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STOCHASTIC OLG MODELS, MARKET STRUCTURE AND
OPTIMALITY

Subir Chattopadhyay and Piero Gottardi

ABSTRACT

For a general class of pure exchange OLG economies under uncertainty, we provide
a complete characterization of the efliciency properties of competitive equilibria when
markets are only sequentially complete and the criterion of efficiency is conditional Pareto
optimality. We also consider a particular case in which markets fail to be even sequentially
complete and provide a characterization when the criterion of efficiency is weakened to
ex post Pareto optimality.
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1. INTRODUCTION
We consider a general class of pure exchange, two-period overlapping generations (OLG)
economies under uncertainty and characterize the optimality properties of competitive
equilibria under different market structures and with respect to alternative criteria of
optimality.

Following Cass’ [6] characterization of efficient growth paths in terms of the properties
of their supporting competitive prices (later generalized in Benveniste [3]), Balasko and
Shell [2] and Okuno and Zilcha [20] provided similar results for the competitive equilib-
ria of standard, deterministic OLG economies.! These authors considered pure exchange
economies under certainty with a fixed number of goods available in every period, a fixed
number of two-period lived agents born in every period, and a complete set of markets at
the beginning of history where all agents are free to trade.? They showed that (i) if aggre-
gate endowments are uniformly bounded above and preferences are locally nonsatiated,
strictly convex and the curvature of the indifference sets is bounded below uniformly
across agents, then divergence of the series obtained in the “Cass criterion” (where the
terms appearing in the series are the reciprocals of the norms of the price vectors) im-
plies that the associated competitive allocation is Pareto optimal; (ii) if preferences are
strictly monotonic, the curvature of the indifference sets is bounded above uniformly
across agents and the equilibrium allocation is interior, then convergence of the same se-
ries implies that the competitive allocation is not Pareto optimal. The argument exploits
a pair of curvature conditions for each agent; these are inequalities which relate changes
in the composition of expenditure across the two periods of the agent’s life, relative to
the composition at the equilibrium level of consumption, to changes in the agent’s utility
level. The interaction between the curvature conditions and the feasibility conditions lead
to the characterization result. This result has been subsequently extended, by Burke [5]
and Geanakoplos and Polemarchakis [12] among others, in particular to economies where
the number of agents born, and the number of commodities available, vary over time.

Our focus is on OLG economies with uncertainty. No special assumptions are made
on the structure of the uncertainty; it is simply assumed to be represented by a date-
event tree where each node has a finite number of successors. As a consequence, the
number of (contingent) commodities at each date increases over time, and will typically
tend to infinity. If we were to maintain the assumption that agents are free to trade on
a complete set of markets at the initial period of the economy, so that agents evaluate
their consumption plans in terms of their ex ante utility (i.e. before any realization of the
uncertainty), then the only complication that we would face is the fact that the dimension
of the commodity space increases over time (and, typically, tends to infinity). In this set-
up, agents’ preferences are strictly monotone in all commodities available at a given date
and the characterization of those complete market competitive equilibrium allocations
which are ex ante Pareto optimal is easily obtained from the results proved in [5] and [12]
for general deterministic OLG economies; it is given by the divergence of a series whose
terms are the reciprocals of the norms of the vector of all prices at a date.

1See also Bose [4].

2 As is well known, the equilibrium allocations with this market structure are the same as the equilibria
with a sequential structure of markets—a system of spot markets and one asset, possibly in nonzero net
supply (e.g. fiat money), allowing transfers of income across periods.



Under uncertainty we cannot find a sequential structure of markets where agents trade
only after they are born and which supports the same equilibrium allocations as when
agents have unrestricted access to a complete set of markets at the initial date; this is
in contrast with the case of certainty. When trading is sequential, agents will in fact be
unable to insure against the realization of the uncertainty at the time of their birth so
that markets are necessarily incomplete. The “most complete” market structure which
is compatible with the demographic structure of the economy and the sequential nature
of trading is called sequentially complete markets where, in each period, and for each
realization of the uncertainty, spot markets exist for every commodity and there is also
a complete set of one-period contingent claims whose payoff is contingent on all possible
events next period, conditional on the current event. By trading in these markets in the
two periods of his life, each agent can fully insure against the realization of the uncertainty,
but only conditionally on the event at his birth.

When markets are only sequentially complete, typically, competitive equilibria will
not be ex ante Pareto optimal. A more appropriate notion for evaluating the efficiency
properties of allocations when trades take place sequentially is the notion of conditional
Pareto optimality (CPO), first proposed by Muench [19].> According to this criterion,
agents’ welfare is evaluated by conditioning their utility on the event at the date of their
birth. Agents are thus distinguished not only according to their type and their date of
birth but also according to the event at that date, and an agent’s preferences are defined
over a subset of all the commodities available in the two periods of that agent’s lifetime
since the commodities which enter the utility function of an agent born at date t are the
date ¢ and ¢t + 1 commodities whose availability is contingent on the occurrence of the
particular event at the agent’s birth.

The problem of evaluating a possible reallocation of resources in terms of the CPO
criterion, where the reallocation is relative to a competitive equilibrium obtained with
sequentially complete markets, cannot be reduced to a one-dimensional problem in which
only the change in the total expenditure at a date matters; this is in contrast to the
case of the deterministic OLG model (or, more generally, to the complete markets case).
With uncertainty, a reallocation of resources induces sequences of transfers (of income or
“value”) along distinct paths in the date-event tree with the feasibility condition satisfied
at each date-event. When markets are only sequentially complete, agents of the same
type born at the same date but in different events are considered to be distinct so that
nonzero levels of transfers conditional on more than one event at a given date lead to
an extremely rich set of redistributional possibilities since they affect different agents.
Moreover, as each agent cares about only some of the commodities available at a date,
the curvature conditions that one obtains are inequalities which consider changes in ex-
penditure in the event at which the agent is born and the changes in expenditure in the
set of immediate successor events. Whether or not a reallocation is improving depends
on the interaction, across a collection of paths, among the transfers that the reallocation
generates; in particular, the changes in expenditure at different events at the same date,
and not just the value of the change at a given date, need to be considered. Hence the
issue of characterizing those equilibrium allocations, obtained with sequentially complete

3See Dutta and Polemarchakis [11] for a discussion of the various criteria for optimality in OLG
economies under uncertainty.



markets, which are efficient relative to the CPO criterion is far more complex than the
analogous problem in the deterministic case (and its generalizations as presented in [5]
and [12]) and those earlier results cannot be easily extended to the economies considered
in this paper.

One of the main results of this paper is the derivation of a necessary and sufficient
condition for the conditional Pareto optimality of competitive equilibria with sequentially
complete markets under general assumptions on the economy; this is established in The-
orems 1 and 2. The condition we obtain requires us to consider, for each given collection
of paths (or more precisely, for each “sub-tree”), the behaviour of all the price series as-
sociated with these paths. The terms appearing in each price series are the reciprocals of
the norms of the vectors of prices at a node, multiplied by the values of a weight function
defined for each node in the sub-tree. As we argued above, the consideration of possible
redistributions of resources requires us to examine the interaction among transfers defined
across a collection of paths; hence we need to evaluate the relative “importance” of various
nodes at each date. This is indeed the role of the weight function whose values can be
interpreted as a conditional probability of reaching a node from the root of the sub-tree.

The form of the condition that we obtain is rather different from the one derived for
the deterministic OLG model (or, equivalently, for the case of complete markets) though
it reduces to that condition in the special case in which there is no uncertainty. At a more
abstract level, our results indicate how a characterization of efliciency can be obtained in
the more general case in which agents care for only a subset of the set of commodities
available at each point in time.*

The necessary and sufficient condition presented in Theorems 1 and 2 is not easy to
verify and to work with. Hence, in Theorem 3 and Corollary 1 we provide alternative
sufficient conditions for CPO which are stronger but easier to verify. These conditions
require the consideration, again for each given collection of paths, of a single series whose
terms are the reciprocal of the sum of the norms of the vectors of prices across nodes at
a given date.

When we consider a restricted class of economies, and, in particular, a more specific
uncertainty structure, our characterization result takes a simpler form. For the special case
of one good OLG economies with stationary Markov uncertainty, we show (in Theorem
4) that the sufficient condition derived in our Corollary 1 is also necessary for stationary
equilibria with sequentially complete markets to be CPO, and reduces to a very simple
condition on the value of the dominant root of the matrix of contingent claim prices.

When markets are not sequentially complete, i.e. when agents are unable to insure
against all sources of uncertainty affecting them after their birth, competitive equilibria are
typically not even CPO. A general investigation of the efficiency properties of competitive
equilibria in this case goes beyond the scope of this paper. Here we will only examine the
case of a simple asset structure with a single one-period asset, a bond with a constant
real return, and examine its efficiency properties with respect to a notion of optimality
which is weaker than CPO, ex post Pareto optimality (EPPO). According to this criterion,

“Deterministic OLG economies in which agents live for more than two periods provide another example
where the composition of transfers at a date across agents born at different dates needs to be considered.
The reformulation of such an economy as an economy with two period lifetimes results in agents caring
about only a subset of commodities available in each period in the transformed economy.



agents’ welfare is evaluated by conditioning not only on the state when young but also
on the state realized in the second period of their lives. Agents are then distinguished
by the realization of the uncertainty over their entire lifetime. In this situation efficiency
concerns only the allocation of commodities at each given date-event, and over time, but
not across states (i.e. not the allocation of risk).

In Theorem 5 we provide necessary and sufficient conditions for the ex post Pareto
optimality of competitive equilibria when a bond is the only asset. The conditions we
obtain are again on collections of series of weighted reciprocals of the norms of price
vectors, as in Theorems 1 and 2. A crucial difference, however, is the fact that the
weighting factor is now univocally determined by the average of the agents’ Lagrange
multipliers (thus, to evaluate the efficiency of competitive equilibrium allocations we need
to know not only the supporting prices but also the Lagrange multipliers of all agents).

There has been some earlier work on the efficiency properties, with respect to the
CPO criterion, of one commodity OLG economies with stationary uncertainty (Peled
[21], Manuelli [17], Zilcha [24], etc.). We discuss in detail the relation of our work to this
literature and show that all these earlier results can be obtained as special cases of our
results.

The rest of the paper is structured as follows. Section 2 presents the model and nota-
tion. In Section 3 we present a characterization of equilibrium allocations that are CPO
when markets are sequentially complete, while in Section 4 we focus our attention on
stationary equilibria. In Section 5 we introduce a (particular) incomplete asset structure
and we characterize the efficiency properties of equilibria obtained with that asset struc-
ture with respect to the weaker EPPO criterion of optimality. All proofs are collected in
Section 6.



2. THE MODEL
We consider a general, two period, pure exchange overlapping generations (OLG) economy
under uncertainty. The economy evolves in discrete time with uncertainty described by
an abstract date-event tree as in Chapter 7 of Debreu [9] or Radner [22].

In this section (and in most of the paper) we will consider the case in which markets
are sequentially complete so that agents are able to insure against all risks that arise after
they are born but are unable to insure against the risk of being born in a particular event.
This situation is usually described by assuming that at every date-event, there exists
a complete set of spot markets and one period forward markets, contingent on all the
possible realizations of uncertainty at the next date given the current date-event. Here
we consider the following equivalent structure of markets: at the initial date, there exists
a complete set of Arrow-Debreu contingent commodity markets, but each agent is allowed
to trade only on the markets for delivery contingent on the event at his birth and on the
events that can occur in the next period given the event at birth. It is easy to show that
the agent’s opportunities for trade are the same in the two market structures.

We turn to a formal description of the model and the notation used.

Time is discrete and dates are denoted by t =1,2,3,---.

Uncertainty is described by a date-event tree which is defined by (i) oo, the root of
the tree, (ii) finite sets X, for ¢ > 1, and (iii) a set of functions f° : 3y — 0y and
ft: X — X, for t > 1, where each function is surjective. Define ¥ := Uy Y; and
' := X U {0p}; we will abuse notation and use I' to denote a generic date-event tree.
Elements of I" are called nodes (to be thought of as the “date-events” or simply “events”),
and a generic node is denoted by o. Y is the set of all nodes at date ¢; thus if o € ¥y we
say that o is a node at date ¢ (sometimes the notation o, will be used to stress the fact
that we are referring to a node at date t), and the function f'"!(0) identifies the node at
t — 1 which is the unique predecessor of 7.’

Given a node o € 3, t(0) denotes the value of ¢ at which o € %;; the set of immediate
successor nodes of ¢ will be denoted by ot (thus, if 0 € ¢, ot is the set of nodes, at date
t + 1, such that o is their immediate predecessor). Similarly, the unique predecessor of a
node o, given by ft(g)*l((j), will also be referred to as o_;. The total number of nodes at
t, #3, will be denoted by S;; S(0) := #0™" is then the number of immediate successors
of o (or the branching number of 7).

A path is defined by an infinite sequence of nodes {o¢}¢>1 such that, for all t > 1,
ot = [Y(0¢11), and will be denoted by 0.

L commodities are available for consumption at each node o € 3.

At each node o € X a generation of H agents is born. Each agent lives at two dates,
t(0) and t(0) 4+ 1. The fact that agents are unable to trade in markets offering insurance
against the event at their birth is captured by requiring that the consumption plan of

5This definition of a date-event tree leads directly to another standard definition in which the ordered
pairs (f'(04+1),0¢+1) are called arcs and induce a partial order on T' with the properties that (i) each
node traces its origin, by the partial order of precedence, to 0¢, and (ii) each node, except 0y, has exactly
one predecessor which is also an element of T'.

6Since all the functions fi(-) are surjective, S(c) > 1 for all nodes. We treat this restriction (i.e. the
economy “never ends”) as part of the definition of a tree. Given that our interest is in optimality, this is
without loss of generality.



an agent specify the level of consumption in the event at birth and in its immediate
successor nodes, and that his preferences be defined over such plans. So, an agent can
be distinguished according to his type h and the node identifying the event at his birth;
consequently, a member of generation o of type h is denoted by (o, h).

In addition, there is a set of H one-period lived agents who enter the economy at each
node o € ¥ at date 1; they constitute the generation of the “initial old”, and are indexed
by (o, h,0), where o € ¥;.

Each agent (0,h) is described by a consumption set, X, , an endowment vector,
w(o, h), and a utility function, us;(+) (for the initial old, X, 5., w(o;h,0), and ugp.()).
A consumption plan for agent (o, h) will be denoted by x(o,h) (z(o; h,0) for the initial
old).”

For all (o,h) € ¥ X H, the elements of the endowment vector w(o, h) of agent (o, h),
describing the endowment at birth and in all successor nodes, will be written as follows:
(w(o;0,h), (w(d';0,h))yicer). Similarly, the elements of the consumption vector z(o, h)
are (2(0:0, ), (20" 3, 1)) ey )

Denoting by w(o) the total endowment at node o, we have then:

w(o) := Y pepw(o;0,h) + X pepw(o; h, o) for o € 3,

w(o) == pepw(o;0,h) + X pepw(o;0-1, h) for 0 € U3

Agents’ preferences and endowments are assumed to satisfy the following standard
conditions:

ASSUMPTION 1:
i) 1<L<oo, 1<H<oo,and 1<S5(0)< S <ooforalloel.
(iia) Forall (6,h) € Xy x H, X;p, = RY, w(o;h,0) € RY,

Uono @ Xono — R is C?, strictly monotone, and differentiably strictly quasi-
concave.
(iib) For all (0,h) € T x H, Xop = RETO) (0 n) € RO

Ugp : Xop — R is C?, strictly monotone, and differentiably strictly quasi-concave.
(iii) Forall 0 € ¥, w(o) € RY .

DEFINITION 1: A feasible allocation x is given by an array ((x(0; h, 0)) @ nyesxams (2(0, b)) (onyesxnm)
such that z(o; h,0) € Xop, for all (o,h) € ¥y x H, z(0,h) € Xop, for all (o,h) € ¥ x H,
and

Shenx(o;0,h) + Y hegx(o;h,0) <w(o) for all 0 € X,

Shenx(o;o,h) + Y pepx(o;o-1,h) <w(o) for all 0 € UpsoX.

"The fact that the number of commodities available at each node and the number of agents born at
each node are date-event independent is without loss of generality; our results can be easily extended to
more general specifications so long as the total number of commodities, and agents born, before a given
date is finite, and this for all dates. Our specification prevents the notation from getting more cluttered.



Applying the notion of Pareto efficiency to the economy described above, where agents
are distinguished by the event at their birth, yields the criterion of conditional Pareto
Optimality, first proposed by Muench [19]:

DEFINITION 2 (CPO): Let x be a feasible allocation. x is conditionally Pareto optimal
(CPO) if there does not exist another feasible allocation Z such that
(i) forall (o,h) € 1 X H, Usp0(Z(0;h,0)) > tppo(x(0;h,0)),
for all (o,h) € £ X H, ugpn(Z(0, h)) > uspn(z(o, b)),
(ii) either for some (07, 1) € X1 X H, g o(Z(0'; 1, 0)) > tgr pro(z(0'; B, 0)),
or for some (o', h') € & x H, ug p(Z(0', 1)) > ugrpr((0”, 1)).

In addition to allocating commodities optimally at each node, a CPO allocation re-
quires that the risk carried in the second period of the agents’ lives be allocated optimally.

We will define now competitive equilibria for the economy we described. A complete
set of contingent commodity markets is available at the initial date. Let p(c;) be the
vector of prices, quoted at the initial date, for contingent delivery of the L commodities
at the node o, at date t. A price system is then defined by a non-negative sequence {p; }+>1
where p, = ((p(0))ses,) € RiﬁL. Prices are normalized as follows: p;(0) = 1 where [ =1
and o0 € ;.

DEFINITION 3 (S-CE):® (z*,p*) is a competitive equilibrium with sequentially complete
markets (S-CE) if * is a feasible allocation, and,
(1) for all (o,h) € ¥y x H,
p*(o) - 2*(ash,0) < p*(0) -w(os h, o),
U o(x(03 1, 0)) > Uppo(x* (05 h,0)) = p*(0) - z(o;h,0) > p*(0) -w(o; h,o0),
(1) for all (o,h) € ¥ x H,
0 (0), (7 (0o ) - (0, 1) < (5(0), (5" (0" o) - (0, ),
Uon(z(0, h)) > upp(z*(0,h)) =
0 (0), (0" Do) - 2, 1) > (5*(0), (0 (0ot ) - (0, ).

REMARK 1: The date-event tree structure, together with Assumption 1, implies that
the set of nodes is countable; hence, so is the set of agents. The economy defined satisfies
also the other assumptions of Corollary 1 in Geanakoplos and Polemarchakis [12] so that
existence of S-CE is guaranteed. Furthermore, our assumption of strict monotonicity of
preferences implies that at an S-CE allocation or at a CPO allocation, the feasibility
condition holds as an equality at all nodes.

81t is easy to show that if, at each node 0 € X, there are L spot commodity markets and LS (o)
markets for delivery contingent on every possible realization 0’ € o (i.e. at every successor node), then
the specification of the agents’ budget constraints is the same as in Definition 3; as a consequence, the
set of equilibrium allocations is also the same.



3. SEQUENTIALLY COMPLETE MARKETS AND CPO
In this section we examine the efficiency properties of competitive equilibria with sequen-
tially complete markets with respect to the CPO criterion. We derive a necessary and
sufficient condition on equilibrium prices under which the equilibrium allocation is CPO.
As a preliminary step to the results we derive an implication of the curvature conditions
imposed on preferences by Assumption 1.

DEFINITION 4:° Let x(o,h) solve the utility maximization problem of agent (o,h) €
Y x H at prices (p(0), (p(0'))srcq+) such that || p(o) > 0, || p(a”) ||> 0 for all o’ € o+.
For k > 0, let

P,u(k) :=={p € R |forall (o, h) € X, satisfying (i) || Z(co,h) — z(o,h) |< k and
(11) won(Z(o, h)) > uppn(z(o, b)) we have

Yol 62<U a, h) > (51<(7 h) —I—p(51(0 h?‘)Q}

Ip(o)
where 61(0, h) := p(0)-[Z(0; 0, h)—x(0;0,h)], 62(0",0,h) := p(d’)-[Z(0"; 0, h)—x(0”; 0, h)],
for o' € ot.
(a) Givenk >0, p_, (k) is the lower curvature coefficient of agent (o, h) at (p(), (p(0”))orco+)
where Bah<k) =sup {p € P, ,(k)} if P, ,(k) # 0 and Bah<k> = —o0 if P, (k) = 0.1
(b) The preferences of agent (o, h) satisfy the non-vanishing Gaussian curvature condition
at (p(0), (p(0))orco+) if there exists k, ; > 0 for which &’h(ﬁa’h) > 0.

DEFINITION 5: Let z(0,h) solve the utility maximization problem of agent (o,h) €
Y x H at prices (p(c), (p(0”))grco+) such that || p(a) |> 0, || p(¢’) ||> 0 for all o € o+.
For k > 0, let

Pon(k) :={p € R |for all Z(c, h) € X, , satisfying (i) || Z(o,h) — z(o,h) ||< k
(ii) p(o) - [#(o;0,h) — x(0;0,h)] < 0 and
(1l1) Yyicot 62(0’,0,h) > —61(0,h) + p(‘sig(r;;ﬂﬂ we have
U (Z(0, h)) = uop(x(o,h))}

where 61(0, h) := p(0)-[Z(0; 0, h)—x(0;0,h)], 62(0",0,h) := p(d’)-[Z(0"; 0, h)—x(0”; 0, h)],

for o' € ot.

(a) Givenk > 0, g, n(k) is the upper curvature coefficient of agent (o, h) at (p(o), (p(0'))srco+)
where p, (k) :=1inf {p € Py p(k)} if Pon(k) # 0 and p,4(k) := oo if Py p(k) = 0.

(b) The preferences of agent (o, h) satisfy the bounded Gaussian curvature condition at
(p(a), (p(0”))grco+) if there exists kyp, > 0 for which 0o > p,4(ksn) > 0.

The fact that in Definitions 4 and 5, (0, h) is assumed to solve the utility maxi-
mization problem of agent (0,h) € X X H at prices (p(c), (p(0”))sreo+), together with
local nonsatiation of preferences, implies that the agent’s preferred set is contained in
the half-space defined by the budget constraint (i.e. x(c,h) minimizes expenditure) and

9Here, as well as in the rest of the paper, || - || will denote the Euclidean norm unless otherwise noted.
0The coefﬁment P, depends on z(o, h) but this dependence has been suppressed in order to simplify

the notation (hence the qualifier at “(p(0), (p(0')) vrco+)")-

10



hence £0h<k> > 0 and p,u(k) > 0 for all £ > 0; (b) in Definition 4 requires that the

inequality be strict, while (b) in Definition 5 imposes an upper bound. Lemma 1 shows
that Assumption 1 guarantees both of these properties for interior maxima.

LEMMA 1: Let (z*,p*) be an S-CE. If x*(o,h) € RJLF(J}JFS(U)) then, under Assump-
tion 1, the preferences of the agent (o,h) € X x H satisfy both i) the non-vanishing
Gaussian curvature condition, and i) the bounded Gaussian curvature condition, at prices
(p*(0), (p*(0"))greo+). In fact, for all k > 0 we have Bah<k) > 0 and for all k > 0 we have

o0 > ﬁo’,h(k‘) > 0.11

Part 1) of Lemma 1 says that, if the alternative consumption plan Z(o, h) improves
with respect to the optimal choice z*(o, h) of agent (o, h) at prices p*, then the difference
in value of the alternative plan must obey a quadratic relation; it requires that preferences
be locally nonsatiated and that they satisfy a differentiable form of strict quasiconcavity
(both of which are imposed in Assumption 1). Part ii) of Lemma 1 provides us with a
condition on the income transfers along the lifetime of an agent which ensures that we
have an improvement in the agent’s welfare; this result requires a minimum degree of sub-
stitutability among goods in the agent’s preferences (ensured by the strict monotonicity
and the smoothness of the utility functions imposed in Assumption 1).

Notice that the terms appearing in the two inequalities which define P, (k) and Py n(k)
in Definitions 4 and 5 are the norm of the price vector and the change in the expenditure
in the two periods of an agent’s life, where both are indexed by the events in which they
occur. This, as pointed out in the introduction, constitutes a crucial difference relative
to the case of certainty (or of complete markets) as it implies that transfers to and from
agents must be identified not only by the date but also by the event in which they take
place since, for the agent, transfers received at an arbitrary pair of events at the same
date are not substitutable unless both events succeed the event in which he is born.

In order to state the main results, we need some additional notation.

Given ¢ € T', we define a sub-tree (of the tree I') with root & € I', denoted by I, as a
collection of nodes such that (i) I'y C T', (ii) T's is itself a tree with ¢ as its root. Hence
the tree itself, I', is a sub-tree; so is any path, 0.

Given a sub-tree T's, a weight function is a function A, : I's — [0,1] such that
Sotcotrr, Ar, (o) =1 for all o € T';.

This function associates to the immediate successors (in the sub-tree I'; ) of each given
node nonnegative weights such that the weights sum to one. Hence, the weights Ar, ()
can be interpreted as a subjective conditional probability of reaching, from each given
node, the different immediate successor nodes in the specified sub-tree.

Given a pair (s, Ar,), the induced weight function, denoted X[‘6 :Ts X Ar, — [0,1],
is defined by Xp& (6) =1, Xp& (0) = A, (0)- X[‘&( g_1) for 01 € ['s. It associates to
each node o the product of the values Ap, (-) along the chain of nodes from & (the root of
the sub-tree) to the given node o.

H(learly, in Lemma 1 and the other results to follow, the condition that the equilibrium allocation
is interior for all the agents can be replaced by a standard assumption on the boundary behaviour of
preferences.
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Since, for t > £(6), Yo, Xp& (o) = 1,'? the function Xr‘& can also be interpreted
as the subjective probability of reaching the different nodes o € 3; N I's conditional on
having reached &, the root of the sub-tree.

Given a path 0™, let 0;° denote the {-th coordinate of the path. Given a sub-tree I';,
define a path in the sub-tree I's, denoted by 0°°(I's), as a path with the property that for
t > t(6) all the nodes are elements of the sub-tree, i.e. ¢>(I's) C {03, - ,Uf(o&)il} UTs.

Notice that there is an obvious way of associating a node to the t-th coordinate of a
specified path; in what follows we shall use 0y and 07° interchangeably when referring to
a node. !

The following results identify necessary and sufficient conditions for an S-CE to be
conditionally Pareto optimal.

THEOREM 1: (Sufficiency) Let (z*,p*) be an S-CE and suppose Assumption 1 holds.'*
Assume that x*(o, h) € RJLF(J}JFS(U)) for every (o,h) € ¥ x H, and that there are numbers
K >0 and p > 0 such that for all nodes o € ¥

(i) w(o) <2KH foralll=1,--- L
(ii) for allh € H, p<p  (2KHL(1+5))."

If the equilibrium allocation is not conditionally Pareto optimal then there exists a pair,
giwen by a sub-tree and a weight function (T's, Ar,), and an A < oo such that, for every
path 0 (L) in the sub-tree,

AT (T ) = Y ) <y
t:t(a—) H p*< 0_1?0) H

THEOREM 2: (Necessity) Let (z%,p%) be an S-CE and suppose Assumption 1 holds. If
there exist numbers = > 0, p > 0, k > 0, A < oo, and a pair, given by a sub-tree and a
weight function ( Ts, Ar, ), such that at every node o € T's, there exists an agent h, € H
for whom

This follows easily since Zaezth& Ar,(0) = Zaezt,lm[‘& Ar, (o) - Zo—’eaﬂwr‘& Ar, (0')] =
Y ses, 1Al X[‘& (¢) = --- = 1, where we repeatedly use the fact that > Ar, (0) = 1 for all
oels.

3This notational convention will be used throughout without further mention. It implies that if we
are given a pair (I's, Ar,), then we are also given the values of the weight function on the coordinates
t > t(4) of each path in the sub-tree I's.

The result also holds if the restrictions on preferences, imposed as Assumption 1, and the interi-
ority condition on the equilibrium allocation, are replaced by the assumption that, at the S-CE being
considered, the preferences of all the agents being improved satisfy the nonvanishing Gaussian curvature
condition. The assumptions we made are only suflicient conditions for the curvature conditions to hold;
that is the content of Lemma 1. Similar considerations apply to the other results presented in the pa-
per. In particular, Theorem 1 holds even if indifference sets have unbounded curvature (“kinks”) while
Theorem 2 below holds even if they have zero curvature (“flat” segments).

B Definition 4 specifies the way in which the term 2, h(k), for k = 2K HL(1+9)), is obtained from the

solution to the optimization problem faced by agent (o, k) at prices (p*(0), (p*(0'))s1cot ); similarly for

Po,n(k) in Theorem 2. Lemma 1 shows that, under the assumptions of the theorems, the two curvature
conditions hold for each agent.

o’'cotrls
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(i) 2* (0, hy) € REUPO) and wi(oy0,hy) > el

(Zl) pUha( ) <p7
and for every path o> (Ts) in the sub-tree,

A(0®(Ta); (To Ary)) = 3 2relo)

—SA
tt(o’)”p< )H

then the equilibrium allocation is not conditionally Pareto optimal.

Clearly, the characterization provided by the two theorems is tight.

The sufficient condition for CPO obtained in Theorem 1 says that if for every pair
(T, Ar,), given by a sub-tree and a weight function defined on it, and every real number
B, there exists a path in the sub-tree, 0°°(T's), for which A( ¢*°(T'5); (T's, Ar,)) > B, then
the S-CE allocation is CPO. Here A( 0>(T's); (I's, Ar,)) is a series whose t-th element is

given by the term %, i.e. by the reciprocal of the norm of the price vector at a
t

node, where the node is given by the t-th coordinate of the path ¢°°(I's), weighted by
the associated value of j\pa()

The structure of the proof of Theorem 1 is the following. The first step consists in
showing that if there exists a CPO improvement then necessarily there exists a sub-tree
(which could be just a path) with the property that the per capita transfer (of income
or “value”) to the old agents at each node in the sub-tree is strictly positive. We then
construct a weight function by associating to each node ¢ the proportion of the total
per capita transfer which is received at that node by the old agents, i.e. the per capita
transfer to the old agents at that node divided by the total per capita transfer received
by those agents at different nodes when old. But then, by the definition of the weight
function, the total per capita transfer received when old can also be written as the per
capita transfer received at one node when old divided by the weight assigned to that node.
This allows us to isolate the relation between the transfer at a node and the (weighted)
transfer at only one successor node. Now, by invoking the feasibility condition at each
node, and iteratively applying the nonvanishing Gaussian curvature condition, we are
able to show that along every path, the sequence of these per capita transfers multiplied
by the induced weight increases according to a quadratic function. Given the uniform
bound on endowments, the admissibility of the improvement requires that the norm of
the price vector divided by the value of the induced weight function grow at an appropriate
rate. Hence we find that the existence of a CPO improvement requires that the series

2 i(5) H;F( (O'OO))H converges, and this must happen on every path in the sub-tree.

Turning to necessity, the condition in Theorem 2 says that a CPO improvement can
be constructed if we can find a sub-tree (which could simply be a path) with the property
that along every path in this sub-tree, the price norm at a date-event does not go to zero
faster than the induced weight function at the date-event. This condition ensures the
existence of transfer sequences with the property that the transfer that an agent makes
when young (in the event at his birth) is more than compensated (in utility terms) by
the transfer that he receives when old (in possibly more than one event).

13



The argument of the proof of Theorem 2 is as follows. First a collection of transfers
(of income) to agents along the sub-tree is constructed. Next we show that there exists
a corresponding collection of vectors of commodity transfers, supporting these income
transfers, which give rise to vectors which are in the consumption set of each agent and
are feasible, i.e. compatible with the endowment of the economy. Finally, we show
that the proposed collection of commodity transfers generates a Pareto improvement by
verifying that the associated collection of transfers satisfy the bounded Gaussian curvature
condition. The proportions according to which the total transfer received by an agent
when old should be distributed over each of the possible events when old are determined
according to the values of the function X[‘&.

The logic of the proof of both the theorems is similar to the argument usually given in
the case of deterministic OLG economies (in particular, Benveniste [3] and Balasko and
Shell [2]); not surprisingly, the necessary and sufficient conditions established in the two
theorems are in the form of criteria like the one obtained by Cass (in fact, in the special
case in which there is no uncertainty, they reduce to the standard Cass criterion).

The truly novel features of our results are the fact that transfers are defined on non-
trivial sub-trees, and the role played by the weight function. We see that the difficulty in
the proofs, relative to the arguments given in the case of the deterministic OLG model,
comes from the fact that in our set-up the preferences of each agent are defined on a
subset of the set of commodities available at each point in time; moreover, the number of
commodities and agents increases over time. In both the theorems we have to allow for
the possibility that transfers are made at more than one event at a given date; this leads
naturally to the consideration of sub-trees whose presence is a manifestation of the rich
redistributional possibilities in the present model. In addition, the Gaussian curvature
conditions relate one node at date ¢ to one or more nodes at date ¢t + 1 (but typically
a strict subset of the set of all nodes at date ¢ + 1). So, in order to evaluate whether
a sequence of transfers is feasible and improving we have to distinguish them according
to the event in which they take place in addition to the date of the transfer. Using
the weight function, we are able to disaggregate transfers across the different immediate
successor nodes of a given node; hence, we can isolate the pattern of transfers across pairs
of successive nodes so that the admissibility of the transfers, which is defined in terms
of paths, can be verified directly along all the paths in a sub-tree. We can interpret the
weight as the importance given to the transition from a given node to one of its immediate
sliccessors, i.e. as a subjective conditional probability.!¢

The sufficient condition for CPO obtained in Theorem 1 is rather cumbersome to verify
because one has to check that for every pair given by a sub-tree and a weight function
(T, Ar,), and every real number B, there exists a path in the sub-tree, 0> (T;), for
which A( 0(T's); (T's, Ar,)) > B. We now provide another sufficient condition for CPO,
Theorem 3, that is stronger but that is somewhat easier to verify.

For any & € I';, we denote by I'(5,I';) the sub-tree that has & as its root and includes

6The system of subjective conditional probabilities defined by the weight function need not bear any
relationship with the system of local “subjective” probabilities on the date-event tree implicit in the
specification of agents’ preferences.
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all the nodes that are successors of ¢ and are elements of I',,.

THEOREM 3: (Sufficiency) Let (x*,p*) be an S-CE and suppose Assumption 1 holds.
Assume that x*(o, h) € RJLF(J}JFS(U)) for every (o,h) € ¥ x H, and that there are numbers
K >0 and p > 0 such that for all nodes o € ¥

(i) w(o) <2KH foralll=1,--- L

(ii) for allh € H, p<p_  (2KHL(1+S5)).

The equilitbrium allocation is conditionally Pareto optimal if
for every sub-tree T'y there exists a node & € 'y, for which

s 1
t:t(z’r) Z&eztﬁf‘(&,l—‘g) H p* (6_) H

diverges.

The sufficient condition for CPO stated in Theorem 3 requires, for every sub-tree I',,
the existence of a node & for which the series defined by A(I" ,) diverges. The terms
of the series A(6 I ,) are constructed by taking the reciprocal of the sum of the norm
of prices at all nodes at a given date which are successors of &, and are elements of the
sub-tree I';.

As in the proof of Theorem 1, the first step in the proof of Theorem 3 consists in
showing that if there exists a CPO improvement then necessarily there exists a sub-tree
['s (which could be just a path) with the property that the per capita transfer to the old
agents at each node ¢ is strictly positive. For each date we consider the sum of these
transfers across nodes in the sub-tree at that date; due to the non-vanishing Gaussian
curvature condition the sequence of these terms increases according to a quadratic func-
tion. Consider the sequence we obtain starting from the date of the root of the sub-tree,
(). Given the uniform bound on endowments, feasibility requires that the sum of price
norms across all nodes in the sub-tree at a given point in time increases sufficiently fast,
so that the existence of a CPO improvement requires that the series

) 1
t:t(&) ZO’EEtﬁF& H p*<0_) H

(1)

converges, for the sub-tree I's. Since the same argument can be made starting from any
other node in the specified sub-tree, we find that the existence of an improvement implies
that a whole family of series must converge. This directly leads to the sufficient condition
for CPO stated in Theorem 3 that, for every sub-tree, at least one of the series should
diverge.”

To understand the difference between the sufficient conditions in Theorems 1 and 3,
and the fact that the latter are stronger, notice that in Theorem 1 we define weights

170f course, the divergence of the series in (1) for every sub-tree I',, is also a sufficient condition for
CPO. Note, however, that the convergence of the series in (1), obtained when we start summing from
the root of the sub-tree, does not imply the convergence of the series we get when we start summing
from some other node in the sub-tree. Hence, the sufficient condition given in Theorem 3 is tighter than
requiring the divergence of the series in (1) for every sub-tree.
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which allow us to disaggregate the total transfer at a date, obtained from the curvature
conditions, in terms of the transfer at a node, and hence to identify the pattern of the
transfers along paths in a sub-tree. In Theorem 3, on the other hand, we aggregate the
transfers of agents born at different date-events into a single term by taking the sum.
Still, the condition in Theorem 3 also deals with the limiting behaviour of a whole family
of series; note, however, that unlike in Theorem 1, there is no claim that the family of
series is uniformly bounded.

As a corollary to Theorem 3 we obtain an even simpler, but stronger, sufficient condi-
tion for CPO; Example 1 below illustrates the difference between the two conditions. The
condition in the corollary rules out the existence of a special type of CPO improvement,
one which requires positive average transfers at every node in the date-event tree I'. But it
is easy to show that if the series in Corollary 1 diverges then the series in (1) also diverges
for every sub-tree; since the latter is a sufficient condition for CPO, as noted in Footnote
17, the condition in Corollary 1 also implies the nonexistence of any improvement.

COROLLARY 1: Under the assumptions of Theorem 1, the equilibrium allocalion x* is
conditionally Pareto optimal if, for the corresponding price sequence p%, the series

R 1
0.0} —
D S P

diverges.

Since sub-trees include paths as special cases, our previous results also character-
ize the conditions under which improvements can be achieved by transfers along only
one path. By Theorem 1, if an improvement exists on only a path then, the series
thlobm must converge along this path. Conversely, Theorem 2 shows that if the
series thlobm converges on some path then the allocation is not CPO; in this
case, an improvement can be constructed via transfers which are different from zero only
along the specified path. Clearly, the divergence of the series thlobm along every
path is not sufficient to ensure that the allocation is CPO.

REMARK 2: Here we examine the relationship between existing results for the general
deterministic OLG model (Burke [5] and Geanakoplos and Polemarchakis [12]) and our
characterization of CPO. We will argue that these results allow us to derive the necessary
and sufficient conditions for ex ante Pareto optimality when markets are complete, since
in that case the economy is isomorphic to a deterministic OLG economy in which the
number of commodities varies with time, but do not have any direct implication as far as
CPO is concerned.

With complete markets, an agent is able to trade in the full menu of contingent com-
modity contracts so that he can insure against the uncertainty both at the date of his
birth and in the second period of his life; consequently, his consumption plan specifies his
consumption at the date of his birth, for all possible realizations of the event at birth,
and at the subsequent date, again for all possible realizations of the uncertainty. Hence
an agent can be distinguished simply by the date of his birth, ¢, and his type, h, and is
identified by the pair (¢,h). His consumption set is given by X;; = RJLF(SHS”I) with

3
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generic element x(t, h), his endowment vector is w(t,h) € Xyj, and his utility function
Uy @ X¢pn — [ which is strictly increasing in every coordinate. The agent’s budget
restriction takes the form (p, pii1)@(t, h) < (pe, per1)w(t, h). In all other respects, equi-
libria with complete markets are as in Definition 3. Let (p**,z**)
equilibrium with complete markets.

The “natural” criterion for evaluating the efficiency properties of competitive equilibria

denote a competitive

when markets are complete is ex ante Pareto optimality which evaluates the welfare of
every agent before any realization of the uncertainty; at an ex ante Pareto optimum,
risk is allocated optimally in both periods of the agents’ lives. Evidently, ex ante Pareto
optimality implies CPO.

As in Lemma 1 (i), it can be shown that the agent’s preferences satisfy the following

non-vanishing Gaussian curvature condition if an assumption analogous to Assumption 1
is made: for z**(t, h) € RL(SHSHI) and k** = 4K H L, there exists Bth<k**) > 0 such that

for || 2(t,h) — (L, h) |< k™,

we (2L, h)) > wgp (™ (L, ) N

2

- S Y ooy 2 - X b(on) 4 ptEe 1)
T e oe, i

forall 0 < p < Bth<k**)' Similarly, one obtains a bounded Gaussian curvature condition.

JFrom [5] and [12] it follows that, under conditions analogous to those of Theorems
1 and 2 a competitive equilibrium allocation with complete markets is ex ante Pareto

optimal if and only if the series >, ;c0o——— diverges, i.e. the competitive prices satisfy

18

Hpt**H
the classical Cass criterion with a variable number of commodities.

The condition for ex ante Pareto optimality cannot be compared to the condition for
CPO derived in Theorems 1 and 2 since the results refer to different market structures
and prices (p* and p**) obtained with different equilibrium concepts.

We now argue that the results in [5] and [12] do not have any direct implication as
far as a characterization of CPO is concerned; this is because those results utilize the
fact that preferences are strictly monotonic in all the commodities available at a given
date, a condition which cannot be satisfied when agents are distinguished by the event
at their birth (as required by the CPO criterion). In fact, if the curvature coefficients,
described in Definitions 4 and 5, satisfy the uniform bounds specified in Theorems 1 and 2
then divergence of the series >, ;00— e is neither a necessary condition nor a sufficient
condition for CPO with sequentially complete markets: as Example 1 below shows, an

allocation could be CPO even though the series Y, ;00—= converges, Whlle Example 2

P

shows that a CPO improvement may exist even though ‘LheH series Y ;. 00O——=r H B diverges.
Furthermore, if the curvature coefficients are as in Theorems 1 and 2 then dlvergence of
the series thloom is a sufficient condition for CPO but not a necessary condition;
this criterion obtains from [12] when the total number of agents born at date ¢ is H.S; while
the total number of commodities is LSy, as in our set-up (where agents are distinguished

according to the event at their birth). Divergence of the series Y, ;0 necessarily

—1
St-|[pex|

18]t is worth emphasizing that in this case for sufficiency we need w;(0)Sy(,), rather than w;(c), to be
uniformly bounded for all I € L. and for all o € ¥..
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implies that the series thlobz diverges,!® which, by Corollary 1 of this paper,

ves, H (o)l
is a sufficient condition for CPO but Example 1 below shows how an allocation could be

CPO even though >, jc0=——

converges.
Sr Hp 3] g

The following example shows that equilibrium prices could satisfy the criterion in
Theorem 3 even though both the series >, ;c0r—— T *H and the series >, 1oom converge.
Moreover, it shows that the condition in Theorem 3 is different from the condition in

Corollary 1 since the series thl 3 converges; this follows from the inequality

(,eztup*(a)u
< YO

Sy

Jeztup N =

EXAMPLE 1: Consider an economy where H =1, L. = 1, S(0) = 2 for all o € T’; also,
Y1 = {04,04}. Let prices be as follows:

p(o) =1 if t(0) =2,4,6,- - and o succeeds o,
orif t(o)=1,3,5,--- and o succeeds oy,
p*(o) = (1/3)t(g) otherwise

so that at even dates all the nodes in the “top half” of the tree are assigned price one,
at odd dates all the nodes in the “bottom half” of the tree are assigned price one, and
at all other nodes prices decline at a geometric rate; so we have a perverse form of
nonstationarity in the prices. It is easy to specify preferences and endowments so that
the prices at an S-CE take this form.

Given any node &, consider the sub-tree I'; that has & as its root and includes every
successor of & in I'. The sub-tree has 249 nodes at date ¢ and

d 1 d 1 d 1
- Y mmt Y s
* —to —t(a t
t:t(&) ZO’EEtQF& H p (O_) H tzt(ﬁ') and t even 2t t( ) th and t odd 2t t( ) ' (1/3)

As T' — o0, this sum diverges since the second term on the right diverges. So the
criterion in Theorem 3 is satisfied, indicating that the equilibrium allocation is CPO (if
the additional conditions specified in the theorem hold).

However, the series

1

Y co—m—=) &
t=1 t=1

I e |

1 1
< R
@y T

converges. Clearly, the series >°, ;0 also converges since S; = 2°.

N S
St [lpex||

The next example shows how equilibrium prices could satisfy the condition that
> 00— diverges even though the allocation is not CPO.

EXAMPLE 2: Consider an economy in which H =1, L = 1, S(0) = 2 for all 0 € T}
p*(o) = (1/2)t/2 for all 0 € . Since the series thlobm
path, by Theorem 2 the allocation is not CPO (if the additiénal conditions specified in
the theorem hold).

Hp dl

converges along every

BSince || p; [|> maxgex, || p°(0) || we have Si- || pi [|> $: - maxoes, || *(0) > Xy ex, 9°(0) I
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Also

S T N~

1

_lp*(a)l
ocexNl's
the sub-tree that has & as its root and includes every successor of ¢ in I'.

Furthermore,

converges; in fact, for & an arbitrary node, > (o) D converges where ['; is

Z OAO;_Z 60;— ool
=T pek | S ar((1/2)) =1

diverges.

The last example shows that the condition that there is no improvement along only
one path is weaker than CPO.

EXAMPLE 3: Consider an economy in which H =1, L = 1, S(0) = 2 for all 0 € T}
p*(0) =1 for all ¢ € 3. Clearly, the series thlobm diverges along every path.

However, the allocation is not CPO. To see this, consider the weight function A\(o) = 1/2
for all o € 3; it follows that the series defined in Theorem 2 are uniformly bounded across
paths so that a CPO improvement exists (if the additional conditions specified in the

theorem hold).

REMARK 3: Zilcha [24] provides a characterization of the efficiency properties of al-
locations in the framework of a one good OLG model with uncertainty and production
according to a different efficiency criterion. He provides necessary and sufficient conditions
both for allocations to be SOSD-efficient and FOSD-efficient, i.e. to be not dominated,
for any agent, in terms of second order stochastic dominance (respectively, first order
stochastic dominance), conditional upon the event at birth. Note that CPO is a stronger
welfare criterion than SOSD-efficiency and, a fortiori of FOSD-efficiency.?

Peled [21] on the other hand provided a sufficient condition for a competitive equi-
librium to be CPO in an economy with one commodity and one agent per generation,
stationary Markov uncertainty, and money as the only asset. It is well known that with
H =1 a market structure with money as the only asset is equivalent to having sequentially
complete markets; so we can convert Peled’s formulation into our set-up. We can then
show that (see Section 6 for the details) if Peled’s sufficient condition for CPO holds then,
for some ¢ > 0, the inequality Z— > ¢ holds for all £. Note that this condition

oe, )

20 A precise study of the relationship between the results in [24] and this paper is difficult here since
the structure of the economy considered in [24] is rather different from the one examined here, and so
is the efliciency notion. The precise relationship between our characterization of the conditions for CPO
and the conditions for SOSD-efficiency derived in [24] is given in Chattopadhyay [8], where the current
analysis is applied to the case in which uncertainty is described by a filtered probability space instead
of a date-event structure. Results analogous to Theorems 1 and 2 of this paper are shown to hold with
the weights replaced by a sequence of densities; the criterion in [24] is obtained when the densities are
restricted to take the value one everywhere. This suggests that SOSD efficiency is much weaker than
CPO since the path sums could diverge under the criterion in [24] even though a subset of the sums are
uniformly bounded for densities which are not identically equal to one, indicating that CPO improvements
exist.
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implies the validity of the condition given in Corollary 1 above; the converse is not true
though (consider for example the case where Y 5, p*(0) =t). Hence Peled’s condition
is stronger than the condition in Corollary 1 (which we saw was in turn stronger than the
conditions provided in Theorems 1 and 3).

4. STATIONARY EQUILIBRIA
In this section we restrict attention to stationary equilibria, characterized by the fact that
for each agent the equilibrium consumption level only depends on the realization of the
uncertainty during his lifetime, not on past realizations nor on the date of his birth. The
market structure is unchanged, characterized by sequentially complete markets.

We will assume here that the uncertainty in the environment is generated by the
realizations of a time homogeneous Markov process with fixed finite state space S (where
#S = 5). The structure of the date-event tree induced by all possible realizations of the
Markov process from an initial date ¢ = 0 is as follows. The initial node 0¢ is an element
of S; set Xy := {00} X S, and iteratively 3 := ¥y | x Sfort = 2,3,---. In this framework
a node 0, can be identified with the string (0, s1, S2, - -, $¢), where s, € S denotes the
realization of the Markov process at date 7, 7 =1,---,¢ (0p is then the realization at the
initial date).?! The date event tree I';, thus induced has at every node the same number
of successors, #S5(0) = S for all ¢, and #%; = S*.

For stationary equilibria to exist additional conditions are needed. We will assume
that the economy is also stationary, i.e. that the endowments and utility functions of each
agent only depend on the realizations of the Markov process during his lifetime, not on
time nor on past realizations: w(oy, h) = w(sy, h) = (w(sy; 8¢, h), (W(st, 85 8¢, h))ses), and
Ugyn = Us, p, Tor all h, oy, 8¢, t such that o, = (0, s1, S2,++ +, 8¢). In addition we will assume
that a single commodity is available at each date, i.e. L = 1.

Under the above stationarity conditions of the environment, each agent can simply be
identified by the triple (s;,t,h) € S x {1,2,-+-} X H, describing the state and the date at
his birth as well as the agent’s type (or (09,0, h) for the initial old).

Formally, we say a competitive equilibrium with sequentially complete markets (z*, p*)
is stationary if, in addition to the properties stated in Definition 3, the following condition
also holds: x*(oy, h) = z*(s¢, h) for all (04, h) € X x H (i.e. the consumption allocation of
each agent only depends on the state at the date of his birth and the states at the next
date). Under the above conditions, and Assumption 1, stationary equilibria with S-CE
always exist.??

To characterize efficiency we will use the fact that the system {p;};>1 of prices of all
contingent commodities at the initial date implicitly defines a system of spot prices for the
commodities and one-period contingent prices at all nodes (given the equivalence already
noticed in Section 2). Since L = 1, spot prices can be ignored here; the vector ¢(o;) of the
prices at a generic node oy of one period claims, contingent on all possible realizations of
the uncertainty at the next date, conditional on oy, is then given by ((p(¢”)/p(0¢)),1ce+)- It

’
ag EO’t

2'Tn the present set-up, s; identifies the arc leading from node (00,81,82,---,8-1) to node
(00, 81,82, -+, 8:). It is a general property of date-event trees that nodes can also be identified by the
sequence of arcs leading to them from the root of the tree—see Footnote 5 in Section 2.

#228ee e.g. Gottardi [13]. When L > 1, as shown by Spear [23], stationary equilibria do not exist,
generically (in endowments and utility functions).
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is easy to see that at a stationary equilibrium ¢(o¢) only depends on s;; hence the system
of one-period contingent prices is simply described by a matrix (), of dimension S x S,
with generic element ¢, describing the price quoted in state s for a claim promising the
delivery of one unit of the good at the next date in state s'.

Let A(Q) denote the dominant root of the matrix (). The next result shows that a
complete characterization of the efficiency properties of stationary equilibria can be given
in terms of the value of A\(Q):

THEOREM 4: Let (x*,p*) be a stationary competitive equilibrium (with sequentially com-
plete markets) and Q* be the matriz of the associated one-period contingent claim prices.
Under Assumption 1, if the environment is stationary, L = 1, and x*(s; h) € RS (i.e.
the equilibrium allocation is interior for each agent), we have:

(i) the equilibrium allocation x* is conditionally Pareto optimal if N(Q*) < 1;

(ii) if M(Q*) > 1, z* is not conditionally Pareto optimal; moreover, it is Pareto dominated
(in the CPO sense) by another stationary allocation.*

The result is to a large extent an implication of the following:

LEMMA 2: Let p* be a system of prices at a stationary competitive equilibrium (with se-
quentially complete markets) and Q* be the matriz of the associated one period contingent
claim prices. Then we have:

(i) S, —~——— < 00 == there exists a weight function Ar,, and a scalar A < oo

v, P'(0)
such that, for every path o> (Ty,),

o~

ACP () (T ) = ;<—f§;> <A

(ZZ) )\(Q*) >1 @Zilm < 0.

The result in part (i) of Lemma 2 says that, for the special case of the stationary
equilibria of a stationary economy, the sufficient condition for CPO obtained in Corollary
1 is also a necessary condition for CPO (its violation implies in fact the validity of the
necessary condition for CPO of Theorem 2). Part (ii) of Lemma 2 then establishes the
equivalence between this condition—the convergence of the series appearing in Corollary
1, whose terms are given by the reciprocals of the sum of the prices p*(¢) at all nodes at
a given date—and the condition that the dominant root of the matrix of the associated
one-period contingent prices %, is greater than 1. Combining these two results with
Corollary 1 and Theorem 2 we obtain the characterization provided in Theorem 4: the
necessary and sufficient condition for stationary equilibria to be CPO is A(Q*) < 1. The

23In Theorem 4 we no longer need to impose uniform upper and lower bounds on the curvature coef-
ficients as in Theorems 1 and 2. The stationarity of the environment and of the equilibrium considered
ensure in fact that the set of equilibrium consumption levels is described by a finite collection of vectors,
so that under Assumption 1 uniform bounds always hold.
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theorem actually establishes a slightly stronger result as it shows that if A(Q*) > 1 a CPO
improvement exists even if we limit our attention to stationary allocations.

REMARK 4: Aiyagari and Peled [1] examine a stationary stochastic OLG economy, sim-
ilar to the one of this section. By studying the solutions of a finite dimensional planner’s
problem for such an economy, they show that an interior stationary equilibrium allocation
is optimal, according to the CPO criterion, in the class of all stationary allocations if and
only if A(Q)) < 1. The result in Theorem 4 is significantly stronger as it shows that if the
same condition (A(Q) < 1) holds, stationary equilibria are optimal, in the CPO sense, in
the class of all allocations, i.e. even if we allow for nonstationary reallocations.

Manuelli [17] considers the case of a stationary stochastic OLG economy where uncer-
tainty is described by a stationary Markov process with infinite support, described by a
compact set. Under the additional condition that there is a single agent per generation,
i.e. H = 1, he shows that the necessary and sufficient condition for a stationary com-
petitive allocation to be CPO in the class of all allocations is A(Q) < 1. The argument
of the proof of his result is rather different from ours and is based on the Martingale
Convergence Theorem.

5. SEQUENTIALLY INCOMPLETE MARKETS: A SPECIAL CASE

We consider in this section the case in which agents are no longer able to fully insure
against every possible realization of the uncertainty when old; markets are then said to
“sequentially incomplete”. A general analysis of the efficiency properties of competitive
equilibria with sequentially incomplete markets is beyond the scope of this paper;?* here
we only examine the special case which arises when there is only one asset, a riskless
bond, available at each date-event.

CPO appears to be too demanding as an efficiency criterion for competitive equilibrium
allocations when markets are sequentially incomplete. Consequently, we consider a weaker
criterion, ex post Pareto optimality (denoted EPPO).? According to this notion the
agents’ welfare is evaluated by conditioning on the realization of the uncertainty not only
in the first period of their lives but also the second period. Efficiency then only concerns
the allocation of commodities at each date-event pair, and between the two periods of the
agents’ lifetime, not the allocation of risk. Such a notion appears to be particularly well
suited for the analysis of efficiency in situations where there is no asset whose payoff is
contingent on the state.

In order to be able to apply this criterion, we need to be able to evaluate agents’
preferences over consumption conditional upon both the event when young and the event
when old. To this end, we will impose here the additional condition that preferences are
additively separable over time and across the various possible events when old:

ASSUMPTION 2:

24See Cass, Green and Spear [7] and Gottardi [14] for some preliminary steps on this issue.
PLucas [16] was the first to use such a criterion to evaluate the welfare properties of competitive
equilibria in OLG models under uncertainty.
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For all (0,h) € ¥ x H, uspn(z(0,h)) = tgon(z(0;0,h)) + Y grcot Ut on(z(0'; 0, h)).

Under this assumption the preferences of agent (¢, h) naturally induce a specification
of preferences over consumption conditional upon both the events, that when young and
that when old.

The previous definitions of feasible allocations remains unchanged. We are now ready
to define the new welfare criterion:

DEFINITION 6 (EPPO): Let x be a feasible allocation. x is ez post Pareto optimal
(EPPO) if there does not exist another feasible allocation Z such that
(1) for all (o,h) € 1 X H, U po(Z(0; h,0)) > tgpo(x(o;h,0)),
forall (o,h) e X x H,0' € o™,
Ug o (Z(05 0, D)) + gt o 5 (B(0';0, 1)) 2> tg g n(2(030,h)) + Ut o n(2(07; 0, D)),
(ii) either for some (G,h) € X1 X H, uy;, ,(2(05h,0)) > us j (2(5; h,0)),
or for some (5,ﬁ)€EXH, o eot, . .

Us 5 1 (B(0;0, 1)) + ug 5 5 (2(5750, 1)) >y 5 5 (2(030, ) + Ugi 5 5 (2(075, 1))

Thus EPPO applies the usual Pareto criterion to the larger set of agents (relative to
the CPO criterion) where every agent is distinguished by the event faced at each of the
two dates at which he is alive. When carrying out the EPPO optimality analysis, we will
use the notation (0,0, h) to identify an agent.

To obtain an improvement according to the EPPO criterion, an agent who receives
a negative transfer when young must be compensated with a positive transfer in every
possible realization of the uncertainty when old. By iterating the argument we see that
we must have a nonzero transfer at all nodes which are successors to a node at which a
transfer is made. Consequently, we define a full sub-tree with root &, denoted by I'(d), as
a sub-tree with the property that every node o € I' which is a successor of 7 is an element
of T'(5).

We can relate the transfers that generate EPPO and CPO improvements by comparing
Definitions 2 and 6. Consider a transfer defined on some full sub-tree; call it the “initial”
transfer. For each path in the sub-tree, induce a “new” transfer which takes the value
zero at all nodes off the path that has been fixed and takes the same value as the “initial”
transfer at all nodes on the path. This procedure generates a collection of “new” transfers,
one for each path in the sub-tree. Suppose that each of these “new” transfers is CPO
improving; then the “initial” transfer must be EPPO improving.2¢

REMARK 5: To properly evaluate the consequences of the sequential incompleteness of
markets, we provide first a necessary and sufficient condition for competitive equilibria
with sequentially complete markets to be EPPO. So, let (z*,p*) be an S-CE. By an
immediate extension of the argument of Lemma 1 we obtain that, under Assumptions
1 and 2, for z*(o,h) € Ri(frs(g)), the following version of the non-vanishing Gaussian
curvature condition holds for the agent (¢’ 0, h): for k* = 4K H L, there exists &,’U’h(k‘*) >

0 such that for || Z(¢';0,h) — x*(0’;0,h) | < k¥,

U o n(Z(050, 1)) + Ugr o1 (Z(050, 1)) > tgon(x*(0;0,h)) + tg o n(z* (050, 1))

26Clearly, this is not the same as requiring a CPO improvement on only one path.
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(61 <07 h))2
I'p*(o) |
forall 0 < p < &,’U’h(k‘*) (where we recall that 6(co, h) := p*(0) - [Z(0; 0, h) — z*(0; 0, h)],
80’ 0, h) == p*(d') - [Z(0';0,h) — x*(0';0,h)], for o’ € oF). A similar expression can
be obtained for the bounded Gaussian curvature condition.

One can show that, under conditions analogous to Theorems 1 and 2, an S-CE allo-

= 8(a’,a,h) > —=b1(0,h) +p

cation is ex post Pareto optimal if and only if there exists a full sub-tree P(N) and an
A < oo such that, for every path o> (I'(¢)) in the full sub-tree, Zt:t(ﬁ)oom < A

The proof of this result follows closely the proofs of Theorems 1 and 2 since, as was
noted earlier, the conditions obtained for EPPO improvements at an S-CE are simply the
conditions for having a CPO improvement on every path contained in a full sub-tree.

It is easy to see that the necessary and sufficient conditions for an S-CE allocation to
be EPPO are less demanding than the corresponding conditions for CPO. As we noticed,
EPPO is in fact a weaker notion of optimality than CPO.

We turn to the particular sequentially incomplete market structure in which there is
only one asset, a riskless bond, promising the delivery of a fixed amount (set equal to
one without loss of generality) of the numeraire commodity in the subsequent period,
independent of the realization of the uncertainty.

In order to be able to directly compare the conditions obtained here with the results
obtained in the earlier sections of this paper, we use the no arbitrage condition to write the
price of the asset in terms of a vector of state prices and then substitute away the portfolio
holdings in the budget constraints. It follows that the variables appearing in an agent’s
budget constraints are, as before, the contingent commodity prices (p(o), (p(0”)),icpr)
and the consumption bundle z(o, h), but, given market incompleteness, the agent now
faces a multiplicity of budget constraints.

DEFINITION 7 (B-CE): (Z,p) is a competitive equilibrium with complete spot markets
and a riskless bond (B-CE) if T is a feasible allocation, and,
(i) for all (o,h) € ¥y x H,

p(o) - Z(o;h,0) < p(a) - w(a; h, o)

Ug h,o(T(05 1,0)) > Ugpo(F(0; hy0)) = plo)-z(o; h,0) > p(o) - w(o; h, o)

(1) for all (o,h) € ¥ x H,
(5(0), 7(0") - (5(0 0, 1), 2(s 7, ) < (§(0), 5(0")) - ({030, ) (o' 0, ) for all o €
(20, )) > g (3(0, 1))
(5(0), 5(0")) - (2(030. ), 2(0"s 0, 1)) > (B(0), 5(0")) - (w(o; 0, h), (0’5 3,)) for some
o eot.

In what follows we provide a characterization of the efficiency properties, according
to the EPPO criterion, of equilibria with complete spot markets and a riskless bond, in
terms of the prices p.

A crucial step in the argument is the derivation of appropriate curvature conditions,
a more subtle problem since agents now face a multiplicity of budget constraints. We
begin by noting that under Assumptions 1 and 2, for all (0,h) € ¥ X H, the optimal

L(1+S(o
¢ RHIHSE)

choice Z(o, h), if it is interior, i.e. Z(o,h) , satisfies the following first order

conditions:
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+/J“<O_ g, h)) ( )7

Dty on(Z(0';0,h)) = (o, o, h)_ﬁ(o’) for all o' € ot, and

(5(0), 5o ({03 0,h), 50 0, b)) — (wlor; 3, ), w(o*; 0, 1))] = O,
where D, .5 (respectively, Duyr,pn(+)) is the vector of derivatives of uyqp(+) (respec-
tively, wy o n(+)) Wwith respect to its L arguments, and where ((i(0’,0,h))yrco+) € RS(U)
is the vector of Lagrange multipliers associated with the S(o) constraints faced by (0, h)
(positivity follows from the strict monotonicity of preferences).

JFrom the abpve expressions we see that the “personalized” price vector ((3gico+ (07, 0, h))-
(o), (a(o’,0,h)p(c")),1cp+) supports the same choice Z(o,h) of agent (o, h) were he to
maximize utility subject to a single intertemporal budget constraint (as he does when
markets are sequentially complete). This allows us to obtain the non-vanishing Gaussian
curvature condition in terms of these “personalized” prices by essentially the same argu-

ment as in the proof of Lemma 1: under Assumptions 1 and 2, for Z(o, h) € RL(HS(U)),
and k* = 4K H L, there exists p_, . (k*) > 0 such that for | a:(o’, o,h) —z(d';0,h) ||< k*,

Ug o n(Z(050, 1)) 4+ tgr o 1 (Z(0750, 1)) > tpon(Z(0;0,h)) + te o1 (T(0'; 0, h))

Z:zf’eaJr ﬂ(OJ? g, h))(Sl <0_7 h))é
Yoeot Ao’ 0,h)) || B(o) ||
forall0<p<p, , (k%) (where 61(0,h) := p(o) - [T(0;0,h) — Z(0;0,h)], 63(0", 0, h) :=

p(a")-[z(a';0,h)—Z(0";0,h)], for o € 0T). Since Y ,ic,+ fi(0’,0,h) > 0, we can rewrite
the second inequality in the above expression as follows:

= (o', 0,h)bs(0" o k) > —( D (o', 0,h))é (o, h)—l—p<é

o'co™t

(810, 1))2
QI

g(o’ o, h)
(ZU’EU+ /j(g’, g, h))
forall0<p<p_, (k%)

In a similar manner, we can obtain the bounded Gaussian curvature condition.

62<OJ7 g, h) Z _61<O_7 h) +

Let fi(0”) denote the average of the agents’ Lagrange multipliers at a given node o':

(o' 0,h)
:— fOI'OJEU>1E.
hGH Zo’ 'cot N(O_ O_ h)) = '

In the following result, we obtain separate necessary and suflicient conditions for com-
petitive equilibria with complete spot markets and a riskless bond to be EPPO.

THEOREM 5: Let (Z,p) be a B-CE and let {fi(0’,0,h)}seroicornen be the system of
associated Lagrange multipliers. Suppose Assumptions 1 and 2 hold and assume that
there are numbers K >0, p> 0,2 >0, 5 >0, and k > 0, such that
(i) w(o) <2KH  forall l=1,--- L for all nodes o € %,
(ii) for every (o,h) € & X H, and every o' € o™,

2(0,h) 2 eliiseyxts S P, (AKHL) and pyrop(k) < p.
A) If the equilibrium allocation is not ex post Pareto optimal then there exists a full

sub-tree T'(&) and an A < oo such that, for every path o> (I'(5)) in the full sub-tree,

1
_ — < A.
Zt t(U) H* t(U)<Ht t(5)+1ﬂ<0$0)) I 5C o) |

A(o*(T(5))) :=
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B) If there exists a full sub-tree T'(&), with an agent h, € H at every node o € T'(¢), and
there exists an A < oo such that, for every path o (T'(&)) in the full sub-tree,

<A

ZU’E(U?‘iQJr /jL(OJ,O_i(il, ho’f)l)> 1
IpCoz) | =

A=) = X, (H o=

M(O_ﬂqou 0_7?(117 hUio,l)

then the equilibrium allocation is not ex post Pareto optimal.

In the present set-up, the prices appearing in the Gaussian curvature conditions are
agent-specific and, since markets are incomplete, will typically vary in a non-trivial way
with h. Hence, the sufficient condition with many agents per generation is stated in
terms of the average of these agent-specific prices.?” Evidently, this issue does not arise
when there is a single agent per generation as in this case we can simply use the prices
supporting the choice of that agent. So with H = 1, the two conditions in Theorem 5
reduce to a single necessary and sufficient condition for a B-CE to not be EPPO:

ZU’G(UfQJr/Z(OJ?O_:Ol)) _ 1 < A
[zt

o7, 0724) o) I~

Ao (@) = 3,5 Loy

where {fi(0',0)}seroico+ are the agent’s Lagrange multipliers at the B-CE.

Notice that in the present set-up, with one agent per generation, markets are effectively
sequentially complete; hence, the equilibrium allocation at a B-CE is also an S-CE equilib-
rium, supported by the “personalized” prices ((Y,icq+ (0, 0, h))-p(0), (A(0', 0, R)p(0")) y1cor)-
Clearly, once prices are replaced by these “personalized” prices, the condition above (for
B-CE to be EPPO when H = 1) reduces to the necessary and sufficient condition given
in Remark 5 for S-CE to be EPPO.

2TNotice that the number of agents did not play any role in our earlier results.
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6. PROOFS
PROOF OF LEMMA 1

We follow Benveniste [3] and Balasko and Shell [2].

We will prove a more general result from which Lemma 1 follows.

For A and B positive integers, let RA+ X RE+ be an agent’s consumption set, U :
RA, x RB, — R be his utility function, and (pa,pB) * (x4,25) < m be his budget
restriction, where p = (pa,pp) is a price vector, x = (24,2p) is a consumption vector,
and m > 0.

Also, let V, := {y € RA, x RE+IU( ) > U(x)}, the weak upper contour set at z
and, for k € Ry, p € R, let K(x,k) := {y € R x RB,| | y — 2 ||< k}, K(z,k,p) =
{y € K(z,k)|pa - (ya — za) < 0}, and R(p,z,p) := {y € R* x RBlpp(ys — ) >

—pa (yA —xa)+ p%ﬁi‘mm}, a paraboloid of curvature p which has x on its boundary

and p as the support vector at x.

LEMMA 1A: Let x = (z4,25) € RA,, x RB,, be the solution to the agent’s utility
mazimization problem at prices p = (pa,pg) € RA++ X RE++. Under the assumption
that U(-) is C?, strictly monotone, and differentiably strictly quasi-concave, so that ¥z €
RA x RB, 2 £0, 2-Vo,U=0 = 21D2,Uz < 0, we have

(i) for any k > 0, p > 0 where p := sup{p|V, N K(x,k) C R(p,x,p) N K(x,k)};

(i) for any k >0, co > § > 0 where p := inf{p|R(p, z,p) N K(x,k,p) C Vo N K(z,k,p)}.
PROOF: (i) Under the assumptions of the lemma, for any k > 0, there is a closed ball of
radius r, for 1/r > 0, with center at ¢ = z + H%Hp’ denote it by B(.r), which is (a) tangent
to the budget plane at z, (b) tangent to the upper contour set, V, at the point z, and
(c) contains the set V,, N K(z,k) (see, e.g. Mas-Colell [18, page 40]).

Now take any point y = (y4,yp) in the set V, N K(z,k); soy € B and || y—c ||< .
Let A # 0 be such that || A(y — z) — H}zTHp |=r; since ¢ =z + ﬁp, we have | A(y —x) +
x—c|=r,and hence A\>1as ||y — ¢ | <r. Now

My —2)- My —2) = 5p) = My —2) — Fp+ p) (Mo~ @) = H%Hp — &p)

= M=) g I~ I = —22 =0
Thus M|y —z |* = (y—a:)-‘%“p, which implies p- (y—z) >

_27, Hy—a:HQHpHsmce)\>1

Since || (pa, p5) | 2] pa ||, and | y=2 ||| ya—2a ||, we have p-(y—2) = 5 | ya —2a |2

ya—xa4)|2

pa |l But || ya—wa || pa |2 [pa-(ya—wa)|, so we have | ya —2a |2 | pa |2 224

. lpall )
and p- (y —x) > i%' Letting p = i we see that for y € K(z,k),

Uly)2U(x) = psys—2p) = —palya —za) + pW.

So, for p = 5= > 0, V,NK(z,k) C R(p, ,p)NK(x, k), implying that sup{p|V,NK (2, k) C
R(p,z,p) N K(x,k)} > 0. Thus, p>0.

(i) For any k > 0, by smoothness and strict monotonicity of preferences there exists a
paraboloid with curvature p which is locally contained in the set V,, and is tangent to V,, at
x (see, e.g. Benveniste [3]). So, for any k > 0, there is a p for which R(p, z, p)NK (z,k,p) C
Ve N K(z,k, p); furthermore, by local non-satiation, p > 0 (in fact, by (i) above, p > 0).
Hence, inf{p|R(p,z,p) N K(x,k,p) C V, N K(x,k,p)} is bounded. Thus, co > p. u
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PROOF OF THEOREM 1

As indicated in the text, the proof of Theorem 1 starts by showing that if there exists
a CPO improvement then necessarily there exists a sub-tree with the property that the
per capita transfer to the old agents at each node o is strictly positive. We then construct
a weight function, by disaggregating the per capita transfer across nodes when old, and
then we show that the non-vanishing Gaussian curvature condition implies that the per
capita transfer, transformed by the weights, increases according to a quadratic function
along every path. Finally, we use the uniform bound on endowments to show that this
quadratic increase can occur only if the weighted reciprocal of the norm of the price
increases sufficiently fast along every path.

Since the competitive equilibrium allocation z* is, by assumption, not CPO, there
must exist an improving allocation; let Z denote such an improving allocation. For (o, h) €
Y x H, construct the sequences 61(o,h) = p*(0) - [Z(0;0,h) — x*(0;0,h)], b2(0’,0,h) =
p*(0")-[Z(0';0,h) —x*(0';0,h)], for ¢ € ot ; similarly 83(0, h,0) := p*(0) - [Z(0; h,0) —
z*(0; h,0)]. Define 65(0,0) := 4 Spew 62(0,h,0), 61(0) := £ Y pep 61(0, h), 8(07,0) =
% dheH 62<0/7 g, h)

By strict monotonicity (Assumption 1 (ii)), and the fact that Z improves over z*,
we have that for every agent (o, h,0) of the initial generation 83(0y, h,0) > 0, while for
every agent (o, h) of the successive generations 6;(c,h) + Y sicp+ 62(0’,0,h) > 0; a strict
inequality holds if Z(o,h) # z*(o,h) (by strict quasi-concavity). So, averaging across
heH,

S(o,0) > 0forall o € By,  61(0) + Xgicot G2(0’,0) > 0 for all 0 € 3,
and the inequality is strict if at least one of the agents born at node ¢ is being strictly
improved.

Feasibility of  and x* implies that

81(0) + 62(0,0) <0, for 0 € Xy, 61(0) + 62(0,0-1) <0, for 0 € Upo X

Furthermore, since T and z* differ, there is a finite ¢, and a set Y x HC 3 % H,
for ¢ > t, such that for every agent (0,h) € Uiet(Ey x H), Z(0, h) = 2*(0, h), while for
(04, h) € 5 X H, (0, h) # x* (0, h). Hence for all (0, h) € Uy (S x H), and o' € o, we
have 6,(0, h) = 65(0’,0,h) = 0. On the other hand, for o, such that ( o4, h) € EL/X\H,
by feasibility, 61(0¢) 4+ 62(0r, 0¢-1) < 0 ; since d9(0¢,0¢-1) = 0, we have then 61(0;) < 0.
Since T was assumed to be an improving allocation, from the strict quasi-concavity and

monotonicity of preferences it follows Y, + a(0”,0¢) > 0; hence for some & € o},

'co, i
89(6,0¢) > 0. A Pareto improving sequence of reallocations of resources, starting from
generation o; must therefore be characterized by a positive per capita transfer to the
members of this generation in at least one state when old, ¢ € JZF.

Note that & € ¥;;;. Using again feasibility, we find 6;(¢) < 0, so that by monotonicity,
Ssicst 62(0’,6) > 0 and hence 65(0”,5) > 0 for some 0" € 67, Identify all the nodes that
are immediate successors of the node ¢ and at which the old receive a positive per capita
transfer. Iterating the argument, we can find a collection of nodes which are successors
of & € ¥,y and are characterized by (i) a positive level of per capita transfers to the
old agents and (ii) the property that the set of successors to any given node in the set
includes all nodes at which the per capita transfer is positive. It is easy to verify that

this sequence defines a sub-tree; let it be denoted by I's. By construction, for all o € I';,
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8o(o,0-1) > 0.

By strict monotonicity of preferences, p*(¢) >> 0 at all nodes; so | pk(o) ||> 0
for all 0 € 3. Furthermore, by condition (i) of Theorem 1 and Assumption 1 (i), ||
Z(o,h) —x*(o,h) |< 2KHL(1 + S) for all (0,h) € ¥ x H. Hence, by interiority of the
allocation and by Lemma 1, for all agents (0,h) € I's X H we have

> b8y(0’,0,h) > —6i(0,h) +p,,(2KHL(1 + S))M (2)

olectnls H p>|2<0_) H ‘

Using condition (ii) of Theorem 1, the inequality in (2) continues to hold if we replace
Bayh(QKHL(l—I—SY)) by p. In addition, notice that the set of pairs (61(0, h), Ypico+ 2(0”,0,h)) €
R? which satisfy (2) is a convex set; hence, if we consider the per capita transfer to the
H members of generation ¢ € X, the inequality is still valid:

> 8o 0) = —by(0) —I—BW—U)). (3)

o'eaT Ty I p¥(o) |

Now, define the function Ar, : I's — [0, 1] by the rule

So(c’,0)
Ar. (0') = : )
Fo‘( ) ZJ,€0+QF&52(0/’0’)

Given the way in which the sub-tree I's was constructed, the function Ar, is well defined

on its domain, is positive, and satisfies the restriction Y1 p+r, Ar, (') = Lforall o € T's.
So we have a pair (I's, Ar,) consisting of a sub-tree and a weight function, the latter
determined by the relative distribution of the per capita transfers across successor nodes.
For the rest of the proof, we concentrate on 0™°(I';), an arbitrary path in the sub-tree.
Using the definition of the function Ar,, the inequality in the curvature condition, (3),

1 / (61 (U»Q
T R PN W
l.e. as a condition at a given pair of nodes, and (4) holds for all ¢/, 0 € I';. Using the fact
that, by feasibility, 82(c, 0 1) + 81(0) = 0, and that §(0,0 1) > 0 for all 0 € T 5, we can
invert (4) to obtain

can be rewritten as

)\F&<OJ) < 1 1 P

b(07,0) = ba(0,0-1) | pR(o) |11 +Béﬁz(:%’((;i)

(5)

for all 0 € T';.
By condition (i) of Theorem 1, the per capita endowment of every commodity is
bounded at each node. Hence, 0 < éy(0,0_1) < 2K L || pk(o) || so that

p p
= < = : (6)
— So(o,0_1)
Lr2klp =14 G
Substituting (6) in (5) we have
Ar. (o 1 1
) s - ™
S 0) T TR T T ] = 8o 7 )

29



But by iterating on the inequality (7) along 0>°(I's), the path in the sub-tree that we
fixed, we have

)‘F& (0%0) T )‘F& (Uf(oﬁ)) 4 jf )‘F& (Uz?o) T )‘F& (Uf(oﬁ)) < 1 (8)
b2 (0F, 07 1) L+2KLp S | p*(a7°) | "~ 65(0,0-4)

so that the series on the left-hand side of (8), being positive and monotonically increasing,
must converge (the other two terms being positive since p > 0). Recalling the definition

of the function 5\1“5, and defining A =: we have

52(&7&*1) ’

A(0(T5); (L5, Ar,)) = i Ar, (077)

— - <A

t=t(5) | p*( o) |

This completes the proof of the theorem since the argument above was made for an
arbitrary path in the sub-tree. L]

PROOF OF THEOREM 2
The proof of Theorem 2 consists in (i) proposing a candidate collection of transfers (of
income) which will support an improvement, (ii) verifying that there exists a correspond-
ing collection of commodity transfers which is feasible, i.e. generates commodity bundles
in the consumption set of every agent and is compatible with aggregate endowments, and
(ii1) verifying that the transfers satisfy the bounded Gaussian curvature condition so that
the associated commodity transfers generate a Pareto improvement.

Step 1: We begin by specifying the transfers at every ¢ € I's. Since each node can be
identified with a coordinate of some path in the sub-tree, it suffices to define the transfers
for each coordinate along each path in the sub-tree. Consequently, for ¢t > t(&) we define

K ~ L Ap, (02°)
o)) = ——00 . (o° e T
O = s ) 2 T Com ]

where £ := —L 7z min{s,k} and (a) £ > 0 is as specified in hypothesis (i) of Theorem

1
B (145) ~
2 (b) k > 0 and p > 0 are as specified in hypothesis (ii) of Theorem 2, (c) S > 1 is
the maximal number of successor nodes (see Assumption 1 (i)), and the function Xp& is
induced by the pair (I's, Ar, ), the sub-tree and weight function, specified in the theorem.
Set 6(0) := 0 for o ¢ T's.
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Step 2: We now specify the commodity transfers. For o € T, define the vectors Az, € RL
as follows: Ax, = %%. Now let Az(o, h) := (—=Axq, (AZsr) iy ) for agents h,
as defined in the statement of Theorem 2, and set Az(o, h) := 0 € R" for h /£h,.

The consumption vectors induced by the proposed transfers are Z(o, h) := z%(o, h) +
Ax(o, h).

Evidently, these transfer vectors are compatible with the aggregate endowments of the
economy. In order to be able to use the inequality defined by the bounded Gaussian cur-
vature condition (Definition 5) we need to check that these vectors lie in the consumption
sets of the agents, and satisfy the inequality | Az(c,h) ||< k. We now check these two
properties.

By the hypothesis of Theorem 2, o Ar ((Z)T‘ < Afor allnodes 0% € T's, and 3¢ &) % <

A, so that A is a uniform bound for the set of partial sums over paths in the sub-tree.
Hence

A2 > AF&(@?«?I) ! )‘F&<07C20) ‘ (9)
(i 1,20, To (o)

Furthermore, since kK > 0 and p > 0,

1
1> - = k> (10)
1+ kp 14 kp
Combining (9) and (10), and using the definition of §(c) we have

1 20, (03%) Ar, (03°)

K> T Do)l Sr—t0) Tt o]
(5(0’t+1)
— T (e DI
So, for every node ¢ and for [ =1,2,---, L,
Aa:l . po) &) < K
@)l llp* ()]l

But by the definition of k, £ > k so that the sequence of commodity transfer vec-
tors, Az,, is bounded above in each coordinate by £ (it is obviously bounded below by
zero). Invoking hypothesis (i) of Theorem 2, we see that Z(o,h) € X, for each agent.

Furthermore, we easily see that, 1n the Fuclidean norm,

_ p*(g)  §(0) (o)
| AQ.UU 1=l lo* (@) [[p* (2)]] 1= Hp o <
Hence, in the Euclidean norm,

| Az(o,h) | =I| (~Azg, (Agr)yc, ) < m (14 8)* <E
where the first inequality follows from the fact each of the (1 +5) L-dimensional vectors
Az, and (Az,:), for ¢’ € 67, have norms bounded by &, so that the Euclidean norm of

Az(o, h) is bounded by k(1 4+ S )1/ 2,_and the second inequality follows from the definition
of k. Thus, we have | Az(o,h) ||< k as required.

Step 3: We complete the proof by showing that the allocation generated by the above
specification of the transfers is improving. We show that the inequality in the bounded
Gaussian curvature condition is satisfied for agents who are born at nodes which belong
to the sub-tree ['; and receive a transfer, i.e. the agents h,; since all the other conditions
imposed in Definition 5 on the vectors of transfers are readily seen to be satisfied by
the vectors Ax(o, h), verification of the inequality guarantees that the agents are being
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weakly improved. This is sufficient since the old agent at the node &, receives a positive
transfer of every commodity when old and is strictly improved by strict monotonicity of
preferences.

By construction, the income transfers, corresponding to the commodity transfers
Ax(0o, hy,), received by the agent h,, in the first period of his life and in the second
period at the node 077, are given by, respectively?®

0 0 E R (poo) sl Arg (o)

81(07°, ha,) = =8(07°) = — sz e (07) S5 ie Hpr(—i;o)u

00 00 00 K 3 00 A &(U?o)

82(0751, 07 o) = 6(0751) = ez e (0751) Zrio) TorromT-

Since, by the defining property of the function Ar,, we have Y /¢ o+, Ar, (') =1 for
all 0 € T'5, and recalling that Ap, (0771) = Ar, (071) - Ar, (07°), we have

kR (o) s A, (0F°)

Yocont 0200701, ho,) = Gt A (07°) Xrsio) TortomyT
where we have used the fact that transfers are made only on nodes in the sub-tree I's, so
that

ZU’EUH} 62<OJ7 Ot, hUt) = ZU’EUH}QF& 62<OJ7 O, hUt)'

Now it is immediate from the definitions of the transfers that

K N o0 A &(UOO)
81(01, ho) + Loreq 1 82(0", 00, ho,) = Grisyas A (07°) iy
2

= [61<0t7 hUt) + ZU’EUH} 62<0/70t7h0t>] H p§<<0t) H = m@lx(‘ﬁm)) .

Since Py, (k) < pand k > 0, we have
1 H’ﬁat,hot (E)
— 1+kp
and from the uniform bound over all paths in the sub-tree we have
t Ar, (07°)
A2 Yrio) rtomT

It follows that

- -1 Ar, (o)
) KPaiha, (K) [ 2r—uo) (o] \ 4
81(o¢, hy,) + 8 (a’, 0¢, he, (o) || > ot ]2
[61(0¢, ho,) 05;#2( t: o)) || px(00) || > L+ np ( A
K W2
T )2 (Ar,(037))

= foon (F) (ﬁ Ar, (07°) (:2;) %))2

— ~

= Povhg, (k) (81(0, b, ))2.

So, the transfers proposed verify the inequality condition in Definition 5. n

%In what follows, we will identify 09 and o, etc.
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PROOF OF THEOREM 3

The proof of Theorem 3 proceeds by contradiction. As in Theorem 1, we start by
showing that if there exists a CPO improvement then necessarily there exists a sub-
tree with the property that the per capita transfer to the old agents at each node o is
strictly positive. We then show that given the criterion that we choose to aggregate the
per capita transfers across nodes at the same point in time, the non-vanishing Gaussian
curvature condition implies that the aggregated per capita transfer increases according to
a quadratic function. Next we use the uniform bound on endowments to show that this
quadratic increase can occur only if the sum of the norms of prices at the same point in
time increases sufficiently fast. This gives a Cass-like criterion. The proof is completed by
considering an arbitrary node in the sub-tree that has been identified and by applying the
same argument to the sequence of aggregated per capita transfers obtained by starting
from that node.

We omit some of the details of the proof of Theorem 3 referring instead to the proof
of Theorem 1.

Suppose that the allocation z* is not CPO so that there exists an improvement; let
Z denote the improving allocation. As in the proof of Theorem 1, construct the sub-tree
['s. By construction, for all ¢ € T's, 62(0,0_1) > 0. By the same argument as in the proof
of Theorem 1, we obtain, for all o € X

Loegt a0, 0) _6i(o) TP < e H)Q -

[px() I = Tpr(0) | I p*(o)

If 0 € Ts, (11) holds a fortiori if on the left hand side of the expression we replace the

numerator with Y ,ic o+, 02(0”,0), i.e. if we only consider the sum of average transfers
to the agents when old over the subset (defined by I's) of the collection of nodes at which
these transfers are strictly positive.

Let 0, be an arbitrary node of I's, at period 7 = t(0;), and consider I'(0, I'5). Recall
that I'(6, ') is the subtree that has o, as its root and includes all the nodes that are
successors of o, and are elements of I';. If we consider the average across all nodes?® at
t,o0€ X NT(0.Ts), for t > 7, of the transfers (6;(0),Y yicot 62(0",0)), the inequality in
(11) is still valid so we get

Z ZU’€U+QF5 62<OJ7 U) H p;<<0_) H
7€ (o7,'s) | p*(o) || Soenirr@.ra)ll pE(E) | T

I pi(o) ||

H UEEtﬁF(UT,F&)H pﬂ;(O_) H

| () | A
o7)?

I Zaezmr(aTF )H pxlo

61(0'
= _Zaezmr(aTF )| p(o
61

g

\_/\_/ ~——’ | —

+£ <ZU€EtﬁF(UT7F5) H p*(

g t 7,15 ‘'co & )
Y oenT(0rTs) 2o'cot T bo(0’,0)

= ~
ZO’GEtQF(UﬂF&)H p*<0) H

By Assumption 1(i) the numbers of such nodes is always finite.
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B ZUEEtﬁF(UﬂF&)él(O_) p < ZUGEtﬁF(UﬂF&)él(O_) )Q
Zaeztmr(aT,r&)H P>'A<(U) H - ZUGEtﬁF(UT,F;,)H P"Q(U) H

To simplify notation, let us write 6o(t 4+ 1, T'(07,['5)) for Xoes,rr(onrs) Lorcotrr, O2(0', ),

l.e. to denote the total transfer to the old at time t+1 on the subtree I'(0. I's). Notice that

8o(1,T(0:T'5)) = 69(07,0,-1) > 0 since o, € I's. In addition, notice that, by feasibility

—61(0) = 83(0,0_1), so that the above inequality can be rewritten as follows:

~

(5:(1,T(05T2)) )2
= &t+1,I(0.Is)) > 6(t,T'(0-.I's)) + =
ot + L TonTe)) 2 88, TlonTa)) + o5z o]

1 1
< _
62<t+ 1,:[‘(0'7—’:[‘5—)) o 62(75,1—*(07,1—‘5))
1 p

(12)

5 (G0 T5)

o€ (or,Ts) llp% ()l

ZO’EEtQF(UT7F5)H p;<<0_) H 1 +BZ

for all ¢ > 7, since, by the properties of I's, 69(¢,I'(0,I'5)) > 0 for all £ > 7.

By condition (i) of the Theorem, the per capita endowment of every commodity is
bounded at each node. Hence, forallt > 7,0 < 6o(t, (0. '5)) < 2K LY csmr(orrs) | P*(0) ||
Since the inequality holds for every period, for all ¢t > 1 we have

P p
1 + QKLB - 1 + p S (or's))

€T (o7, T5) llp%(a)|l

(13)

Substituting then (13) into (12) and summing the inequalities we obtain from t = 7
tot =T yields
1 4 1
+> - E__ <
6(T'+1,T(0:T5)) = ZaeEmF(aT,r‘g)H px(o) | 1+2KLp
1 1
< _
62<T7P<O_T,P5')) 52(077 (7771)
The terms 63(07, 0-—1) and 8(T+1,T(0-1'5)) are, by construction, strictly positive; hence

(14)

the series on the left-hand side of (14), being positive and monotonically increasing, must
converge.

Since 0, was chosen arbitrarily, the same is true for any other possible choice of o..
Consequently, the above argument shows that the existence of an improving allocation
implies that there exists a sub-tree I's such that for all nodes o, € I's,

Ao+ T5) i = <
o:1z) = - 00
e i=r 20esymT(0+,T5) | px(o) ||

So if for every sub-tree I';, there is a node & € I, for which the series A(7 I';) diverges,
the allocation must be CPO. n
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PROOF OF COROLLARY 1
For any sub-tree I';, and t > (o),

Sees, | p%(6) | > Ysesyr, | p%(6) |

1

FEX MMy H P’T<<‘3) H N

= leTﬂoo Zt:t(o‘)T Z

1 - 1
— t(o)—1 —
Sy Py P RELL S sy pcy
Since for any sub-tree I';, t(0) is finite, the last term in (15) is always a finite number.
Consequently, the divergence of the first term on the right hand side of (15) implies the
divergence of the left hand side. This in turn implies the divergence of A(3 I',) for some

7 €Ty (since Tsex,rr, || P*(0) |2 Xsesyor@ r,) || P*(6) |]); we can then apply Theorem
3 to get the result. n

> leTﬁoo Z (15>

PROOF OF CLAIM IN REMARK 3

Modifying Peled’s notation slightly, let (R(0’;0)),/,+ be the vector of random (real)
rates of return on money, at node o, and (¢(0’;0)),,.,+ the vector of the supporting
one-period contingent claim prices, the vector being uniquely determined by the mar-
ginal rates of substitution of the only agent in generation ¢. At a monetary equilib-
rium, the present value, evaluated at o, of the return on money at node o € ot is
Ao';0) := R(o';0)q(0';0) > 0; hence, the present value of the one-period return on
money is Y yicqot R(0";0)q(050) = S gicpr Mo';0) = 1.

Peled [21] has shown that a sufficient condition for CPO, in addition to the requirement
that all the numbers R(¢’; o) lie in a compact subset of the set of positive real numbers,
is that there exists € > 0 such that, for every path 0> and every t, II'_(R(02;02°) =
I _ A (029 1;02°) > ¢
Ht 70q(z77_Jrl o) =

As we noticed, there is a one-to-one relationship (already exploited in Section 4)
between the system of one-period contingent prices {gss} at all nodes and the sys-
tem of Arrow-Debreu prices {p(c)}; in particular, we have here II' ;q(02%;0%°) =
p(0791), so that the above sufficient condition can also be written II'_(A(02%,02°) >
ep*(0771). Summing both terms across the different first ¢ +1 elements of all paths, we get
Yor €S LA (025 502°) > €<ZUt+1€Et+1 p*(0771)). The term on the left hand side can

also be written as Y yeo ey, TN (02 15 02°) [T picoo+ A(07;08°)]; since Y picpr A(0';0) =1

for every o, iterating the argument we get

0'60'

Zamezm IT7_oA(0% 0751;07°) = Za“ezt 10)‘( 071 07) = = 1.
This shows that the sufﬁc:lent condltlon for CPO given by Peled indeed implies 1 >
€ gen, PF(0), or equivalently ﬁ >e> 0.
o,
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PROOF OF LEMMA 2

To ease the burden of notation, throughout the proof we write p and () instead of p*
and Q.

We first prove claim (ii). Consider the sum of prices over all nodes at a given date ¢ such
that the state at t is some prespecified § € S, Z(UO’SI’ ,S)EEtp<O_07 $1,-++,§), and denote
this term by p(§,t). Recalling that p(og, $1,++,8¢1,8) = p(00, 51, +, St_1)qs,_,5, We get
p(s, t) - ZseSP(‘S? t— 1)q55' But then ( (17 t)? 7p<57 t))/ = <p<17 t_1)7 e 7p<S,t—1))-Q,
so that, iterating the argument,

(B(L 1), p(S, 1)) = (p(L, 1), +,p(5,1)) - Q' = gy @7,
where ¢,, is a Tow of the matrix ) corresponding to the state at the initial date.*® But
then,

Yoen P(0) = Yaes p(s:t) = (p(L, 1), -+, p(5,1)) - Lsx1 = €re@" s
where 1gy; is an S-dimensional vector whose elements are all equal to 1.

Since @ is a strictly positive matrix, by Perron’s Theorem (see, e.g. Horn and Johnson

[15, Theorem 8.2.8]) [)\(Q)le]t — L ast — 0o, where L is also a strictly positive matrix.

So, for any € > 0, there exists ¢(¢) such that, for all £ > (¢), ¢ >|| [)\(Q)le]t — L | for
any norm. Hence, the same is true when we consider the difference of the two matrices
componentwise, so that

Lij—e< P\(Q)AQ]; < L;jj+e€forall (i,j) € S xS and t > t(e)
o L—elss <MNQ) Q) < L+ elgys forall t > t(e)

where 1g,g 1s a matrix with all elements equal to 1. Pre- and post-multiplying respectively
by ¢, and lgxi yields
Qoo (L — €lgus)lox1 < [qoo AN Q) Qtlsxl] < qO'()(L + 615xs)15x1 for all £ > (),
1 1

S AT N@T T Yoo @) araseis ay o all £ > 1(e)
so that (since ¢y, is strictly pos1tive)

AMQ) <1 = S0 7y diverges and

O'GEt

AQ)>1 = Y, T ) Converges.

O'GEt

The validity of claim (i) is established next.
By Perron’s Theorem, since () is strictly positive, there exists a vector x € R++,
|  ||= 1 such that Qz = A\(Q)z (see, e.g. Horn and Johnson [15, Theorem 8.2.2]). Define

the weight function as follows:

sy _15;Ts

)\1‘\00 (O'()) =1 and )\1‘\00 (O'(), 81, St) = W
Note that Ar,, (.) will always take positive values and 3, g Ar'y, (00,81, +,8)=1forall
nodes (0o, 81, , St—1) since Ygcs Qs Tst = AMQ)zxs for all s € S.

The associated map Ap, (.) satisfies

S\\FJO(Ut ) HT 1 sy _187%sr — Gogs1 sy "Qsy 15 Lsy Sl?st

p(o.?o) =1 qST 187 A(Q)CBST 1 dogsy " dsy 1st>\(Q)$00"'>‘(Q)mst71 ()\(Q)) 1300
Arpg (05°) R . .
So we have -7 | p(?f?ot) =T (A(Qﬂ;)i . Since || z ||= 1, it follows that if A(Q) > 1

30The argument is very similar to the one yielding the conditional probability, for a Markov process
with stationary transition probabilities, of the realization of a given state s at date ¢ given an arbitrary
initial distribution (see, e.g. Doob [10, pages 170-185]).
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then there exists a weight function, Ar,,, and a scalar A < o0 such that, for every path
O_OO<PUO)7

> Ar,, (07°)

A( 0% (Tyy); (Loo, A, ) i= < A.
( ( 0) ( 0 FO)) ; p*< O_?o)
But then the result in claim (i) follows easily by invoking the result in claim (ii). ]

PROOF OF THEOREM 4
The main part of the result follows almost immediately from Lemma 2, using Corollary
1 and Theorem 1.
If AM(Q) < 1, by Lemma 2(ii) we get in fact > 3°, D —e) dlverges hence CPO follows

aet

by Corollary 1.

On the other hand, if \(Q) > 1, applying results (ii) and (i) of Lemma 2 and then
Theorem 2 we find that CPO necessarily fails.

What remains to be shown is that in the latter case (i.e. if A(Q) > 1) there exists an
alternative stationary allocation which is Pareto improving. A proof of this was already in
Aiyagari-Peled [1] and Gottardi [14]. We provide here a partly different argument which
more closely parallels the ones of the results of the earlier sections.

Since () is strictly positive, by Perron’s Theorem we know there exists a vector x €
R7 ., || z ||= 1 such that Qz = A(Q)z. Since A\(Q)) > 1, we have then Qz > z, i.e.
Yges @ss Ty —xs >0 forall s € S.

Define j := maxscs nen Psp(2KH(1+S)), where pg (2K H(1+45)) is well defined and
positive by Assumption 1 and Lemma 1; o := minges {> gcs @ss' s —Zs}, O 1= pma&(iﬁ'
Note that @ > 0 and a3 = p3?max,cs 22. Considering next the vector Sz we see that

Zs 1c8 Gss' (ﬂajs ) (ﬂajs) Z ﬂmlnses {Zs’ Gss'Tg! — ajs} -
— af = jPmax,cs 2
= Sses Uss' (Brg) — (Brg) > ﬁ(ﬂa:s)Q forall s € S

" _(p*(a

= > P (0)gss (Bry) — (p*(0)Bzs) > /)((*#
s'eS p( )

_ Define (s, 5; s, h) := x*(s, 838, h) + By, #(s;s,h) = x*(s;s,h) — yBxs for some

h and for s, € S, where v € (0,1] is suitably chosen®' so that #(s,h) € R'® and

| Z(s,h) —x*(s,h) ||< 2KH(1+ S) for all s € S. Set &(s,h) = z*(s, h) for all h # h.

So, we have constructed a feasible stationary allocation for which, recalling again that

foralls €¢ S (16)

(p* (00,81, +, St_1,8)ses) = (p* (00, $1,* - 78t:1)q:t715)568) and usNing (16), we see that
ZSES p* (O_Ou Sty St-1, 3)[,@(37 St—15 St—1; h) o ,17*(8, St—15 St—1, h)]_l_
p* (00,81, -, 31&71)[‘%(31&713 -1, ) = (s¢-15 801, h)] >

ﬁ(p (00,81, 8¢t 1)[;:(5;01; 15?)1)56*(& 15t 1,h)])? for all (00,31, , St— 1) t

l.e. the bounded Gaussmn curvature condition is satisfied for the members of Ngeneratlons
born at any ¢ affected by the transfer. Noting that the initial old (of type h) receive a

31Since z*(s, h) € Rjj_s, this is always possible.
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positive transfer, we conclude that the alternative stationary allocation Z is indeed CPO
improving. m

PROOF OF THEOREM 5
The result follows by a fairly immediate reformulation of the argument of the proofs
of Theorems 1 and 2 where the reformulation reflects the new form of the Gaussian
curvature conditions for the economy with complete spot markets and bonds. There is
only one extra piece of argument in the proof of sufficiency which we need to add.
Note that if the non-vanishing Gaussian curvature condition holds for all agents at a
given node, by taking averages across agents we get:

1 aeoh)
Zh: [H (Z:U’GUJr /TL(O'/, g, h))

52(0", o, h)} > —8(0) +£’<’51<_">>2, (17)

Since both fi(0’,0,h) and 8(0’, 0, h) are nonnegative, for all (¢, 0, h), we also have:

1 g(o’ o, h)

WS e el S o] = S ey o)

Hence the inequality in (17) can also be rewritten as

Ha(o")8y(c" o) > —81(0) + B%.

The above expression is the same, except for the fact that Hf(o') appears instead of

S O condition (4) obtained in the proof of Theorem 1. The rest of the argument
T's o!

can then proceed as in the proof of Theorem 1, simply by replacing " 1( 5 with Hp(o').m
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