrete-time stochastic dynamics

(3.1í-2í) and the continuous-time deterministic dynamics induced by (3.5), we

evaluate the continuous-time limit of R θ(n)  at some time t ≥ 0  for any sequence

of θs  and ns  with the property that θ → 0 and nθ → t . In other words, we take

limits keeping fixed the ratio between the rate at which players adjust their

mixed strategy and the rate at which the time interval shrinks.

PROPOSITION 4. Suppose R θ(0) = r(0) almost surely. Then, for all t ≥ 0 , R
θ
(n)

converges in probability to ρ(r(0), t) as θ → 0 and nθ → t , where ρ(⋅, ⋅)  is the

solution mapping of (3.5).

PROOF. See Bˆrgers and Sarin (1997), Proposition 1.21

Proposition 4 holds only for any finite time t ≥ 0 . This is to say that the

asymptotic properties may differ, depending on whether we consider the

stochastic process or its (either continuous or discrete time) deterministic

approximation. To clarify this point, consider the asymptotic behavior of

Bˆrgers and Sarinís (1997) learning dynamics in the case of zero-sum games.

                                          
20See Samuelson and Zhang (1992), Theorem 3.
21Although Bˆrgers and Sarinís (1997) proof refers to the RD only, its generalization to

AMD follows directly from Lipschitz continuity of βi .
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FIGURE A

Discrete-vs. continuous -time RD and zero -sum-games

Figure Aii) traces orbits of the continuous-time RD for the game of Figure

Ai). The dotted arrows of Figure Aii) represent the expected jumps of the

discrete time dynamics (3.1-2). As the diagram shows, the continuous time

process cycles around the (unique) equilibrium in mixed strategies, whereas the

discrete time (deterministic) dynamics does not converge, approaching the

boundaries of the state space. Moreover, we also know that the stochastic

process (3.1-2).will eventually settle down on one of the four pure strategy

profiles, which constitute the set of absorbing states.22 In consequence, even if

the discrete-time stochastic process is well approximated by the continuous-

time deterministic dynamics within any finite time interval, the asymptotic

properties of the two processes may significantly differ.

4. SOME CONVERGENCE RESULTS

This section reviews some recent results on the convergence properties of

dominance solvable games. We also frame this literature by introducing a new
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concept (which we call τ -dominance) to help the reader understand how these

results have been established.

4.1. MD AND STRICTLY DOMINATED STRATEGIES

We begin by considering the evolutionary properties of strictly dominated

strategies. In this respect, it turns out to be crucial how the concept is formally

                                                                                                                               
22By (3.1-2) only pure strategy profiles are absorbing states and they are reachable in finite

time with positive probability from any interior state.



20

defined. Conventionally, we say that a pure strategy h ∈ Si  is strictly

dominated if there exists another (pure or mixed) strategy σ i ∈∆ i which yields a

(strictly) higher payoff against all the opponentsí mixed strategy profiles:

 ui(h,σ− i
* ) < ui(σ i ,σ−i

* ), ∀ σ− i
* ∈∆ − i . (4.1)

Otherwise, to consider strategy h  as strictly dominated, we might ask for the

stronger requirement of σ i ∈∆ i being a pure strategy itself. If strict dominance is

interpreted in this more restrictive sense, we then know that, for all MD, not

only strategies which are strictly dominated,23 but also strategies which do not

survive the iterated deletion of strictly dominated strategies, will eventually

vanish.

PROPOSITION 5. Suppose that f  satisfies condition (2.3) and consider the

associated MD (2.1). If h ∈ Si  does not survive the iterated deletion of pure

strategies strictly dominated by pure strategies, then lim
t →∞

ρi
h (r(0),t ) = 0  for all

r(0) ∈∆ 0 .

PROOF. See Samuelson and Zhang (1992), Theorem 1.

Things are different if we consider strict dominance with respect to mixed

strategies. In this case, to obtain the same result as in Proposition 5 we then

need to impose some more stringent condition on the dynamic than

monotonicity alone.24 To clarify this point, we provide an example adapted from

Dekel and Scotchmer (1992).

                                          
23This result is due to Nachbar (1990).
24For example, Akin (1980) shows that strictly dominated pure strategies vanish along any

interior solution of the single-population RD. However, as noted by Akin and Hofbauer
(1982), this result does not hold for pure strategies in the support of a mixed strategy which is
strictly dominated by another mixed strategy.
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FIGURE B

An adaptation of Dekel and Scotchmerís (1992) counterexample

The game of Figure B differs from the game of Figure Ai) only by the fact

that Anna (the row player) has an additional strategy (M) which yields a payoff

of .4 to both players, regardless of what Beppe (the column player) does.

Strategy M is not strictly dominated by a pure strategy, although it is strictly

dominated by any mixed strategy sufficiently ìcloseî to the (unique Nash

equilibrium) strategy which attaches probability .5 to strategies T and B.

Figure Ci) traces some trajectories of the RD for the game of Figure B. The

trajectories of Figure Aii) are now limit cycles25 for those of Figure Ci), once the

strictly dominated strategy M has been eliminated. Figure Cii) shows

trajectories of an MD in which growth rates are as follows:

γ i
k (σ ) = ui k,σ− i( )− σ i

h

h∈ Si

∑ ui h ,σ−i( ) (4.2)

As the diagram shows, the face Φ ≡ x,y, z( )∈∆ y + z =1{ }is an attractor for some

interior trajectories (e.g. those of Figure Cii)) of the dynamics induced by (4.2).

In consequence, the strictly dominated strategy M fails to be eliminated.

                                          
25By limit cycle we mean a periodic solution of (2.1) which attracts some interior trajectory

starting sufficiently close to it. For a more formal definition, see Hofbauer and Sigmund
(1988).
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FIGURE C

MD and strictly dominated strategies

Hofbauer and Weibull (1996) show how this behavior is not specific of the

functional form (4.2). They consider a class of regular evolutionary dynamics

(which they call functional selection dynamics) in which growth rates are as

follows:

 γ i
k (σ ) = α i (σ) +β i(σ )ϕ ui k ,σ−i( )[ ], (4.3)

with α i and βi  as in (3.1-2), and ϕ  Lipschitz continuous. The asymptotic

behavior of strictly dominated strategies for functional selection dynamics (4.3)

is summarized in the following

PROPOSITION 6. Suppose that γ  satisfies condition (4.3) and consider the

associated functional selection dynamics (2.1). If h  does not survive the iterated

deletion of pure strategies strictly dominated by mixed strategies and ϕ  is

strictly increasing and convex then, for all r(0) ∈∆ 0 , lim
t→ ∞

ρi
h (r(0), t) = 0 .

PROOF. See Hofbauer and Weibull (1996), Theorem 2.
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If the difference in growth rates is exactly proportional to the difference in

payoffs, then we have an AMD. In this respect, Proposition 6 generalizes an

earlier result of Samuelson and Zhang (1992), showing that aggregate

monotonicity is a sufficient condition for the extinction of strategies

(iteratively) strictly dominated by mixed strategies.

4.2. MD AND WEAKLY DOMINATED STRATEGIES

We now move on to weak dominance. We restrict our attention to the case of

pure strategies which are weakly dominated by other pure strategies, that is,

strategies h ∈ Si  for which there exists another pure strategy k ∈ Si  which never

yields a (strictly) lower payoff against all the opponentsí mixed strategy

profiles:

 ui(h,σ− i
* ) ≤ ui(k i ,σ− i

* ), ∀ σ− i
* ∈∆ −i ,

with ui(h,σ− i
* ) < ui(k i ,σ− i

* ) for some σ− i
* ∈∆ − i  and, a fortiori, ∀ σ−i

* ∈∆ −i
0 .

Consider the extensive form game of perfect information of Figure D, known

in the literature as the Entry Game.26

FIGURE D

The Entry Game

In this game, Anna (the potential entrant) has to decide whether to challenge

Beppe (playing strategy D) under the threat that Beppe (the incumbent) may

fight back (playing d in return). This would lead to an inferior outcome for both

players. She also know that Beppeís threat to fight back is not credible, since

her action is observed by Beppe before he has to move and he has no incentive

to carry out the threat. The game of Figure D has a Nash (subgame-perfect)

equilibrium in pure strategies, namely (D,c), and a component (that is, a closed

                                          
26See Selten (1978).
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and connected set) of Nash equilibria with the common property that Anna

plays
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C with probability 1 and Beppe plays his weakly dominated strategy d with

probability x ≥ 1 / 3. Let the symbol NE denote this component, which signals

the presence of alternative best replies to the equilibrium strategy C.27

Figure E traces some interior trajectories of the RD for the Entry Game.

FIGURE E

The RD and the Entry Game

As the diagrams show, there are interior trajectories leading to NE. In other

words, for some interior solutions, the playersí limiting behavior may fail to

eliminate weakly dominated strategies.

PROPOSITION 7. The subgame perfect-equilibrium D,c( )  is the unique

asymptotically stable restpoint for the RD. All Nash equilibria in the relative

interior of NE are stable and are the limit point of some interior trajectory.

PROOF. See Gale et al. (1995), Proposition 1. ð

This result, which contrasts standard game-theoretic analysis, seems

counterintuitive also from an evolutionary perspective. In fact, if initial

                                          
27A detailed account of the dynamic properties of games with alternative best replies is
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conditions lie in ∆0 , as it is commonly assumed by the evolutionary literature,28

weakly dominated strategies will always yield strictly lower payoffs than those

strategies which dominate them, at least in any finite time. This is essentially

because the system will never reach in finite time one of the faces of ∆  in which

the dominant and the dominated strategy yield the same payoff.

As we know from Proposition 7, this is still not sufficient to ensure the

extinction of a weakly dominated strategy. However, if a weakly dominated

strategy does not vanish, then all the opponentsë pure strategies against which

the dominated strategy yields a lower payoff than the dominant strategy are

bound to get eliminated. This result, first proved by Nachbar (1990) in the case

of MD which converge to a Nash equilibrium, has been substantially

generalized in subsequent works.29 As it turns out, the same result can be

fruitfully applied to analyze the convergence properties of weakly dominance

solvable games, once its implications are suitably translated into an alternative

notion of dominance.

DEFINITION 4. Fix some regular dynamic (2.1). A pure strategy h ∈ Si  is said to

be strictly τ -dominated by some pure strategy k ∈ Si  (h <τ k  hereafter) if we can

identify a time τ  and a non-empty compact set C−i ⊆ ∆ − i such that

ρ−i (r(0),t) ∈ C− i , ∀ r(0) ∈∆ 0 , ∀ t > τ , (4.4)

ui(h,σ− i) < ui(k,σ− i) , ∀ σ−i ∈ C− i. (4.5)

Moreover, h is weakly τ -dominated by k (h ≤ τ k  hereafter), if (4.4) holds and

we replace (4.5) by the following conditions:

ui(h,σ− i) ≤ ui(k,σ− i) , ∀ σ−i ∈ C− i, (4.6)

ui(h,σ− i) < ui(k,σ− i) , ∀ σ−i ∈ C− i
0 , (4.7)

                                                                                                                               
provided by Samuelson (1994).

28This assumption is justified by the fact that a strategy that has zero weight at time zero
would also have zero weight at all subsequent times. Thus, if initial conditions were not
completely mixed, the dynamics would then operate on a different game.

29See Cressman (1996), Proposition 3.1 and Weibull (1995), Proposition 5.8.
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where C−i
0 ≡ C−i ∩ ∆− i

0 .

Definition 4 establishes a weaker condition of dominance which is defined

only with reference to the dynamics under consideration.30 This definition is

based on the existence of a finite point in time, τ , after which (independently of

the initial conditions) the system is confined into a compact subspace in which

the usual conditions of dominance hold.

Some interesting properties of the asymptotic behavior of τ -dominated

strategies are contained in the following propositions.

PROPOSITION 8. Suppose that f  satisfies condition (2.3) and consider the

associated MD (2.1). If h <τ k  then, for all r(0) ∈∆ 0 ,

lim
t→ ∞

ρi
h (r(0), t)

ρi
k (r(0), t)

= lim
t→ ∞

ρi
h (r(0),t) = 0  .

PROOF. See Ponti (forthcoming), Proposition 4.2.ð

Let ω(r(0))  define the ω −limit set of ρ r(0), t( ); i.e.

ω(r(0)) ≡ σ ∈∆ ρ(r(0), tm ) → σ for some sequence tm m =1

∞{ }.

PROPOSITION 9. Suppose that f  satisfies condition (2.3) and consider the

associated MD (2.1). If h ≤ τ k  then

i) lim
t→ ∞

ρi
h (r(0), t)

ρi
k (r(0), t)

≡ L i
h,k( ) (r(0)) ≥ 0 for all r(0) ∈∆ 0 ;

ii )if L i
h,k( ) (r(0)) > 0 then ui(h,σ− i) = ui (k ,σ−i ), for all σ− i ∈ ω− i(r(0));

iii) if j ≤τ h  then j ≤τ k .

PROOF. See Ponti (forthcoming), Proposition 4.1.ð

                                          
30If h  is strictly (weakly) dominated by k , then h  is also strictly (weakly) τ -dominated by

k . In this case, τ = 0  and C−i = ∆−i .
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By (4.8) the ratio 
ρi

h(r(0),t)

ρi
k(r(0),t)

 must converge, whether player i’s mixed strategy

converges or not. By (4.9), if 
ρi

h(r(0),t)

ρi
k
(r(0),t)

 converges to a positive constant, this

implies that both pure strategies h and k must yield the same payoff against all

mixed strategy profiles in ω− i(r(0)). Finally, (4.10) ensures that the weak τ -

dominance relation is transitive, as is the ìclassicalî definition of dominance.

Proposition 9 better explains to which extent the intuition ìdomination

implies extinctionî holds and how this is related to the performance of strategies

h and k in the limit. In particular, the extinction of a weakly dominated strategy

h is guaranteed only if, in the limit, its relative performance is uniformly worse

(i.e. h is strictly τ -dominated).

We provide the reader with an application of Propositions 8-9 to prove

convergence in the case of the Entry Game

PROPOSITION 10. Suppose that f  satisfies condition (2.3) and consider the

associated MD (2.1) in the case of the game of Figure D. For all r(0) ∈∆ 0 ,

ρ(r(0), t) converges to a Nash equilibrium.

PROOF. In the Appendix.

In the remainder of this section, we review some theoretical results which

apply similar techniques to study the convergence properties of other weakly

dominance solvable games.

FINITELY REPEATED PRISONERÍS DILEMMA. Cressman (1996) shows that, in

the finitely repeated Prisonerís Dilemma, all interior trajectories of the RD

converge to a Nash equilibrium, that is, an outcome equivalent to the unique

subgame-perfect equilibrium by which both players to defect at all stages.

TWO-PLAYER EXTENSIVE FORM GAMES OF PERFECT INFORMATION WITH

DISTINCT PAYOFFS. Also for these games the use of backward-induction (or the

iterative deletion of weakly dominated strategies) selects a unique subgame-



29

perfect Nash equilibrium outcome. Cressman and Schlag (1998) restrict their

analysis to the RD and prove (among other properties) the following

THEOREM 1. every interior path converges to a Nash equilibrium.

THEOREM 2. For "simpleî games, (games of perfect information in which at

most three consecutive decisions are made), the Nash equilibrium component

which contains (i.e. is outcome-equivalent to) the backward induction solution

is the unique interior asymptotically stable set.

Theorem 1 identifies a class of games for which an equilibrium notion

(namely, Nash equilibrium) accurately describes the asymptotic play of a

particular evolutionary dynamic (namely, the RD). However, this result does not

support more stringent equilibrium requirements like, for example, subgame-

perfection. Non subgame-perfect Nash equilibria may be limit points of a non-

zero measure set of interior trajectories, as we already know from Proposition 7.

We also learn from Theorem 2 that the Nash equilibrium component NE of

Figure E cannot be asymptotically stable, although it is in the limit set of the

RD. Trajectories starting arbitrarily close to NE move away from it and never

come back, where the same phenomenon does not occur when we consider the

subgame-perfect equilibrium (D,c). Finally, asymptotic stability of the

backward induction solution is guaranteed by Theorem 2 only for games that

are simple in Cressman and Schlagís terminology. For more complex games

such an asymptotically stable set may even fail to exist.

MD AND THE CENTIPEDE GAME. The results we just reviewed have been

proved for the RD only . However, in his evolutionary analysis of the Centipede

Game (a game of perfect information with distinct payoffs) Ponti (forthcoming)

shows how Propositions 8-9 can be used to generalize all the results above to

MD. As we noticed in the introduction, this generalization allows more

flexibility in the use of continuous-time dynamics outside the field of

evolutionary biology, where the specific form of the RD is used to mimic a

stylized reproductive process.
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5. EVOLUTIONARY DYNAMICS WITH DRIFT

This section deals with some recent papers that employ continuous-time

dynamics to approximate perturbed adjustment processes. Here the

evolutionary dynamics (2.1) are slightly modified to account for the

imperfections that may interfere with the selection process.

This methodology has been prompted by the vast literature on discrete-time

stochastic processes with noise.31 In these models, the stochastic process takes

the form of an ergodic Markov chain. Ergodicity is obtained by introducing a

noise term, which makes every state reachable with some positive probability

within a finite time. In a biological context, this noise may be interpreted as a

mutation, i. e. a random alteration of the agentsí genetic code. In a learning

context, this noise can be interpreted as a mistake, i. e. a random alteration of

the agentsí behavior, or an effect of the playersí experimentation.

The formal steps to obtain a continuous-time deterministic dynamic starting

from a discrete-time stochastic process with noise involve approximation

techniques similar to those we already used in section 3. Consider I populations

of fixed size P whose members occasionally revise their strategy according to

some (unmodeled) learning process. Let us further assume that the expected

state of the system at time n + θ , given that the state at time n  is r(n) = r  can be

written as follows:

E r(n + θ) r[ ] = F(r) + λG(r). (5.1)

To interpret (5.1), we can think of F  as the selection dynamics and G  as the

noise term. Samuelson (1997: p. 172). justifies the presence of this perturbation

on the ground that: ì...like any model, the selection process is an approximation,

                                          
31See, for example, Kandori et al. (1993) and Young (1993). Vega Redondo (1996) provides

a comprehensive survey on this research field.
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designed to capture the important features of a problem, while excluding other

considerations...î.32 By analogy with (3.3), if the derivatives of F  and G  are

Lipschitz continuous, we can take a Taylor expansion of (5.1) to obtain

E ∆r r[ ] = θ f (r) + λg(r)( )+ o(θ2 ) , (5.2)

where f  and g  are the derivatives of F  and G . Divide both sides by θ , taking

limits for P → ∞  and θ → 0, such that 
∆r

θ
→ c > 0  as θ → 0 to get

Ý r (t) = f (r(t)) + λg(r( t)), (5.3)

that is, a ìperturbedî version of the dynamics (2.1), provided λ  (the drift level)

is sufficiently small.33

Gale et al. (1995) use a special case of (5.3) to study the evolutionary

properties of the Ultimatum Game. In this game Anna offers Beppe a share of

some fixed cake. If Beppe accepts the offer, then the pie is shared as agreed; if

Beppe rejects the offer, nobody gets anything. This game has a unique

subgame-perfect equilibrium in which Anna offers (an ε  more than) nothing

and Beppe accepts. The intuition is the same as in the Entry Game: if Anna

knows that Beppe is rational, she can rely on the fact that Beppe will accept

anything, no matter how little it is. In fact, there is a clear analogy between the

two games. If we restrict the possible offers to high or low, assuming that a high

offer is automatically accepted by Beppe, then the Ultimatum Game is

strategically equivalent to the Entry Game of Figure D.34

The Ultimatum Game is a game for which the backward induction hypothesis

is universally rejected by the experimental evidence, although the various

                                          
32See also Boylan (1995) and Seymour (1994) for a more detailed account of the

technicalities presented in this section.
33This reflects the fact that all the major forces governing the dynamics should be captured

by f . The terminology of drift (as opposed to noise) highlights the fact that the latter is a
random variable, whereas the former is a purely deterministic dynamic.

34This is why Gale et al. (1995) refer to the game of Figure D as the Ultimatum Minigame.



32

experimental results provide no clear alternative hypothesis.35 To explain the

fundamental weaknesses of backward induction in the context of the Ultimatum

Game, Gale et al. (1995) propose the following dynamics:

Ý r i
k (t) = ri

k (t) ui k ,r− i( t)( )− ui r( t)( )( )+ λ i µ i
k − ri

k ( t)( ); λ i ≥ 0,µ i
k = 1

K i

. (5.4)

In Gale et al. (1995), the dynamic (5.4) is derived from a population game in

which agents die (or leave the game, or experiment new ways of playing) at a

fixed rate λ idt . Those who die are replaced by novices (or experimenters) who

play each strategy k  with equal probability 
1

Ki

, while the aggregate behavior of

the rest of the population follows the RD.

Figure F traces some trajectories of (5.4) for the Entry Game with different

drift levels.

FIGURE F

RD with drift and the Entry Game

Figure Fi) shows trajectories of the RD without drift that mimic the behavior

already shown in the phase diagram of Figure E. Figure Fii) shows trajectories

of (5.4) when both λ A  and λ B  are ìnegligibleî. In this case, the drift against

                                          
35A detailed accoun on the experimental evidence on the Ultimatum Game is provided by

Roth (1995).
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Beppeís weakly dominated strategy d is sufficient to push the system away from

NE. In Figure Fiii) λ B  is substantially higher than λ A . In this case, the system

(5.4) has two restpoints close to NE, one of which is asymptotically stable. In

other words, although the drift points toward the relative interior of the state

space, this may not be sufficient to destabilize the Nash equilibrium component

in which a suboptimal action is played with positive probability.

It is possible to show that this behavior is not specific of the drift

parametrization of Figure Fiii). To show this, we replicate Gale et al. (1995)

results fixing µB
C ≡ µ , λ A = λ B = λ  and letting λ → 0. In other words, we prove

that their conclusions are robust to a different specification of the drift term in

which we do not fix the mixed strategy µ  played by the mutants, but let the drift

level be arbitrarily small.

PROPOSITION 11. Let RE
^

(µ)  be the set of restpoints of (5.4) for λ  sufficiently

close to 0.

a) For all µ ∈ (0,1) , RE
^

(µ)  contains the subgame-perfect equilibrium (D,c),

which is also asymptotically stable.

b) When µ  is sufficiently large, RE
^

(µ)  contains also two additional restpoints,

both belonging to   NE , one of which is asymptotically stable.

PROOF. In the Appendix.

Similar considerations apply when we consider (an appropriate finite normal

form of) the full Ultimatum Game. In this case, Gale et al. (1995) show, with

the aid of simulations, how the dynamic (5.4) yields as constant prediction one

of the Nash equilibria in which Anna offers a positive share of the cake and

Beppe accepts. In other words, the system converges to an outcome in which

the first-mover advantage is not fully exploited by the proposer (and, therefore,

the subgame perfect prediction is violated).
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As Binmore and Samuelson (1999) put it, in the Ultimatum Game drift

matters, as arbitrarily small perturbations yield dramatic changes in the dynamic

properties of the game. In particular, the existence of an asymptotically stable

equilibrium belonging to NE for a non-negligible set of admissible

perturbations weakens the subgame-perfect prediction. If initial conditions are

sufficiently close, Beppeís ìincredible threatî may be sustainable even in the

presence of perturbations.36

6. CONCLUSION

Although promising, the literature reviewed in this paper leaves many

questions unanswered, challenging the discipline with new puzzles. For

example, further theoretical work (as in Ritzberger and Weibull (1997)) is

needed on the convergence properties of evolutionary dynamics outside the

class of dominance solvable games. Similar considerations hold for the

literature on perturbed evolutionary dynamics, whose results (with the sole

exception of Binmore and Samuelson (1999)) still refer to specific classes of

games and dynamics.

Above all, now that a formal (although preliminary) microfoundation of these

dynamics has been established, its empirical relevance remains open to

discussion. That is, to which extent the behavioral models presented in section 3

are capable of solving the grand questions from which we started.

                                          
36See also Cabrales and Ponti (forthcoming) and Ponti (1998) for the evolutionary properties

of Nash equilibrium refinements, such as subgame-perfection or iterated deletion of weakly
dominated strategies, in the context of implementation theory.
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APPENDIX

PROOF OF PROPOSITION 10. To prove the proposition, it is enough to show that

all interior trajectories converge. This is because, once convergence has been

proved, convergence to a Nash equilibrium follows directly from Proposition

1ii).

Fix a generic initial condition r 0( ) ∈∆ 0 . First note that Beppe has a weakly

dominated strategy (namely, d). Thus, by Proposition 9i),

ρB
d (r(0),t)

ρB
c (r(0),t)

→ L B

(d,c)
(r(0)) ≥ 0 as t → ∞ . This already implies convergence of

ρB(r(0),t), since SB  contains only two strategies. Two alternatives need be

discussed:

i) L B
(d,c )(r(0)) ≥ 1 / 2 .That is, L B

(d,c )(r(0)) is at least as high as the threshold value for

ρB
d (r(0), t)

ρB
c
(r(0), t)

 that makes Anna indifferent between her pure strategies C and B. This

implies D ≤τ C  (fix τ = 0  and CB = {x ∈ [0,1] x ≥1 / 3}), which in turn implies, by

Proposition 9i), convergence of ρ(r(0), t) to a Nash equilibrium.37 More

precisely: if L B
(d,c )

(r(0)) ≥ 1 / 2 , then  ρ(r(0), t) → NE . This is because, by

Proposition 9ii), L B
(d,c )(r(0)) > 0  implies ρA

D (r(0),t) → 0 .

ii) L B
(d,c )(r(0)) < 1 / 2  (i.e. L B

(d,c )(r(0)) =1 / 2 − ε ). This implies C <τ D  (fix

τ = t ≥ 0 x =
1 − ε / 2

3
 
 
 

 
 
 
 and CB = {x ∈ [0,1] x ≤

1 − ε / 2

3
}) and, by Proposition 8,

ρA
C (r(0),t) → 0  (i.e. ρA

D (r(0), t) →1). This in turn implies d <τ c  (i.e. convergence to

the subgame-perfect equilibrium (D,c)).

Since this exhausts all cases, the result follows.

                                          

37D ≤τ C  also when L B
(d,c )

(r(0)) =1 / 2 . This is because, by weak dominance of d, 
ρB

d (r(0), t)

ρB
c
(r(0), t)

is decreasing in t for all t > 0 . In consequence, uA (D,ρB (r(0), t)) < uA (C,ρB (r(0), t)) for all
t > 0 .
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PROOF OF PROPOSITION 11. For the game of Figure D, the RD with drift is as

follows.

Ý y = y(1− y )(3x −1) + λ (
1

2
− y), (A.1)

Ý x = x(1− x )(y −1) + λ µ − x( ). (A.2)

Denote by RE (Γ )  the set of restpoints of (A.1-2) when λ = 0 , that is, the set of

restpoints of the RD. It is straightforward to show that RE (Γ )  contains (together

with all the pure strategy profiles) only the component

RE 1 = (x ,y ) ∈∆ y =1,x ∈ [0,1]{ }.

We know, from Binmore and Samuelson (1999), Proposition 1, that every

limiting rest point of (A.1-2) as λ → 0 must lie in RE(Γ). Only two cases need be

discussed.

CASE 0: λ → 0 and y → 0. This yields (0,0) and (1,0) as possible candidates for

the limit points in RE
^

(µ) . The first (second) point is (not) a limiting restpoint of

(A.1-2) since it is a sink (source) of the unperturbed dynamics. We also know,

from Binmore and Samuelson (1999), Proposition 2, that (0,0) must be

asymptotically stable, since it is a sink of the unperturbed dynamics. This

completes part a) of the proof.

CASE 1: λ → 0 and y →1. Setting Ýy =0 in (A.1) yields the following:

1 − y

λ
 =

y −1/ 2

y(3x −1)
. (A.3)

Denote by x1 a limiting value for x in a rest point, if a limit exists, when y →1. It

must be

lim
y →1
λ →0

1 − y

λ
=

1

2(3x0 −1)
(A.4)
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Setting 
Ý x 

λ
=0, substituting 

(1 − y)

λ
 with the right hand side of (A.3) and taking

limits leads to the following solutions for x1 :

!!

"!
x 1 =

1 + 6µ + 1 − 28µ + 36µ 2

10
and 

!

#!
x 1 =

1 + 6µ − 1 − 28µ + 36µ 2

10
.

We know from (A.2) that x1 must be a real, positive number, with 1 / 3 < x1 < µ .

For the expression under the square root of the numerator to be nonnegative, it

must be µ ∈ [(7 + 2 10) / 18,1]. To study the stability properties of !!
"!
x 1  and !!

#!
x 1  we

look at he Jacobian matrix for the dynamic (A.1-2):

J(x,y,λ ) =
(3x −1)(1 − 2y) − λ 3y(1− y )

x(1 − x) (1 − 2x )(y −1) − λ .

We evaluate trace and determinant of J(x,y,λ ) , factorizing for λ and

substituting λ, y ,
(1 − y)

λ
 with their limiting values. The limiting trace of J(x,y,λ )

equals to 1 − 3x1, which is negative for all feasible x1 . The sign of the limiting

determinant of J(x,y,λ )  coincides with the sign of the following expression:

ψ (x1 ) = (3x1 −1)(1 − 2x1 ) + 2(3x1 −1)2 − 3x1(1 − x1) , (A.5)

which is positive only in the feasible domain of !
"!
x 1 . In consequence, !

"!
x 1  is

asymptotically stable whereas !!
#!
x 1  is not. This completes part b) of the proof.ð
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