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INFORMATION, STABILIZATION, AND WELFARE:
THE CASE OF SUNSPOTS

Subir Chattopadhyay
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ABSTRACT
The stationary sunspot equilibria of a simple OLG economy with heterogeneous agents
are considered. These equilibria are known to be suboptimal. The focus of the paper is on
the efficacy, based on welfare economic considerations and informational requirements,
of government “policy” in such an environment.

The main result is that knowledge of (a) the sunspot equilibrium net trades, (b) weak
interval type information on two parameters, and (c) weak set type information on
the location of some optimal stationary allocation, is sufficient to induce a competitive
equilibrium which is a Pareto optimal Pareto improvement over the sunspot allocation
which has the further property of reaching a Pareto optimal stationary allocation in
finite time.

The results are interpreted as demonstrating that in a simple model with a sunspot
environment, policy is very effective and that welfare economic considerations lead to

“stabilization.”

JEL Nos.: D52, D61, D84, D91, E61, E63
KEYWORDS: Stationary Sunspots, Overlapping Generations, Pareto Optimal Im-
provements, Golden Rule, Stabilization



1. Introduction

This paper evaluates the potential for policy intervention in a simple overlapping gen-
erations economy undergoing sunspot fluctuations. We show that interventionist policy
is effective in the strong sense that it can lead to Pareto improving, Pareto optimal
allocations which can be induced using relatively weak information.

1.1 The model and the results

The class of economies considered are multi-agent, stationary, pure exchange, over-
lapping generations (henceforth, OLG) economies in which one good is traded in each
period. Money is used to transfer income across periods. Agents maximize expected
utility and are risk averse. The only other assumption made is that consumption when
old is a normal good.

There is a government in the economy which does not produce or consume any
goods; however, the government can level real lump-sum taxes and controls the quantity
of money in the economy by making lump-sum transfers and interest payments. So, it
is in a position to affect the allocations that agents receive by appropriate choice of its
fiscal-monetary policy. We assume that the government does not have costless access to
information about agents’ preferences and endowments.

We are concerned with the stationary sunspot equilibria (henceforth, SSE) of this
model. A sunspot equilibrium, following Cass and Shell [2], is a rational expectations
equilibrium in which uncertainty matters only because agents believe that it does even
though preferences and endowments are deterministic. It is well known that SSE exist
in the class of economies considered in this paper (see, e.g. Azariadis [1]); furthermore,
under a standard criterion of efficiency, they are suboptimal (see, e.g. Peck [13]).

The policy problem treated in this paper can now be described. We postulate that
the economy is already in an SSE with two states and, given the suboptimality of this
equilibrium, the objective is to give an axiomatic characterization of the kind of infor-
mation necessary in order to induce an allocation which is Pareto optimal and Pareto
improving over the SSE allocation.

As a preliminary to our main results, we prove the existence of two parameters which
are defined for each economy and each SSE allocation. In terms of interpretation, the
first parameter gives an upper bound on the maximum amount of either commodity that
agents of every type of every generation would be willing to give up in order to avoid the
sunspot lottery, i.e. something like a uniform risk premium. The second parameter is
used to define a lower bound on the period beyond which all generations would prefer, in
comparison to the sunspot lottery, the consumption vector corresponding to a particular
stationary allocation which is near the consumption vector corresponding to an optimal
stationary allocation. Each of these parameters defines one boundary of an interval where
the other boundary is known a priori. We say that we have “interval type information”
if we know of some point in the interval specified by each of these two parameters.



Our Theorem says that, (a) the information that is contained in the time series of
the SSE net trades, together with (b) interval type information, and (c) approximate
knowledge about the location of the net trade associated with an optimal stationary
allocation, is sufficient to compute a Pareto improvement which has the property of
giving all but a finite number of agents a stationary consumption vector (the target). Now
allowing agents to trade in competitive loan markets only (so we look at the nonmonetary
equilibria), with the previously computed Pareto improvement as the endowment stream,
necessarily gives a Pareto optimal allocation. In this way we acheive the goal of inducing
a Pareto optimal allocation which also Pareto improves over the initial SSE. In the special
case where there is only one type of agent and the exact location of the Golden Rule is
known, the Golden Rule consumption vector serves as the target.!

1.2 Discussion of the results and the model

The results of this paper show that, given the structure of the economy considered,
interventionist policy can be effective, and that “stabilization” could have foundations in
welfare economics. We base our conclusion on our belief that policies should be evaluated
on the basis of (i) the existence of allocations which are both Pareto optimal and Pareto
improving, and (ii) an axiomatic characterization of the information required in order
to implement these allocations. But in order to evaluate the work, we need to discuss
alternative specifications of information which might deliver the result; we also need to
discuss the way in which we have modeled the government.

In our framework, the informational requirements for computing only Pareto improve-
ments, or only Pareto optimal allocations, are fairly weak; the problem gets interesting
when one wants both. Notice that improvements typically require local information (or
a global property of preferences like risk aversion used locally) like local recoverability of
preferences from demand functions, while optimality is a global notion.? The informa-
tional requirements in the Theorem provide the right mix of local and global information;
whether they are weak or otherwise is subjective but it is obvious that some preference
information must be given to the government since it uses a Pareto criterion, and easy
counter-examples can be given when one or the other requirement of the Theorem is
dropped.

Alternatively, one could ask whether welfare improvements can be induced based
on only aggregate information regarding certain statistics of the distribution of agents’

I As we indicate in Remark 5, for a “generic” economy, all but a finite number of agents of each type
receive a consumption vector which is one of a finite collection of vectors (none of which need be the
same as the target); as a special case, beyond a certain point in time, each agent of a given type receives
the same vector.

2For example, Geanakoplos and Polemarchakis [7] look at a two period model with incomplete
markets, show that the resulting allocation is generically constrained suboptimal, and ask how much
information a planner will need before she can effect an improvement (not an optimal improvement).
Their solution, Geanakoplos and Polemarchakis [8], is based on conditions guaranteeing the local recov-
erability of preferences from demand functions and is quite different from the approach taken in this

paper.



characteristics. Unfortunately, when one uses the Pareto criterion, almost by definition
one is forced to ask for some individual specific information; this usually means that, at
the very least, we need to know the agents net trades and usually a little more. In this
paper we have heterogeneous households but the only information which we need which
is specific to the households is (i) information about their net trades and (ii) information
about the location of an optimal stationary net trade for their type; the rest of the
information that we use is uniform in nature in the sense that it can be obtained once
one knows the broad outlines of the agents’ characteristics, hence our claim that the
informational requirements of the result we obtain are relatively mild given the objective
that we start with.

We find that “stabilization” is a result of our objective which was to find easily
induced Pareto optimal improvements. This is an insight which appears to be robust
to model specification since, given the incomplete information environment that we are
considering, and the fact that the First Welfare Theorem fails in OLG economies, it is
natural to use a stationary allocation as a target to be reached in finite time; this is about
the only robust way of guaranteeing optimality of the entire allocation by converting the
economy into one where the infinite horizon does not matter.

Turning to the model, one could say that in such a simple environment, the govern-
ment will not suffer from incompleteness of information since it will be composed of the
agents who populate the economy. A first answer to this criticism is that the model and
results can be extended (see Section 1.3); but a more reasonable answer is that those
who design macroeconomic policies clearly suffer from the type of lack of information
that has been modeled in this paper and to gauge whether they can be successful in de-
signing desirable policies in realistic environments, one should start with simple, possibly
unrealistic, specifications which is what we do in this paper.

Overall, we view the paper as exploratory and hope that it will stimulate interest in a
systematic approach to the problem of the role of policy intervention in actual economies.
One would guess that analysis of more general models will lead to the conclusion that
the goals of interventionist policy should be less lofty, not because no-intervention is the
best of all worlds, but because the potency of policy is severely limited by informational

considerations.?

1.8 Extensions and drawbacks

Our analysis applies to all SSE, “local” or otherwise, and also to the case of SSE
with more than two states, under a standard mixing condition on the Markov process.
Also, under mild additional conditions, it is possible to define the two parameters that
we use uniformly across different equilibria and different economies.

An extension to multi-good economies is desirable.* The problem is more difficult

3Geanakoplos and Polemarchakis [7] also stress this point.
4However, note that the one good case is often regarded as the one relevant for macroeconomics.



relative to the one good case since the conditions for optimality are much more stringent.
However, it might be possible to replicate the strategy that we use in the one good case
of computing improvements which reach a stationary target in finite time and then
allow markets to operate, with the new endowments, in order to obtain optimality.
Clearly, such allocations exist; the question of interest is whether there are acceptable
informational requirements which will let us compute the initial improving allocation.

It is also of interest to identify conditions under which one can reach the target
stationary allocation in an optimal and improving manner without explicit knowledge
about its location. Such a result can be obtained by using the monetary policy rule
proposed by Grandmont [10].°

There are two problems with our approach that we would like to mention. We do
not ask how the government could possibly know that the economy is caught in an SSE;
nor do we ask how the government learns about the structure of the economy which we

formalize as assumptions.

1.4 Related literature

A problem which is related to the problem treated in this paper is that of “stabilizing
sunspots” (e.g. Grandmont [10] and [11], and Woodford [14]). The objective there is
to neutralize sunspots; consequently, welfare issues are typically not considered. The
result is usually in the form of a policy rule which often has the property that if the
rule is announced before economic activity begins, and the initial conditions are suit-
able, then interference by the government is never actually necessary. However, if the
economy is already undergoing sunspot fluctuations then interference would be necessary
and the resulting allocations need be neither improving nor optimal. Furthermore, the
informational requirements of the policies proposed are often quite stringent.

The paper is organized as follows: Section 2 introduces the economy, its perfect fore-
sight equilibria, and the existence and welfare properties of SSE. Section 3.1 introduces
two parameters which are used in our construction of optimal improvements. Section 3.2
presents the main result and its proof. Other proofs are collected in Section 4.

2. The economy
2.1. The model ©

Consider a simple OLG economy. Time is discrete, ¢ = 0,1,2,---, and there is one
good in each period. At each t > 1, H “types” of agents are born and live for that
and the next period. Types are assumed to be identical across generations. Denote
the consumption vector of agent h of generation t by (cp1t,Chiat) € Ri and call it an
outcome. The preferences of every type will be assumed to be representable by a von

5See Chattopadhyay [4] where such a result is obtained in the classical OLG framework with one
type of household.

6For details and references on the OLG model see, e.g. Geanakoplos [6] and Geanakoplos and
Polemarchakis [9].



Neumann Morgenstern utility function U h[ch;l,t, Chi2t) defined on Ri. Endowments will
be denoted by (wp;1,wh:2)-

Assumption A.1: For every h € H, U" : R2 — R is C? with DU" >> 0 and D*U"
negative definite, on Ri +; the closure of every indifference curve which passes through
R? . is contained in R?_.

Assumption A.2: For all h € H, (wp1,wh2) € Rir.

Assumption A.3: (Second period consumption is a normal good)

Ut [enst, enalUls[cnit, criz] > US[ena, cra)Uy [eris erga), Y (Crgts cn2) € R

A.1 and A.2 are standard technical requirements and will be treated as maintained
hypotheses. A.3 is necessary in order to let us prove our results.”

Also, let the agents born at ¢ = 0 have a monotone increasing utility function u"(cs.9.0)
and second period endowment wp,s.

Further assume that an agent of type h born at date t receives a lump-sum transfer
(possibly negative) of fiat money from the government when old, 7,.;. A monetary policy
will be given by a collection of sequences of transfers. If >, cyTho =M # 0, Thy =0,
for all h € H and for all t =1,2,3,---, then we have a constant money supply.

2.2. Golden Rules

We say that ((w")nen) € RY is a distribution of the endowments if

Sherr W" = Yhen Wit + Lhewr Wh2-
Given such an ((w")her) € RY, let ((c¢F(w"), cif(w™))ner) € R, denote the Golden
Rule allocation, the allocation that solves the problem

max U"[cp.1, cho]  subject to  (cp.1,cha) € R and cpa + ¢ = wh.

So the Golden Rule gives maximal utility to the different agent types in the class
of stationary allocations which respect the given distribution of the total endowment

among the different types; the MRS at the Golden Rule is one.

2.3. Perfect foresight

Under perfect foresight, all the future prices and transfers are known with certainty.
A sequence of prices such that agents optimize and markets clear at each date will be
called a perfect foresight equilibrium (PFE) sequence:

ZhEH Ch§17t+1(pt+17pt+2; Th,t-‘rl) + EheH Ch;27t (pt7pt+1; Th;t) =
= ZhEH W1 + ZhGH Whs2 for all t = 0,1,2,3,---.

Remark 1: Under Assumptions 1 and 2, PFE exist. Also, the Second Welfare Theorem
holds for the class of economies considered; in particular, any Golden Rule allocation
can be supported as a monetary steady state provided that the initial distribution of
money holdings (different components of which could be positive or negative depending
on the allocation which we choose to support) is appropriately chosen.

7If the utility function is assumed to be additively separable then A.1 implies A.3.

7



2.4. Stationary sunspot equilibria®
2.4.1. Existence
Consider a time-homogeneous Markov process with two states, s € {a, 3}.

II= <1jﬂaﬁ : Wag >
is the transition matrix where 7’ is the probability of being in state s’ in the next period
conditional on being in state s in the current period. The process describes the evolution
of an “extrinsic” state, i.e. preferences and endowments continue to be deterministic.
But agents believe that the random variable affects prices. We focus on equilibria in
which prices depend on only the current realization of the extrinsic state. An SSE is a
pair of prices and associated allocations such that agents’ beliefs about prices are fulfilled

and their optimizing demands clear markets.
Given today’s state, s € {«, 8}, the agents act so as to’

SaTTh .8 S SBTTh[ .8 58 :
MAX e coa o0 ms T U"chas cnnl + 72U chi, Gn),  subject to
S .8 S __ 8 O LSO O s s8 3
D Cha + My, = P Wi, D" Cpp = P Whi2 + My, pﬁch;Q = pgwh;Q + my,.

Goods market clearing requires that, for s € {«, G},
S as _ ] Bs
> oheH Cha T 2oner Chia = D2oher Whi2 + Xoher Whi2 = Xher Cha + 2her Chias

with the the implication that Y ,cpy iy = Ypen cﬁfg =a, s €{a, [}

Definition 1: Given preferences, endowments, and a constant money supply M # 0,
the tuple (p®, p®; (c?;;l,cf;l,cﬁg,cggcfg,cﬁ)heg) will constitute an SSE for 11 if:

(i) the demands expressed by the agents at those prices clear the markets;

(ii) p* # p® # 0 and m$ # m) for all h € H;

(i1i) 11 >> (8 8)

The second condition rules out SSE that are trivial for some agent (it holds “genere-
cially”). The third condition essentially rules out deterministic cycles of period two from
being labelled as SSE. Sufficient conditions for the existence of SSE are well known (see,
e.g. Azariadis [1] for the case with only one type of agent).

2.4.2. Welfare properties

Before we can analyse the welfare properties of SSE we need to specify a criterion
of dominance and optimality. We propose to use the weakest criterion which renders all
SSE inefficient; this ensures that the problem which we wish to treat is non-vacuous.”
The criterion is of the ex-ante sort and dominance is defined by comparing the sequence

of conditional expected utility levels, conditional on the state in some initial period.

8See Chiappori and Guesnerie [5] and Guesnerie and Woodford [12] for surveys of the literature.
9Notation used: for stationary stochastic variables, superscripts represent the state.
10We follow Chattopadhyay [3] Section 2.3.2.



Without loss of generality the initial period is taken to be period one. Optimality is
defined as usual, i.e. the non-existence of dominating allocations. We refer to stochastic
allocations in our definitions without defining them formally; it suffices to take them to
be contingent on the sunspot process (see Remark 2).1!

We need some notation first. For ¢ > 2, let II; := (IT)"™" be the matrix which gives
the probability, Wfsl, of being in state s in period ¢ given that the economy started in
state s in period 1, i.e. the conditional probability distribution.

Consider a particular stochastic allocation {(ch14t, Chot)ne H}Zfoo We can define
the sequence of conditional ex-ante expected utility levels,

EU{(cv, CQ,t)hGH}iZLOO ] = {(EUJh[ {(cne, Ch;z,t)heH}izLoo ])heH}j:+oo7

Jj=1

from this allocation where EUJh[ {(Ch1s Chiot)ne H}if’o | is the expected utility of the
agent of type h born in period 5 where the expectation is taken relative to the conditional
distribution (conditional on information available at ¢ = 1) generated by the process on
which the allocation under consideration is contingent.

Definition 2: A feasible allocation is a sequence of (possibly random) vectors in R,

t=+o0 H
{(Ch;l,tach;Q,t)heH}tzl , and (Ch20)hen € R, such that Y ncp Chit + Xpen Chii—1 =
Soher Wha + Yoner Wh2  for each realization and ¥Vt =1,2,3,---.

Definition 3: A feasible allocation {(ch;lﬁt,ch;g,t)heH}ZTOO and (ch2,0)nen dominates

the feasible allocation {(6}“1715,6}”2,15)}16[{};2?00 and (Cha0)nem, if u(cnao) > u(Croo)
fOT’ all h, € H and EUJh[ {(Ch;l,t7 Ch;Q,t)heH}iii_oo] Z EUJh[ {(éh;l,t; éh;gﬂg)heH}iii‘_m] fOT CLH
h € H and for all 7 =1,2,3,--- with strict inequality for at least one agent type h at

some j or 0.

Definition 4: A feasible allocation, {(Ch;17t7ch;2¢)heH}z;roo and (cp2.0)ner, s Pareto
optimal if there is no other feasible allocation, {(Eh;l,t,éh;gﬁt)heH}Zfoo and (Cn2,0)nem,
which dominates it.

The stochastic sequence corresponding to the SSE allocation will be denoted by s(.),
while the sequence of ex-ante expected utility levels from the SSE will be denoted by
EU" s(.)] where

EU!(s(.)] = meU"(a) +m UM (B)

UM(a) i= moUM ey, ] + 7P UM e, i)

UM (B) := 72U ey, ) + 72U e, -

Consider a given SSE and define the Fzpected allocation by

Cri20 = Chi it = TOCRy + ) Chas

Cop = (TR + W“ﬁczg) + Wfﬁ(wﬁacf;oé + Wﬁﬁcgg) Vt=1,2,3,---,
where 7* = Oorl as the state in period one is known. Note that the Expected
allocation is a function of the state in period one.

HDeterministic allocations are, as usual, special cases of stochastic allocations.

9



Following Cass and Shell [2] and Peck [13], we have that the SSE allocation is not
Pareto optimal since it is dominated by the Expected allocation. Formally

Proposition 1: If s(.) is an SSE allocation then it is not Pareto optimal.

Remark 2: Clearly, any feasible stochastic allocation can be dominated by the cor-
responding “certainty” or “expected” allocation. Hence, the search for Pareto optimal
allocations can be restricted to the class of certainty allocations.

We define 7@, 7%, and E*U"|[ s(.) ] by

1— 708

= e B = (1—7%), EU"[s()]=a"U"a)+ «"U"(5).

3. Pareto optimal improvements

In this section we prove our Theorem. We state a set of informational assumptions
that is sufficient to induce a competitive allocation that is Pareto optimal, that is Pareto
improving over the SSE, and exhibits a form of stationarity after finite time. In partic-
ular, if a certain “target” Golden Rule net trade vector is known then that Golden Rule
vector is reached in finite time.

But first, in Section 3.1, we prove some preliminary results and state the informational
assumptions made.

3.1 Preliminaries

Lemma 4.1 in Section 4 studies the limiting behaviour of the Expected allocation
sequence and the sequence of ex-ante expected utilities from the SSE. It shows that the
sequence of probabilities defined in Subsection 2.4.2, (Wfa,ﬂ'fﬁ ), converges to (%, 7?),
a limit stationary distribution which is independent of the starting state; that due to
linearity in the probabilities, the Expected allocation, (Cp.1,Cno2.), and the sequence of
ex-ante expected utilities from the SSE allocation, EU}*[s(.)], converge to the stationary
outcome (G,,h,) and to E*U"[s(.)] respectively; and that Jensen’s Inequality con-
tinues to hold in the limit. We use these properties to prove the existence of a parameter

which will be used in our construction.

Proposition 2:'2 There exists a finite number &* > 0 such that, uniformly in t,
Vé ¢ (O,é*], Vhe H, (Ch;l,ch;g) € B(s(éh;l,t,éh;g,t) = Uh[Ch;l,Ch;Q] > EUth[ S() ]

The parameter ¢* can be interpreted as the largest amount (in terms of either
commodity) of the Expected outcome that agents of every type in every generation will
be willing to forego in order to avoid the ex-ante SSE lottery.

In what follows, it will be useful to have some notation to distinguish net trades from
consumption vectors (outcomes). So, from now on, (y, z) will denote net trades for some

agent type h, i.e. (y,2) 1= (Ch1 — Whi1, Chiz — Why2)-

2Notation: B,(xy,72) denotes the closed ball of radius r with center at (1, z2).

10



We turn to a formal statement of a set of “informational assumptions.”
Information I.1“Market:” p®, p°, II and ((m})sc{a,aynemr) are known numbers.

Remark 3: 1.1 allows the computation of the net trades for the entire Expected alloca-
tion, {((Ch1e — Whit, Chizy — Whi)hew) iy o and ((Gh20 — Whio)nen ), since the SSE net
trades can be computed from the state dependent money demands and the SSE prices
(using the agents’ budget constraints); 1.1 also allows the computation of the invari-
ant distribution of the Markov process (using Lemma 4.1). Notice that the transition

probabilities can be estimated given data on SSE prices.

Information I.2 “Sufficient statistic:” 6 € (0,6*|, where 6* satisfies the requirements
of Proposition 2, is known.

Before stating the remaining informational assumptions we give an intuitive descrip-
tion of their content. For each type of agent h € H, we will consider two disjoint subsets
of the set of net trades where the first of these subsets, to be called A}, gives a utility level
which is “almost” the same as E*U"[s(.)], while the second, to be called A, contains
the Golden Rule net trade corresponding to the distribution of endowments induced by
the limiting value of the Expected allocation. Lemma 1 shows that there is a period, to
be called N. , such that for all h € H, the agent of type h born at dates later than N
would prefer any outcome in A, to his SSE lottery.

Formally, for each type of agent h € H, define the set A; to be

h={(cna, cn2) € Ri|E*Uh[S(-)] —€e < Uh[ch;lvch;Q] < E*Uh[s(-)]+E/}_{(Wh;1awh;2)}7
a closed set in R? where e/ is sufficiently small so as to ensure that
((Cg,llz(é;kz,l + 62;2) — Wi, Cg;};(é;kz;l + 62;2) - wh;Q) g A;kl

Information 1.3 “Golden Rule:” For each h € H, a set A, C R? is known where
i) Ap, is closed and convex, ii) A, N Az =0, and

ZZZ) ((Cg,]fb(é;kz,l + E;kL;Q) — Whst, Cg;];b(é;kz;l + E;kL;Q) - Wh;Q) € Ah'13

JFrom now on let @), be the compact square

Qn={(y,2) € B*| —wm1 <y < D (wmatwna), —whz < 2 < ) (whatwn2) }-
heH heH

Let (y?r,24") be a least preferred net trade for the agent of type h in the compact set
A, N Qpt

13From Lemma 4.1 (ii) and (iv), for each h € H, there is some stationary allocation, satisfying the
endowment distribution condition cp;1 +cp2 = 62;1 + 52;27 which is strictly preferred to the limiting SSE
lottery. Now the existence of the sets Ay, for h € H, follows from the definition of the sets Aj. Also,
given A.1, convexity and continuity of preferences, the requirement that that A, be closed and convex
is without loss of generality.

4The continuity of the preference relation implies the existence of such an element.

11



Lemma 1: Given ((Ap)ner), where each set Ay, satisfies 1.3, there exists an N such that
forallh € H, UMy 4+ wpa, 2™ + wpe] > EUM s(.)] for all t > N.

—

Information 1.4 “Preferences :” 1/N € (0,1/N] is known.

Remark 4: We have directly imposed the condition that a number greater than N is
known. We note that one can provide informational assumptions on preferences which
allow for the computation of N ; however, we do not present them since doing so would
call for a lot of additional notation without adding much which is conceptually novel.

3.2 Finite Pareto optimal improvements

We are now ready to prove the Theorem. Before doing so, we give an informal sketch
of the argument.

We construct a particular Pareto improvement by (i) following the Expected allo-
cation until some period later than N, then (ii) modifying the Expected allocation by
transfering a net amount of at most 6* from the present young to the present old within
each type of agent (A.3 and Proposition 2 guarantee that we have an improvement),
and finally (iii) “jumping” to a “target” stationary allocation, a point in the set A, for
each type h. The informational assumptions made guarantee that the net trades of this
improvement can be computed; we think of it being implemented by real lump sum taxes
and transfers. Now agents are allowed to trade in competitive markets with their new
endowments, i.e. post tax endowments. We show that the induced nonmonetary perfect
foresight equilibria (so equilibria with loan markets only usually called the “inside mon-
ey” case) are Pareto optimal since (i) the target is reached in a finite number of periods
so the optimality of the allocation is essentially determined by the “tail behaviour” of
the allocation, (ii) once every agent type receives the target stationary net trade as en-
dowment, the continuation competitive allocation is necessarily Pareto optimal, and (iii)
intragenerational trade gives intratemporal efficiency.

Essentially, the result calls for a variety of policy interventions in the various phases
of the move to the Pareto improvement since (i) above corresponds to introducing a risk
sharing arrangement across types of agents and across generations, (ii) above corresponds
to an income transfer scheme within types, and (iii) above cuts the gordian knot of the
infinity. Finally, trade in competitive loans markets by the different types of agents
exhausts any remaining gains fron trade in each phase.

Remark 5: For “generic” economies, the set of loan market equilibria when every agent
type receives his target stationary net trade as endowment, is finite. The continuation
equilibrium prices are a selection from this set. Hence, if this set reduces to a singleton,
we get an optimal stationary allocation in all but a finite number of periods; otherwise,
we get what could be called a quasi-stationary allocation in the sense that it is a sequence
with finite range. Trivially, the equilibrium is unique if either the target “Golden Rule”
vector is known for each type or if the target itself is Pareto optimal, i.e. the gradients
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of the different agents utility functions point in the same direction.

Remark 6: Notice that we restrict our attention to nonmonetary equilibria (the “in-

Y

side money” case). We could also consider the monetary equilibria of the model (the
“outside money” case) with the redefined endowments or with the original specification
of endowments. In this case, due to the well known indeterminacy problem that crops
up in OLG economies (which occurs in one good economies only when there is money),
we would get a plethora of equilibria. In particular, we would lose the quasi-stationarity
property of the continuation equilibrium and would not be able to assert that every
competitive equilibrium leads to a Pareto optimal allocation. Of course, by the Second
Welfare Theorem, the allocations that we obtain in the Theorem can be supported as
monetary equilibria with the original specification of endowments; but, as we noted, we
cannot guarantee that a Pareto suboptimal allocation will not obtain at a monetary
equilibrium.’® So we “demonetize” the economy with good reason since there is no other

way of guaranteeing Pareto optimality of the improvement that we construct.

Theorem: Given assumptions A.1, A.2, and A.3, the information summarized in 1.1,
1.2, 1.3, and 1.4, allows the computation of the net trades of the Uniform allocation con-
structed below. The nonmonetary perfect foresight equilibria obtained when endowments

are specified by the Uniform allocation, are Pareto optimal Pareto improvements over
the SSE allocation.

Proof:

Step 1: We begin by specifying the Uniform allocation. The construction is based upon
the Expected allocation, which was defined earlier, and is the same for the different types
of agents. Hence, we carry out the construction for a generic type.

Step 1.1: We start by defining the “target” stationary net trades for the agent, Al €
R?. Let Fj, be a set of restricted feasible stationary net trades specified as Fj, :=
{(y,2) € R* | y + 2z = (G, — wht) + (Chp — wh2) } N Qp. Also, let 7 : R* — R' be
a projection function, 7(y,z) = y, and for any closed set A, as specified in 1.3, define
A} .= argmin (A, N F},) so that, in geometric terms, A} is the north-west corner of
the set A, N Fj. Denote this net trade by (y},2}) := A},

Step 1.2: Define the net trades of the Uniform allocation as follows:
Zho = Cno — Wi = 2 where s is the starting state;
(?/J\h;t, Eh;t) = (Eh;l,t — Whi1, Chiot — wh;g), forall t =1,2,---,1T,—1
where T, > N is defined by the condition
(i) Ty is the first date ¢ > N at which Gyt — wie < 2} + 6,
in which case the allocation is given by

13This problem is related to the well known problem about the relation between competitive monetary
equilibria and Pareto optimal allocations; the problem is very difficult in all cases except when there is
only one good and only one type of agent.
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(?7Th75Th) = (Eh;l,Th —wh;bZ;lL);

(?/J\h;t, 2/\h;t) = (yllw le1)7 for all ¢ > Th;
(ii) Ty, is such that for all ¢ > T}, Cpoy — Whe > 24 + 6 and Cpay — wia < Y — 6,
which, by the convergence result for the Expected allocation, Lemma 4.1 (ii), must occur
if we are not in case (i). So T}, is well defined for each type.
In this second case the allocation is given by

(Unim Znm,) = (Chsym, — Wity Chizm, — Wiz — 6),

(Unst> Znt) = (Crstye — wha + (8 = Th)0, Cpyo — Wiz — (t — Th)0 — 0),

forall t = Ty +1,....,7, — 1,

<:/y\h;7/'\'h7 '/Z\h;fh) = (Eh;th — Why1 + (Th - ]/\\f)& Zi1L>7

(?/J\h;t, 2/\h;t) = (yllw le1)7 for all t > Th:
where Tj, is such that ¢, ,7 —wp2 — (Th +1—-N)§ < 2.

Step 2: We check that computation of the Uniform allocation is informational feasible
given our hypotheses.

The information specified in 1.1 (the state contingent money demands—equivalently,
the SSE net trades—and the transition matrix are known), and 1.3 (some sets ((Ap)ner)
are known—this corresponds to some weak information regarding the location of the tar-
get Golden Rule) allow the computation of the target net trade vector (yi, z1). Further-
more, Lemma 4.2 shows that (yj, +wp1, 2} +wn2) € R%,. So, Step 1.1 is informationally
feasible.

The information specified in I.1 allows the computation of the net trades of the
expected allocation; that in 1.1 and 1.3 allows the computation of the target net trade
(as indicated above); that in 1.1, the (computed) target net trade, and 1.2 (interval type
information on ¢*) and 1.4 (interval type information about a preference parameter)
allows the computation of T}, in both the cases, and T}, in the second case. So, Step 1.2
is informationally feasible.

The Uniform allocation that we have constructed is now given to the agents as their
“new” endowment stream; informational feasibility implies that the net trades of these
new endowments can be induced through real taxes.

Step 3: We verify that the Uniform allocation is a Pareto improvement over the SSE.

By Proposition 1, the Expected allocation is an improvement over the SSE allocation
so that the agents of generations 1 through 7, — 1 are being improved by the Uniform
allocation. By Lemma 1 and Lemma 4.2, since the net trade (y;,z}) is given to agents
born after period T in case (i) where Tj, > N (agents born after period fh in case
(ii) where again T, > N ), all these agents are also being improved since U"[y} +
Whit, 28 + Wi > UMy + wpp, 2% + wpe). Also in case (i), from monotonicity, the
agent of generation 7}, is being improved. We now show that in case (ii) the agents of
generations 7} through T}, are also improved.
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We note that our assumption of normality, A.3, and Lemma 4.2 imply that

Ulh[y + Wh;1, 2 + WZ;h]
Uél[y + wp1, 2 + wh;Q]

2>z, y<yp >1 =

= UMy + wh1, 2 + Who] — ULy + wha, 2 + whia] > 0.

This in turn implies that if (2 —né) > 2} and (y+nd) <y}, then Uy +né+wpa, 2 —
nod + wpa] > Uh[y + wh1, 2 + whe] where n and 6 are positive numbers; also, from 1.2
and Proposition 2,

UM@ni1 e, Chioe — 6] > EUP[s() ]Vt =1,2,3,---.

These two facts taken together imply that if  (Gh.0¢—who—(n+1)8) > 24 and  (Cp.1—
wha +n) <y}, then UM[en1,+nb, oy — (n+1)8] > UP|éna s, Chosr — 6] > EUL s(.) ]
thus demonstrating that in case (ii) we have at least a weak improvement.

Step 4: We verify that any nonmonetary perfect foresight equilibrium obtained when the
Uniform allocation is used as the endowment specification, is a Pareto optimal allocation.

We start by noting that beyond a certain ¢ every agent type gets a stationary endow-
ment specified by the vector ((yj, + whi1, 2, + Wh2)nerr). This follows since compactness
of the feasible set implies that T}, is finite (whenever we are in case (ii)), and by setting
T, =T, (in the case of agent types for whom we are in case (i)).

In any given period t define

Qi :={q€ Ry | Zhen e e(q) = ZheH(gh;t + wh;1)

where  (cny1,(q), cni24(q)) € ALGMARY (¢ 05)€ R2 |q(e1 ~Yhst —whit )+ (€2~ Zhst —whs2 ) =0} Uer, eal}-

It is well known that given assumptions A.1 and A.2, ); is nonempty for every t > 1
though it need not be a singleton.

Let {G:}+>1 be such that ¢ € @, for all £ > 1, i.e. a selection from the sequence of
sets defined above. Now define p; := p and, for t > 2, pyq = Dy - q~—1t, inductively. If
we consider the price sequence {p;}i>1, we get a perfect foresight equilibrium with the
additional property that

Shem Chint( B ) = Yhen(Une +wp)  forallt>1

Pt+1
which is the defining property of “inside money” equilibria.

Now notice that for ¢t > ¢, the endowment distribution does not change anymore as a
consequence of which the agents’ optimization problems are the same, so are their excess
demand functions and Q; = Qs for t > .

Furthermore, for ¢ > ¢, the gradient vector at the post-tax endowment is given by

Ph = Ulh[yllz + Whits lez + Wh;Q]/UQh[?JflL + Whits lez + whﬂ)]
which, by virtue of Lemma 4.2, satisfies the condition p, > 1 for all h € H. Define
p = maXuey pp and p := minpey pp. So p > 1. Trivially, there is an excess demand
if ¢ < p while there is an excess supply if ¢ > p. By continuity of the excess demand
function and the intermediate value theorem, there exists ¢ € Qf; furthermore, for all
G € Q7 we have ¢ > 1.
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Now we check for Pareto optimality by invoking the Cass criterion (see, e.g. Geanako-
plos and Polemarchakis [9]). Since we have a perfect foresight equilibrium with no re-
striction on trades, we have in effect a complete markets equilibrium; in addition, under
our assumptions the monotonicity and uniform smoothness conditions required in the
Cass criterion are satisfied. The result follows by noting that since ¢ > 1 for t > ¢,
Pir1 < py for t > t as a consequence of which thfﬁit diverges, which is precisely the
sufficient condition given in the Cass criterion. Q.E.D.

Remark 7: Clearly, if the objective is to reach the target stationary net trade (y;, z})
as quickly as possible in an optimal improving manner, then it is in the government’s
interest to be able to compute 0*.

Remark 8: 1.1 is a mild informational assumption; .2 and .4 are both interval type
requirements on information and are, to that extent, relatively weak. Similarly, for 1.2
we can take a sufficiently small positive number.
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4. Proofs

Proposition 1: If s(.) is an SSE allocation then it is not Pareto optimal.
Proof: We verify that the Expected allocation, {((¢h.14,Cho.t)nemn) Z;roo and ((Cp2,0)nen),
is feasible.
Y ohel Chilyi+1 T 2 her Chi2t = D ohen Wfﬁlcg;l + D hen Wffﬁﬁ;l"*‘
+ Chen m (O + 70Gh) + Shen ) (15 + 1)
= (mjomee + Wfﬁﬁﬁa) > oher Cha + (mirm? + Wfﬁﬁm) DoheH Cﬁ;ﬁ”
+r T Y o hem Chiy + TS e Cﬁoé + 10 Y pen ng + 170 e 05/32
= T Lhen it + Tnen %) + 1 T (Sher iy + Tnen chiz)+
+7Tfa7raﬁ<2heH Cﬁ;l + Xhenr ng) + ngﬂﬂﬁ(ZheH Cg;l + Xhen Cﬁg)
= (mp*(m + Waﬁ) + 71'tsﬂ(wﬁa + ﬂﬂﬁ))(EheH Whi2 + Chen Whi2)
= Yhen Wh2 + Cneg Wh2 S € {a, B},
since market clearing implies that
d_heH Cfsz’;l + X her Cf{gé = DheH Whi2 T Xhen Whi2
for s € {a, 8} and s’ € {«, 5}. Hence, the Expected allocation is feasible.
By A.1 (convexity), and (ii) and (iii) in Definition 1, it is strictly improving for all
agents. Q.E.D.

Lemma 4.1: (i) By oo 5% i= %% = 7% limy_ oo " = 70 = 77,

(i) limsyeo (Chirt, Cri2e) = (Chiys Crp) for all h € H;

(iii)  limy_, o EUM[s(.)] = E*U"[s(.)] for all h € H;

(iv)  UM&,Crol > E*U"[s(.)] for all h € H.
Proof: (i) Since II is a strictly positive stochastic matrix (by Definition 1 (iii)), 1 is it’s
Frobenius root. The result follows.
(ii) and (iii) Follows from the fact that the Expected allocation and the sequence of
expected utilities from the SSE are linear in the conditional probabilities which converge
by (i).
(iv) Both sides of the inequality are well defined by virtue of (ii) and (iii) above. Fur-
thermore the outcome (¢j.,c.») is the expected value of the stochastic outcome on the
right hand side of the inequality; by Definition 1 (ii) it is non-degenerate. The result
follows from A.1 (Jensen’s Inequality). Q.E.D.

Proposition 2:'° There exists a finite number &* > 0 such that, uniformly in t,
V6 € (0,6%), Vh € H, (cha,cne) € Bs(Chis,Cnot) = Ullena,cno] > EUP s(.) ].
Proof: For any finite ¢t > 0, by Jensen’s Inequality, U"[Ch.1, Ch.2e] > EU}[s(.)]. Define
the compact set K as

K :={(c1,¢2) € Ry | &1 < Cpen(Wha +wh), 2 < Ypen(Why + wha)},

6 Notation: B,.(zy,72) denotes the closed ball of radius 7 with center at (x1,z2) and || - || is the
usual Euclidean metric.
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and define Ay := {(c1,¢2) € R2 | UMy, o) < EUPs(.)]} N K. Now define 6y =
MiN(e, ep)e Ap, || (Chitye, Chizt) — (c1,¢2) || - For all h € H, 64y > 0 exists since Apy is
compact.

Choose €,é > 0, which can depend on h, sufficiently small so as to construct A
and B (Ch.1,Ch.), compact subsets of R?, which are disjoint and for some large M, ¢
and for all t > My, (U")T'(EU][s(.)]) N K C Al and (Chuu, Crizt) € Bhue(Chay, Gio)
where Ap. = (U")Y([E*U"s(.)] — ¢, E*U"[s(.)] + €] ) N K. That two such sets can
be constructed for each type h, follows from Lemma 4.1.

Now define 6, := MiN(e, c) e Ay, Milpe B, || b — (c1,¢2) || . The compactness of the
sets and the continuity of the metric imply that b is well defined; since the sets are
disjoint, 5, > 0. Let &, := min {6;1;1,6;1;2,---,6]%,3;1} for some M, > My,.; hence
6n > 0. Now consider the set [04, 04.1] and let Op.p = min {8, ..., 0h7}. Clearly,
St € [6n, 6pa] for all T' and the sequence {Eh;T},f:iiroo is weakly monotone decreasing
so it has a limit. Finally, define §; to be ¢; := limT_,oogh;T and set 0" := minyecpy 0}

Q.E.D.

Lemma 1: Given ((An)nen), where each set A, satisfies 1.3, there exists an N such that
forallh e H, UMy 4+ wpa, 2™ + wpe] > EUM s(.)] for all t > N.

Proof: By 1.3 (ii) and (iii), and the definition of (y4#, z4*), U[y4 + wp.1, 24 +wpa] >
E*U"s(.)]. So Lemma 4.1 (iii) and the continuity of EU"[s(.)] in 7/ and =" imply
that for each type h € H, there exists an N» such that U]y + wp.1, 2% + wpia ] >
EUMs(.)] for all ¢ > N4 The result follows by defining N := max,cy N4, Q.E.D.

Lemma 4.2: For all h € H, Uy} + wn.1, 2h + wio) /UMy + wnit, 28 + wi2)] = pn > 1.
Proof: It is easily checked that A, N Fj, is compact, so that (yi,z}) is well defined.
We now show that (y; + wp1, 2, + wp2) € R:, so that by A.1 the MRS at (y;, 21)
is well defined. By our boundary assumption on preferences, all the sunspot outcomes
are in R% . implying that Aj + {(wh1,wse)} stays away from the boundary of R% so
that Ay N F, # 0. By L3, ((c5(Ch + Cha) — whits G (Chy + Chia) — whi2) € An N Fy
and AN A* = 0, implying that (y; + wsa, 25 + whe) € R2,. Now note that by A.1
(convexity and monotonicity) UP[y} + whi1, 2}, + wha /ULy + whay 20 + wh2)] = pr >
1= UM((c51 (@ + hia)s i Gy + Cro) )/ Ual((ch (Gt + Cia), 5 (Chia + Thiz))] since
(Yo 2) = argminm(Ay N Fy) and (1 (G +8ha) —whi, b (Cha i) —whi2) € ApNE.

Q.E.D.
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