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THE CIRCULAR ROAD REVISITED:

UNIQUENESS AND SUPERMODULARITY

Martin Peitz

ABSTRACT

The model of the circular road has proved to be a popular model of oligopolistic
interaction, yet its theoretical properties are not fully explored. In this paper I extend
the uniqueness result of price equilibrium in the circular road with equidistant locations
from quadratic transportation costs to a class of convex power transportation costs,
i.e. I show uniqueness in oligopoly for a class of utility functions of the consumers. I
show that the associated game is supermodular and dominance solvable. The paper

also discusses possible extensions and limitations of the model.

KEYWORDS: Circular Road, Localized Competition, Uniqueness of Price Equi-

librium, Supermodular Games



1 Introduction

In this paper I analyze a particular model of localized competition. Under localized
in contrast to global competition a price change of a firm only affects the demand of
some of the firms in the market. In the model of the circular road, which has first been
studied by Vickrey (1964) and later by Salop (1979), it is possible to study localized
competition. In comparison to models of competition on an interval the advantage of
the circle is that there are no end points so that the model with equidistant locations
is (locally) symmetric. Each firm has two neighbors for strictly convex transportation
costs when every consumer buys in the market. Competition on the circle can be
interpreted as competition around a lake or mountain range or as competition by
companies offering daily services at a particular time of the day. The model is the
reference model of localized competition with more than two firms and is widely used
in industrial organization and regional science.

The model is presented in section 2. For the specification with equidistant locations
I give a new interpretation as a model of limited consumer information. Economides
(1989) provides existence and uniqueness results in the model with quadratic trans-
portation costs. The framework of Caplin and Nalebuff (1991) only applies to this
specification of the transportation cost function. It seems to be important to gener-
alize the results to show that results do not critically depend on one particular form
of the transportation cost function, i.e. one particular form of the utility function.
Existence of equilibrium in the model with power transportation costs has been estab-
lished by Anderson, de Palma and Thisse (1992) for the power between 1 and 6.2.!
Furthermore, they show that there exists only one symmetric equilibrium but they do
not rule out asymmetric equilibria.

In section 3 I show that for sufficiently small price caps uniqueness holds in the
model with power transportation costs. Uniqueness is shown by proving that the
dominant diagonal property holds. This enables me to establish the uniqueness of
equilibrium for power transportation cost functions with a power between 2 and 3 in
the model with equidistant location given an upper bound on the maximal individual
expenditure in the differentiated market. As far as I am aware of, this is the first
uniqueness result for a class of address models of product differentiation with more
than two firms, which is not restricted to linear or quadratic disutilities in the product-

consumer distance.

'In the Hotelling duopoly power transportation costs have been introduced by Economides (1986).

He characterizes price equilibria and relocation tendency in an earlier location stage.



In section 4 I show that the associated game is supermodular and dominance solv-
able. Uniqueness here follows from the fact that there exists a unique symmetric
equilibrium candidate and from supermodularity. The properties of the profit func-
tions needed for cardinal supermodularity coincides in this model with the required
properties for the dominant diagonal. This implies dominance solvability of the game,
provided the power of the transportation costs function is in [2,3). I shortly discuss
the difficulties which one encounters when trying to extend the results to more general

models of localized competition.

2 The Model

Firms and consumers are described by addresses in the product space, which is a circle
of circumference L. Distances between goods and consumers are measured by the arc
distance on the circle. Formally the arc distance between two points on the circle with
circumference I labeled a,b € [0, L) is denoted by |a — b| = min{abs(a — b),abs(a —
b+ L),abs(a — b — L)} where abs is the absolute value function. The set of firms
N ={1,...,#N} is fixed. Firms set prices p,, n € N, and they are assumed to have
identical constant marginal cost of production c¢. Firm n has its good at z, somewhere
on the circle and z,,_1 < z,.

A consumer at Z either buys one unit of the good at one location and zero ev-
erywhere else or not in the market at all. When a consumer buys good n his utility
depends negatively on the distance | — z,|. Interpreting the model as a location model
this disutility is called the transportation cost and may be thought of as travel time.
Hence the transportation cost does not affect the budget of a consumer.

Consumers are identical apart from their address or location in space. They are
uniformly distributed over the circle and the population has mass M. With y I denote
the income of the consumer or, more generally, the maximal budget reserved for a good
in the differentiated market. Prices p,, n € N, and y are measured in units of the
Hicksian composite commodity 0. Conditional utility functions of a consumer at Z are

written as

Upg = Xy,

U, = wo+R—7(2,—2)° neN,

where x is the quantity of the composite commodity, R is the reservation price, 7 is

a scaling parameter, and [ the power of the transportation cost function. The budget



constraint reads xg + p, < ¥y when a consumer buys good n and xy < y when he does
not buy in the market.

Consumers buy at the shop where they obtain maximal utility. I am interested
in situations where firms in the market are in direct competition to each other. In
the terminology of Economides (1989) I only study ‘competitive’ equilibria and ex-
clude ‘kink’ equilibria and ‘local monopolistic’ equilibria from the analysis. Otherwise,
demand functions have to be modified to allow for local monopoly, i.e. there is no
competition between some neighboring firms in the differentiated market. For p, <y
and R >y —I—TmaXn€N<%<Zn — 2,-1))?, n € N, each consumer chooses according to arg
maXpe N Uy, Where v, = R —p, — 7|z, — 2]5. The model with this choice rule for all p,
I call the compelitive specification.?

The transportation cost function 7|z, — 2|7 is quadratic when 3 = 2. Tt is strictly
convex for 3 > 1 and linear for § = 1. If all firms are active, prices will be ¢ < p, <
min{y, R} for all firms n € N. For § < 1 the market area served by a firm is not
necessarily convex; this case is therefore excluded from the analysis.

For 3 > 1 there is exactly one marginal consumer who is indifferent between buying
from two particular neighboring firms with positive market share. Suppose firm n — 1
is the direct competitor to the left of firm n, firm n + 1 the direct competitor to the
right, and z,,1 > 2, > 2,_1. The marginal consumer Z; to the left of firm n is located
according to

Pn + T’Zn - ZA/LW =Pn1+ T’2L - anllﬁ

and analogously for the marginal consumer Zg to the right of firm n. Firm #N is the
neighbor to the left of firm n = 1. Demand for good n equals the market share of firm
n, which is the length of the market segment between Z; and Zg relative to the circum-
ference of the circle, multiplied by the mass of the consumers, i.e. X,,(pn—1,Pn,Pnt1) =
%(ER — Z1) and profits of firm n are 7, (Pn—1, Pn, Pnt1) = % (pn —¢)(2r — 21). Firm n
maximizes its profits with respect to p,. A vector of prices (p}) is a Nash equilibrium
if for all n € N, 7, (p} 1,05, 05 11) = (Pl 1, Pn, P y1), for all p, > 0.

Before turning to the results in this model I provide a variant of the circular road
with equidistant locations. This variant I call the circular road with limited con-
sumer information. Consider a market of differentiated goods which are ordered as
1,2,...,#N. Each pair of goods (n — 1,n) with n < #N and (#N, 1) is observed by

an equal share of consumers 1/#N i.e. consumers draw a good n from the set N with

21 will look at this specification only at some intermediate steps. In the main results customers are
described by maximizing u, with respect to n € N U {0}, z¢ subject to the budget constraint.



probability 1/#N (independently over consumers) and then with probability 1/2 one
of the neighboring goods. Hence, localized competition arises because of correlated
information. This consumer information can be best understood as arising when con-
sumers who enter a shop select only among a pair of neighboring goods they encounter
in the shelf. Consumers make comparisons between the two goods they “analyze” and
only purchase one of them.

Goods are heterogeneous due to horizontal differentiation which is modeled for
each pair (n—1,n) with n < #N and (#N,1): consumers’ ideal points are distributed
uniformly on the interval [0, L/#N]| where goods are located at the endpoints of this
interval. Then with the transportation cost function from above one has reconstructed
the circle with the notable difference that in such a model there do not exist prices
such that a consumer who is informed about a particular good and whose ideal point
coincides with the location of this good is in the interior of the market area of a
competing firm. In other words, firms can only sell to a consumer whose location on
the circle is within distance I/#N. This property facilitates the analysis because a
firm can at most serve the whole market to be shared between itself and each of the two
firms with neighboring goods on the shelf. For prices such that every marginal consumer
between two neighboring firms has 2 € (0, L/#N) profit functions are identical to those
in the model above. Existence and uniqueness results of the following sections hold.
Hence, the circular road with equidistant locations can be interpreted as a model of

product differentiation with limited consumer information.

3 Uniqueness: Dominant Diagonal

Economides (1989) has proved that in the model of the circular road with quadratic
transportation costs there exists a unique price equilibrium for given locations. Econo-
mides (1989) also has shown that in the location-then-price game of the circular road
with quadratic transportation costs there exists a subgame perfect equilibrium with
equidistant locations. As shown by Salop (1979), in the model of the circular road
with linear transportation costs there exists a unique price equilibrium for equidistant
locations.

In the case of power transportation costs the marginal consumer 2y, who is indifferent

whether to buy from firm n — 1 or firm n is determined by the price p,, for the good of



firm n given the other prices.

dé’L 1 -1
_ s 181 4 |8 51
— =—{|zn — 2 + 2L — Zn—

T = 77 Ul =z )

Anderson, de Palma, and Thisse (1992) have shown that in the competitive specifi-
cation of the model of the circular road with power transportation costs and equidistant
location there exists a only one symmetric price equilibrium if 3 € [1,6.2]. Further-
more, the unique candidate for a symmetric equilibrium in the model with equidistant

location has the following equilibrium prices:

I B
p:; =c+ TﬂQliﬁ (ﬁ)

Prices p; are increasing in the parameters 7 and L. Since

o L (LY
93 —T(l—l-ﬂlogQ#N)Ql B(#_N> ;

prices are increasing in J if L > 2#N, i.e. there is sufficient space between the firms.

Prices are decreasing in the number of firms #N. The profit function of firm n is
quasi-concave in p, for given p, 1 = p,,1 = p} when 3 is smaller than 5.8. For larger
values of [ there exists a second local maximum at which firm n sets a higher price
pn > pk. This is due to the fact that at high § market share is not very sensitive in
prices. For 8 > 6.2, the local maximum at p, = p} fails to be the global maximum
implying that there does not exist a symmetric equilibrium.

The findings are represented by the contour curves in Figure 1. The ordinate
represents the market share A of firm n on the interval between its two neighbors. The
contour curves are the iso-profit curves in the (3, A)-plain. For any 5 > 1 there is a
local maximum in profits at p, = p& (A = 0.5) which is the unique candidate for a
symmetric equilibrium. Hence if one restricts the strategy sets of the firms such that
higher profits than at p, = p! cannot be made, one obtains the existence of only one
symmetric equilibrium with equilibrium prices in the interior of the strategy sets for
all # > 1. Anderson, de Palma, and Thisse (1992) only consider symmetric equilibria.
This leaves the question open whether asymmetric equilibria exist.

To derive uniqueness results I will for the moment impose condition (C) which is
a joint restriction on the parameters of the model. I introduce a price cap p, > c for
each firm, which depends upon . Hence, I restrict the strategy set of firm n to [0, p,].

At a later stage I replace these price caps by a restriction on the parameters of the

7



model.

(C) Prices are restricted by price caps p, > ¢, n € N, which satisfy
_ g

Prn—C < Tﬁ227B<Zn - anl)ﬁu
Pn—C < TLQ%B

8—1

Uniqueness of equilibrium is shown by applying the contraction mapping theorem.

(Zn+1 - Zn)ﬂ-

The corresponding contraction mapping property is implied by the following dominant
diagonal property
A%,

8pn8pj

> 2
J#n

When all firms are active, the expression on the right-hand side is

D

i#n

A%,
op?

o,

8pn8pj

‘ 9%,

8pnapnfl

‘ o,
apn 8pn+1

Lemma 1. Suppose condition (C) is satisfied. In the competitive specification of the
model of the circular road with power transportation costs and 8 > 2, profit functions
satisfy the dominant diagonal property on the set of prices above marginal costs where

all firms are active.

The proof of the lemma is delegated to the appendix. Note that since firms have
identical marginal costs there cannot exist an equilibrium at which one or several firms

are inactive. From Lemma 1 follows the existence of a unique equilibrium.

Lemma 2. In the competitive specification of the model of the circular road with power
transportation cost, 3 > 2, and price caps satisfying condition (C), a Nash equilibrium

in prices exists and 1s unique.

Proof. It is a strictly dominated strategy for each firm to be inactive for any strategy

#N-1

profile of its competitors which is in [¢, 00) . Prices p, < ¢ for at least one n € N

are serially dominated. Hence the result follows from Lemma 1. |

This result will be used to show that the symmetric equilibrium in the competi-

tive specification is the unique equilibrium under an assumption on income y. Given



equidistant locations, condition (C) reduces to

8
ﬁn_C<Tﬂ€122ﬁ (#—l:;v>

Since prices cannot be larger than the price caps this also has to hold for the unique

candidate of a symmetric equilibrium. This implies that § < 3. Whenever y < p,,
prices which violate (C) are dominated by some prices in [¢, y].

Assumptions under which the proposition is applied are (A.1) that all consumers
want to buy in the market when they can afford it and (A.2) that the maximal budget
in units of the composite commodity that consumers spend in the market is inside a

particular interval.
L \?
(A1), R>y+ (55)

(A.2). c+7132'F <#—LN)B <y<ctr5H227 <#—LN)B

The following result extends the uniqueness result for quadratic transportation costs
to 3’s in the interval [2,3).

Proposition 1. Assume (A.1) and (A.2). In the model of the circular road with power
transportation costs and equidistant locations, for 3 € [2,3), there exists a symmetric

price equilibrium, which is determined by equation (1). The equilibrium is unique.

Proof. The existence of a symmetric equilibrium follows from Anderson, de Palma,
and Thisse (1992). Uniqueness of the equilibrium follows from Lemma 2 and the ar-

gument above. |

For lower income v, p; =y, n € N. This is made precise in the following theorem.

_ 8
(A.3). c<y<c+7p2! 5<#—LN) :

Proposition 2. Assume (A.1) and (A.3). In the model of the circular road with power
transportation costs and equidistant locations, for 3 € [2,3), there exists a symmetric

price equilibrium p; =1y, n € N. The equilibrium is unique.

Proof. Prices according to (1) are greater or equal to 3. Note that strategy profiles

9



which are not in [e,y]#" are serially dominated. It follows from the proof of Lemma 1

that on this set profit functions 7, are strictly concave in p,. Hence if g—g“ . >0,
nlpj=y.;j

Pn =Yy, n € N is an equilibrium. This is shown in Lemma 3 in the appendix. Concavity

and Lemma 3 also imply that there does not exist an equilibrium with p,, € [¢,y) for
at least one n € N because each firm wants to set a higher price than the neighbor

with the lowest price whenever min{p,_1,pn+1} € [c,¥). [

I end this section with a remark on endogenous locations. At equidistant locations
Zn, n € N, firms have no tendency to relocate in the location-then-price game when
(A.3) holds with strict inequality because continuation profits are constant in z, in a

neighborhood around Z, for each firm n.

4 Uniqueness: Supermodularity

In this section I provide an alternative proof of uniqueness in the circular road which
is based on results in supermodular games (see e.g. Vives, 1990, and Milgrom and
Roberts, 1990). Since firms choose prices from a closed interval of the real line, su-
permodularity (in its ordinal form) of the profit functions is implied by the single
crossing property (see Milgrom and Shannon, 1994). A profit function satisfies the
single crossing property if for pl, > p! and p' , > p"

Supermodularity implies that best responses are nondecreasing. First, I consider a
cardinal and differentiable version of this property. By Topkis characterization theorem

7, 1s supermodular if

om,, .
>0, j#n.
IpnOp; 7

This property says that the incentive to increase price increases in the competitors’
prices. It means that goods are strategic complements. In the circle model one only

has to check whether this condition holds for j = n — 1,n + 1. These conditions are

~ 2/\
%_@n_c)& > 0,
dpn dpndpnfl

~ 2/\

7, SO . B )
dpn dpndpn+1
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An important observation in the circle model or indeed any product differentiation
model on the line with identical disutitiliy functions is that changes of the marginal
consumer satisfy

d?zp, d?zr d?ig d*ig

== an ==

dp2 — dp,dp, dp2 — dpndpni,

which are typically different from zero. The only parameter choice for which these sec-
ond derivatives are always zero is 3 = 1. In this case profit functions are supermodular
and uniqueness of equilibrium follows from Lemma 5 below (this is the version of Sa-
lop, 1979). Since these second derivatives can change sign on the domain of prices for
> 1, demand functions cannot be shown to be supermodular. Then summing the two
conditions and comparing them with the second order conditions of profit maximiza-
tion shows that the property of supermodularity is stronger than concavity of profit
functions in the present example. Hence, supermodularity can only be a property of
the profit function for the power of the transportation cost function sufficiently small.
Furthermore, as follows from the proof of Lemma 1, the same property on admissible

prices is needed as in the case of the dominant diagonal property.

Lemma 4. Suppose condition (C) is satisfied. In the competitive specification of the
model of the circular road with power transportation costs and 3 > 2, the associated
game 1s supermodular on the set of prices above marginal costs where all firms are
active.

For the proof see appendix. The circular road with equidistant locations is an
example of a locally symmetric game. For this class of games it is shown in Peitz (1998)
that supermodularity together with the existence of a single symmetric equilibrium
candidate is sufficient for uniqueness of equilibrium and dominance solvability of the

game.

Lemma 5. For any parameter 3 < 6.2 for which profit functions are supermodular on
the set of possible equilibrium price vectors, the equilibrium of the circular road with

equidistant locations is unique and the game is dominance solvable.

This implies that uniqueness of equilibrium can be shown without applying the
contraction mapping theorem. Hence the results of Propositions 1 and 2 can be shown
with the proof relying on supermodularity. The result is strengthened to dominance
solvability, i.e. the unique equilibrium is the only price vector which survives the serial

elimination of strictly dominated strategies.

11



Proposition 3. Assume (A.1) and (A.2) or (A.1) and (A.3). In the model of the
circular road with power transportation costs and equidistant locations, for § € [2,3),

there exists a unique equilibrium and the game s dominance solvable.

With Propositions 3 it has essentially been shown that the uniqueness result for the
quadratic specification is robust to a more convex specification of the transportation
costs. Although this result is not surprising, it is far from obvious because properties
such as the supermodularity of demand (which are satisfied in several model of price
competition) is not satisfied in the circle model.

First, with the arguments in Peitz (1998) one can extend the previous two results to
locally symmetric markets in which some of the consumers only know of the existence
of one good. It is then possible to construct monotone comparative statics in the share
of consumers who only know of the existence of a single good.

Second, one may be tempted to conclude that a monotone transformation of the
profit function leads to a more general result. Consider the logarithmic transforma-
tion of profit functions. I show that this monotone transformation does not help in
extending the previous result to a general uniqueness result. Clearly, if the logarithmic
transformation is cardinal supermodular then profit functions are ordinal supermodu-
lar. The condition of log-supermodularity can be written as
dzp [dzZg dZp a?zr
dpn_ (d T d )Zd dp,; CR T F)
Pr—1 Pn Pn Prn@Pn—1

The inequalities for log-supermodularity (and also for supermodularity) are strictly
satisfied for all 4 in any point p, = p,_1. This implies that the symmetric equilibrium
is locally unique (follows from Lemma 5).

I restrict the set of admissible prices to those prices at which all consumers buy only
from a neighboring firm (as in the model with limited consumer information). Since
d?z1,/dpndp, 1 is unbounded on [z, 1,2,] for 3 € (1,2) this inequality is not satisfied
for these parameters. Also, one can show that for 3 > 2 the restriction (by finding
upper and lower bounds for numerator and denominator) reduces to 24°2° > 3 — 1.
This inequality is only satisfied for § = 2. Hence, profit functions are log-supermodular
only in the linear and quadratic specification of the profit function.

The property of supermodularity can also be shown for asymmetric locations. Since
the game is asymmetric, uniqueness of equilibrium no longer automatically follows (for
this it is sufficient to show that the dominant diagonal property of profit function also

holds). Similarly, in the case of product differentiation on an interval of the real line,

12



the game is never locally symmetric and the property of supermodularity does not
imply uniqueness of equilibrium.

In summary, the analysis in this paper reinforces the circular road with equidistant
locations to remain the most popular oligopoly model of horizontal product differenti-
ation. However, properties of the specification with quadratic transportation costs are
not general properties. In particular, strategic complementarity could only be shown
for the power of the transportation cost function in [2, 3).

Since supermodularity holds in the neighborhood of the symmetric equilibrium
independent of the parameter 3 one can derive monotone comparative statics of this
selection for any 3 € [1,6.2].

13



Appendix

Proof of Lemma 1. The dominant diagonal property is:

‘827Tn ‘ A%m, ‘ A%,
op OpnOPn-1| | OPnOpny1
where
A%m, Mdz, M d?z;
= 2 T
op? L dp, L dp?
Mdz M d?z
25 (py — )
Ldpn | T i
o, M dz; M< ) d*z;
_— — - — PR — n — c)——
apnapnfl L dpnfl L P dpn dpnfl
o, M dzgr M d*ip
OpnOPni1 L dpni1 L dpn dpn 1
Note that 3 . . .
dZL . _dZL dZR . _dZR
dpnfl dpn 7 dpn+1 dpn 7
d*z; B d*z; d*ip B d?2p

= — an =—
dpy; dpn dpn-1’ dpy; dpn dpn 11
The case (3 = 2 has been analyzed before (see Lemma 1 in Economides, 1989). Hence
only # > 2 has to be analyzed. Note that %@7, j=n—1n,n4 1, are continuous
because the derivatives above are continuous at all locations 2Z; and Zi. The marginal
consumer Zy, can be located to the left of firm n — 1, between firms n and n — 1 and to
the right of firm n. I treat these cases separately.

Zn-1 S 2L S Zn.
d*zy, 1

dpdps = " (s G )

(=10 =2

It is to be shown that this term is bounded from above. Note that this expression

-2

oy AL
dpnfl

o dZg
—1(3, — o B—2
+ (8- 1)(ZL — 2n1) dpn1>

becomes unbounded for 3 < 2 when Z;, — z, or Z;, — z,_1. Therefore, the analysis
had to be restricted to § > 2.
Condition (C) can be rewritten:

2

b 92 <<Z" — Z’““l)ﬁil)

_ BT 928
ﬂ —1 (Zn - anl)[a72

Pp—C < ——

A—1

(Zn - anl)ﬁ =

14



Note that the function f: [z, 1,2,] — R} with f(21) = (2, — 2.)7 '+ (20 — 2,1)7 !
reaches its minimum at 25, = (2, + 2,—1)/2 for # > 2. Hence the following implication
holds.

)
B (e N At ) (1)
T B—=1 —(zn—Z20)7 2+ (3 —2n )P 2
This inequality holds for § > 2 when the denominator is strictly positive and will be
needed below. Two cases remain to be considered.

2L S Zn—1 < Zp:

dz 1 N g1 L
il G CE R A
d*z 1 G g1\ 2
i o (D R
. g9 dZL . g9 dZL
—B+ 1) (2 — 20)7 7 —B+ 1) (201 — £0)7 *——
(4 1= 200 22 b (4 s = 20)

2

— 1 N _ N _ _
= _ﬂ ((Zn - ZL)B ! + (anl — Z’L)[3 1)
iz

((on = 2207 24 (ona = 20)7 )

dz 1 B !
d_pL = ﬂ_ ((ZL - Zn)ﬁ ! + (ZL - anl)ﬁ 1)
d*z 1 R N2
dpdp s = (G a) T G a) )
N _, dzg, N _, dzr
-1 — 2 B8-2 -1 — 2 B8-2
((ﬁ )2 — zn) P +(B—1)(2L — 2n-1) P

. _ dz
((ZL —2)" 77+ (21 — 201)” 2) Wi
Condition (C) implies for 3 > 2
ﬁn —c < ﬂﬂ_Tl (Zn - anl)ﬁ



b1 ((?:’L - Zn)[%l + (21 — anl)ﬁfl)Q

<
B=1 G-+ (o —an )7

Note that the function g : [z, 1, 2,] — R, with

((é’L — Zn)ﬁil + (é’L - anl)ﬁil)Q

(é’L — Zn)ﬁi2 + <2L — Zn,1)572

9(ZL)

reaches its minimum at 2; = z, for Z; > 2, and g(2,) = (2, — 2,_1)". Hence the
inequality above holds.
From (2), (3), and (4) it follows that

2y a2z

dpn <p ) dpndpnf 1
Also s s

dpn dpndpn+1

where one has to use the second inequality of condition (C). This proves that the

dominant diagonal property is satisfied. |

Lemma 3. Under (A.1),(A.3), 2=

’ Opn

>0 at equidistant localions.
pi=Yy,JEN

Proof. Given that the neighbors set their price p, | = p, 1 the market share of firm
n to his left equals the market share to his right, denoted by A(p,).

=) () -7 (L)

Profits 7, o (pn, — ¢)A(pn). Denote 7, the profit function when the argument is A.

Fn(A) o (—mﬂ (#—LN>B +7(1 =\’ (#LNY + Pt — c) A

1
2

or equal to 0. This is rewritten and then vy is replaced by its upper bound in (A.3).

It remains to be shown that the first derivative evaluated at A = = and p,,_; = ¥ is less

8 B
T (#_LN> (B+12° = (B-12 ") +y—c<7 (#_LN> (-260277+p27) =0 m

16



Proof of Lemma 4. Clearly,

0%,

8pn 8]? )

:07 j%n_lunun_l_l?

when firm n — 1 and firm n + 1 are active and hence the neighbors of firm n.

%, -0
apnapnfl

because it follows from (C) that

d*zp,

dpn dpn -1

dz,
— > n —_
. (pn — )

Pt my
(see the proof of Lemma 1 above). Similarly, ST 0.
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