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UNMEDIATED COMMUNICATION IN REPEATED
GAMES WITH IMPERFECT MONITORING

Amparto Urbano and José E. Vila

ABSTRACT

We show that any correlated equilibrium payoff of two-player repeated
games with imperfect monitoring and without discounting can be reached as
the Nash equilibrium payoff of the game extended by a universal mechanism
of unmediated communication. This result holds regardless the particular
concept of equilibrium involved (upper, lower, Banach or uniform equilib-
rium). The communication mechanism is built up by using commutative
one-way functions. These functions are designed with the help of crypto-
graphic tools.

Key words: Unmediated communication, imperfect monitoring; cryp-
tosystems.



1 Introduction.

There exists a growing body of papers dealing with long time repeated strate-
gic interactions with imperfect monitoring, i. e. repeated games where ac-
tions are not observable. Most of them!® are concerned with characterizing
the set of all the Nash equilibrium payoffs. In particular, Lehrer (1991),
shows that two-player symmetric games with standard-trivial information?
are saturated, i. e. payoffs sustainable by external correlation devices are
also Nash equilibrium payoffs. In other words, that any external correlation
can be substituted by an internal correlation which utilizes only the infor-
mation structure of the game. However, the extension of this result to more
general information structures under imperfect monitoring is still unsolved.

The purpose of our paper is to show that correlated devices in two-player
infinitely repeated games with imperfect monitoring and with rational pay-
offs can be emulated by plain conversation. Or, in other words, that any
correlated distribution can be produced in a way that is immunized against
unilateral deviations. In particular, by adding two phases of unmediated
communication to the stage game of any infinitely repeated game with im-
perfect monitoring, any correlated equilibrium payoff of the original game

can be obtained as a Nash equilibrium payoff of the extension?.

Thus, our work pertains to two branches of the literature. It relates on
one hand to the analysis of Forges (1986, 1990) and Barany (1992) who decen-
tralize communication and correlated equilibrium, respectively, by means of
‘plain conversation’, if the number of players is at least four. Urbano and Vila
(1997, 1998) extend their result to the class of two-player games of complete
and incomplete information by constructing an unmediated communication
encryption scheme with private key which is based on computing exponential
functions over finite fields. Lehrer (1991) treats correlation through private
histories in long games. Gossner (1997), examines how information stems

1See for instance Lehrer (1990, 1991, 1992a, 1992b, 1992¢), Radner (1986), Rubinstein
and Yaari (1983), Abreu, Pearce and Stachetti (1986), Fundenberg, Levine and Maskin
(1994), Fundenberg and Levine (1991), Compte (1994, 1997) and Ben-Porath and Kahne-
man (1995) among others.

2In these games the signal a player gets is either revealing the actions played (standard)
or completely concealing it (trivial).

3 Any two-player infinitely repeated game with imperfect monitoring has an extension
which is saturated.



from communication, therefore linking communication mechanisms and in-
formation structures. Finally, Lehrer (1996) and Lehrer and Sorin (1997),
reproduce the correlated distribution through 'mediated talk’.

On the other hand, our analysis relates to papers written on the subject of
cheap talk. See, for instance, Farrell (1987, 1988), Farrell and Rabin (1996),
Matthews and Postlewaite (1989) among others. Aumann and Hart (1993)
define ’polite talk’ as that talk that allows players to talk one at a time
and show that, by means of it, players can get the bi-span * of the Nash
equilibria of the original game and when they extend their model to the case
of one-side incomplete information they show that the equilibrium involves
the informed player revealing some of his information, as well as both players
performing joint randomization. Mor Amitai (1996) extends the above model
to incomplete information on both sides.

We construct a scheme of unmediated communication with finite mes-
sage sets which is a universal mechanism for all infinitely repeated two-player
games without discounting and with imperfect monitoring, which shows the
power of plain conversation as an internal correlation mechanism. Our ap-
proach follows that of Urbano and Vila (1997, 1998) with public messages
but with private meaning. This approach is closely related to the one used to
model ’oblivious transfers™ and those used to solve problem such that ’coin
flipping by phone’ (Blumm (1981)) or ’playing Mental Poker with no real
cards’ (Rabin (1981))°.

4The bi - span of a set A C R? is defined as follows: it is the set of all vectors (x,y) € R?
for which there exists a bounded martingale {(X,,,Y,,) }n=12_ . with values in R? that starts
at (z,y) (i. e. (X1,Y1) = (z,¥)); it converges to A (i. e. (X,,Y,) — (X0, Yoo) € 4
almost surely); and finally it satisfies the ’bi’ property that for each n either z,41 = Z,
a. 8. or Yy, = Ypr1 a. s. Thus, at each stage of the martingale, either the X-coordinate
stays constant (and the Y-coordinate ’splits’), or the Y -coordinate is constant (and the
X-coordinate ’splits’). Note that if one drops the 'bi’ requirement, then the resulting set
is precisely the convex hull of A.

5 An oblivious transfer is a probabilistic information exchange such that both the sender
and the receiver cannot be sure of the real meaning of the message.

51n the ’coin flipping by phone’, the problem is to devise a scheme whereby a player,
say Bob, can call heads or tails and the other, say Alice, can flip in such way that each
has a 50% chance of winning. Flipping a real coin over the phone is clearly unsatisfactory
because if Bob call "heads’, Alice can simply say ’Sorry, tails’.

Mental poker is played like ordinary poker but without cards and without real verbal
communication; all exchange between the players must be accomplished using messages.



However, these public and private characteristics of messages have to be
related in some specific way in order to control the integrity of the whole ex-
change of information. Thus we have to use ciphers with some properties, in
particular, that they commute among them. The use of commutative ciphers
is also appealing by their ’fairness’ and ’usefulness’ in games where players
may cheat as the ones mentioned above. However, the main problem with
this approach is that it is very difficult to build up commutative ciphering
and deciphering functions in general spaces. In this paper we solve this prob-
lem by using exponential ciphers over a finite Galois field of prime order p (p
a prime number). Thus, we construct” a communication encryption scheme
with private key, which is based on computing exponential functions over a

finite field®.

We assume that the pre-play communication phase is finite and that the
player have bounded calculation skills?, i.e. they need a non-null period of
time to make any calculation'®. Also a technical assumption, shared with

Barany, Forges and Urbano and Vila is needed: the payoffs of the game must

It may perhaps make the ground rules clearer if we imagine two players, Bob and Alice
again, who want to play poker over the telephone. Since it is impossible to send playing
cards over a phone line, the entire game (including the deal) must be realized using only
spoken (or digitally transmitted) messages between the two players. Obviously any player
may try to cheat. A fair method of playing Mental Poker should preclude any sort of
cheating.

"Alternative constructions to ours are those based on pseudorandom generators. A
pseudorandom generator is a deterministic algorithm expanding short random seeds into
much longer bit sequences which "appear’ to be random (although they are not).

8See Pohling and Hellman (1978), River, Shamir and Adleman (1978). The enciphering
and deciphering transformations are based on Euler’s generalization of Fermat’s theorem.
The security of the scheme rest on the complexity of computing discrete logarithms in the
Galois fields. This is like a one-way function which is easy to compute but hard to invert.

9Constructions of secure encryption schemes are based on various intractability as-
sumptions. Classical cryptography assumes that two agents, say A and B, share some
secret information before they start to exchange messages, while another agent, say C,
tries to spy them. In modern cryptography, A and B share no secret information before
they communicate. In typical modern cryptosystems, messages are sent from A to B using
some keys. Why C cannot replicate the above agents computations?. Here intervenes the
boundedness of agent’s rationality. All the computations needed by A and B can be done
in reasonable time, whereas that of C would need ages. Also, this distinction between
computations that can be implemented in relatively short time and computations which
are intractable may be modeled by polynomial and unpolynomial Turing machines.

10This time can be as short as we want.



be rational.!l.

We will show that our scheme is self-enforcing, in the sense that no player
wants to deviate from it if the other does not, and that it implements any
extensive form correlated equilibrium as a Nash equilibrium of the game
extended by two phases of communication.

To the best of our knowledge, the only application of modern cryptog-
raphy to game theory, apart from Urbano and Vila (1997,1998) is Goss-
ner (1998). He does not rely on a particular protocol but rather on the
fundamental'? and unproved theoretical assumption of the existence of a
trapdoor function. Assuming that players are represented by Turing ma-
chines, Gossner obtains a 'Folk Theorem’ in which the usual minmax level
in mixed strategies is replaced by the minmax in correlated strategies.

Apart from the cryptographic design of our communication protocol, the
proof of our result resembles that of Lehrer (1991). In particular, and like
him, we take advantage of two previous results. The first one, is a character-
ization of correlated equilibria in repeated games with imperfect monitoring
(Lehrer, 1992a). The second result is that the limit of certain finitely repeated
game payoffs - those associated with strategies from which any profitable de-
viation is detectable - are sustainable by equilibria in the infinitely repeated
game (Lehrer, 1992c). The idea is to show that any extensive form correlated
equilibrium payoff of the repeated game is a limit of such payoffs.

Also, since the game is of imperfect monitoring, we have to describe its
information structure. Thus, following Lehrer (1992a), we introduce two
relations between a player’s actions. Two actions of a player are indistin-
guishable if they yield the same signal for the opponent, no matter what the
latter is playing. Additionally, in order to define an undetectable deviation,
we introduce the following relation: an action a’ is more informative than a,

N This assumption is needed to replicate some probability distributions by choosing a
message uniformly at random from a finite set. Anyway this assumption is not a limitation
since it is always possible to approximate a real parameter by a rational one.

2A major tool in the construction of cryptographic protocols is the concept of ’zero
knowledge’ proofs systems, and the fact that they exist for all languages in NP (provided
that one -way functions exist). Loosely speaking, zero-knowledge proofs yield nothing but
the validity of the assertion. They provide a tool for ’forcing’ parties to follow a given
protocol properly. We thank S. Hart for pointing us this remark.



if by playing o’ a player can distinguish between two actions of his opponent
better than by playing a.

Thus, our result can be seen as a way to generalize internal correlation in
infinitely repeated two-player games with imperfect monitoring'® and, in this
way, as a generalization to general information structures of Lehrer (1991).
When applied to games with symmetric standard-trivial information it pro-
vides a universal mechanism for internal correlation instead of the particular
channel used by him.

The plan of the paper is as follows. In sections 2 and 3 we set up the model
of repeated games and their underlying information structure. In section 4
we allow players to communicate by means of a mediator: we define an
autonomous device, the different correlated equilibria and the relationships
among them. The main result is given in section 5. The communication
protocol unfolds in sections 6 and 7. Its properties are analyzed in section 8.
The new type of strategies to generate our result are constructed in section 9
and section 10 is devoted to illustrate them by means of an example. Finally,
section 11 proves the main theorem and section 12 concludes the paper.

2 The model

A two-player infinitely repeated game I' with complete information and im-
perfect monitoring can be described by the following elements'?:

A one-shot normal-form game with two players P, with finite sets of
feasible actions A, = {aj,...,a;"}, (h = 1,2). Let us denote by A =
Aj x Ay. The one-shot game payoff functions are given by up : A — Q)
(h = 1,2). In each stage game, both players simultaneously select an
action on their own sets.

Monitoring or information functions. Since monitoring in I' is imper-
fect, P is not allow to see the action chosen by P, nor the payoff

BThe key is that players can generate private information through public messages with
a modern cryptosystem.

MWe will follow very closely the terminology of Lehrer (1992a), since we will make use
of some of his results.



obtained in the stage game!®. Nevertheless, players receive some infor-
mation on the effects of their actions. This information of P, is resumed
in a ’signal’ from a finite set L;. Hence, P, has an ’information func-
tion’ I, defined on the set A and range on L;. After each stage game,
when (at, a2) is played, P, receives the signal Ij,(a}, a2) Let us notice
that perfect monitoring is just a particular case of the above situation,
when L; = A and [, is the identity function.

Strategies. A pure strategy of player h is a sequence of functions f, =
(fH)ten such that f} : L;;l — Ay, where Lf;l is the Cartesian product
of Ly with itself £ — 1 times. Denote by X, the set of all pure strategies
of player h in the repeated gamed and by 3 = ¥; x ¥,. For each
[ =(f1,f2) € &, ul(f) denotes the payoff of player h at stage ¢ if [ is
played.

A mixed strategy of P, is an element of A(X;), 1. e. a probability
distribution on Y. For each 0 = (01,02) € A(3) X A(X,), E,(ul)
denotes the expected payoff of player h at stage £ where the expectation
is taken with respect to the measure induced by o.

A payoff function of the repeated game, defined by the limit of average
payoffs of the finitely repeated truncated games, i. e. if both players
follow the strategy 0 = (01, 09) € A(X1) X A(X,), the payoff of P, in
I" is given by:

Up(o) = lim —ZE

T*)OO

if the limit exits.

Equilibrium in T" shall be defined in the usual way: a pair of (mixed)
strategies is a Nash equilibrium if there does not exist unilateral profitable
deviations. However, deviation payoffs may not be comparable with Uy (0):
the existence of limy_, % Zthl E, (uﬁl) does not guarantee the existence of
the average limit payoff when the deviating strategy is played.

15Both players have some kind of "bank account’ where payoffs are saved. A players is
not informed on the amount of his own stage payofl.



Since the sequence of average expected payoffs induced by any (mixed)
strategy of I' is bounded, the existence of other kinds of limits is always
guarantied. This is the case of the upper, lower, Banach and uniform limits.
Each one of them supports a definition of 'Nash equilibrium’ in the usual
way:

Definition 1 Let 0 = (01,03) € A(X1) X A(Xs) be a pair of mized strategies
of T.

1. We say that o is an upper Nash equilibrium of T if Uy (o) exists and it
satisfies that for any other pair of strategies (51,02):
(a) Uh<0) > lim supTHOO% Zle E@lﬁ?)(“’%)‘
(b) Uh<0) > lim supTHOO% Zle E(”lﬁ?)(“’%)‘

Let us denote by UNP the set of all the payoffs associated to upper
equilibrium strategies.

2. Similarly, o is a lower Nash equilibrium of T if Uy(0) exists and it
satisfies that for any other pair of strategies (51,03):

(a) Uh<0) > lim Z.nfTHOO% Zle E(51102)<u§1)‘
(b) Uh<0) > lim Z.nfTHOO% Zle E(U1,52)<u§z)'

Denote by LNP the set of all the payoffs associated to lower equilibrium
strategies.

3. Let L be a Banach limit. Denote by

T

1
Uy (0) = Lrsoors > Eo(uy)

t=1

Then ¢ is a Banach Nash equilibrium of T for the Banach limit L if
for any other pair of strategies (Gy,09):

(a) UhL<U) > LTHOO% Z?zl E(ﬁ,tm)(“?)'



(b) UhL<U) > LTHOO% Zle E(U1,52)<u§z)'

B NP is the set of all the payoffs associated to Banach Nash equilibrium
strategies for Banach limit L.

4. We say that o is a uniform Nash equilibrium of T if Uy(0) exists and
for any positive £, o is an s-equilibrium in any sufficiently long game,
i. e. Ye >0, 3Ty such that V' T > Ty and ¥ (31,3,) pair of strategies
of I':

(a) Uh<0) +e2> % Zle E(51102)<u§1>‘
(b) Uh<0) +e2> % Zle E(U1,52)<u§z)'

Let us denote by UNIFNP the set of all the payoffs associated to uniform
equilibrium strategies.

3 The information structure

Since past actions in an imperfect monitoring game are not always observed,
histories are not common knowledge. Moreover, signals received by both
player can also be private information. In order to establish the information

16

structure of players in these games'®, we define an equivalence and partial

order relations on action sets:

Definition 2 A pair of actions a,a’ € A, are indistinguishable (denoted
a ~ d') if and only if Vb € Ay, (W # h) we have that ly(a,b) = l(a',b).
In words, a and o' are indistinguishable when Py has no way to distinguish
whether P, has played a or a.

~

~ 1is clearly a binary equivalence relation. Its quotient set A} summarizes
the information structure of the game. For instance, if Ay = A4, (h=1,2),
I' is a perfect monitoring game, This information structure is called standard
information. If both sets A} collapse to a single point, a player has no
possibility to distinguish between any action of the other one. In this case
I' is said to be a game of trivial information. The relation ~ can be easily
extended to mixed actions.

16See Lehrer (1992a).

10



Definition 3 An action a € Ay, is more informative than o' € A, (denoted
a > d)if and only if a ~ a' and Vb,V € Ay, (W # h) lx(a,b) # lp(a,l)
implies that 1y,(a’,b) # I(a', V), i. e. P, obtains more information on Pp’s
moves by playing a rather than a'.

> is a partial order on each set A;. A fundamental property of this
relation is that P, can mimic any of his pure strategies f; by another gy,
satisfying gt (1) = ff(l) without being detected: at each stage he computes
the history consistent with ¢ and then he plays according to f. As we will
see later, deviation to less informative actions may be detectable, since the
deviating player has less information than he was supposed to get. = can be
directly extended to mixed actions.

4 Mediated communication.

We allow the players to communicate before simultaneously choosing their
actions at every stage game. This communication, which has no direct effect
on the payoffs, can be performed with the help of an external mediator who
sends correlated and private signals to both players at each stage of I'. We
model this mediator as an "autonomous device’ as follows (see Forges (1986)):
an autonomous device for I' is a collection d = {O} Pt}h:1’2’ ten where O
is a set of outputs for P, at stage ¢t and P! is a transition probability that
chooses outputs at stage ¢ as a function of all past outputs. An autonomous
device is called canonical when O} = A, Vh,t. A correlation device is an
autonomous device where all O} for t > 1 are singletons!”. An autonomous
device is also called an extensive form correlation device.

Once an extensive form correlation device d is selected, the game I can be
extended to another infinitely repeated game 'y where each player receives an
output o}, € O} before choosing his action at stage t. Strategies in 'y depend
on the outputs received by players. Formally, a pure strategy of player h is a
sequence of functions f;, = (f{)icn such that ff : L' x OF1 — A, where
the exponent ¢ — 1 represents the Cartesian product of a set with itself £ — 1
times. Denote by 9% the set of all pure strategies of player h in the repeated

7T A correlation device is an autonomous device which only works at the first stage of T
and afterwards remains inactive.

11



gamed and by X% = X% x X%, For each f = (fi, fo) € %, Ep(ul(f))
denotes the expected payoff of player h at stage ¢ if f is played (expectations
are taken for the product distribution P = X;enF;). A mixed strategy of
P, is an element of A(X%), i. e. a probability distribution on :¢*. For
each 0 = (01,09) € A(Z{) x A(X4*), E, p(u}) denotes the expected payoff
of player h at stage ¢ where the expectation is taken with respect to the
measure induced by o and the product distribution P = Xy F;

The payoff for the whole game can be also defined by computing the limit
of expected average payoffs of finitely repeated truncated games

UP(o) = lim _ZEUP

T*)OO

if this limit exists.

The extensive form correlated equilibria of I" can be defined as Nash equi-
libria of the mediated communication game [';. Since we have four different
concepts of Nash equilibria for undiscounted infinitely repeated games, four
concepts of extended form correlated equilibrium arise'®:

Definition 4 Let d = {O} P'};_19, ten be an autonomous device for the
game T'. Let 0 = (01,09) € A(X9) x A(XP) be a pair of (mized) stralegies
Of Pd-

1. We say that o is an upper extensive form correlated equilibrium of I' if
Un(o) exists and it satisfies that for any other pair of strategies of Ty
(5’17 52) N

(a) Uf(0) Z limsupr ot Y41 Eor.o0.p)(Uh).
* . T
(b) Ui*(0) = limsupr o 21—y Bloy.o0.0) (11h,)-

Let us denote by UCP* the set of all the payoffs associated to upper
extensive form correlated equilibrium strategies.

2. Similarly, o is a lower extensiwe form correlated equilibrium of T' if
Un(o) exists and it satisfies that for any other pair of strategies of Ty
(5’17 52) N

18See Lehrer (1992a).

12



(a) U*(a) Z liminfr et Yy Eoyonr)(uh).
(b) U(0) > liminfr .m0y Boyo0p)(uh).

Denote by LCP* the set of all the payoffs associated to lower extensive
form correlated equilibrium strategies.

. Let L be a Banach limit and let

T

. 1
Uy *(0) = LTﬂoonEa,P(UZ)

t=1

Then o is a Banach extensive form correlated equilibrium of T for the
Banach limit L if for any other pair of strategies Ty, (1,02):

(a) UL ™(0) > Lot Yoy Eoronr)(uh).
(b) UL (o) > Lroom 3oty Eoy on,ry (u}).

By CP* is the set of all the payoffs associated to Banach extensive form
correlated equilibrium strategies for a Banach limit L.

. We say that o is a uniform Nash equilibrium of T if U (o) exists and
for any positive £, o is an s-equilibrium in any sufficiently long game,
i. e. Ye >0, 3Ty such that V' T > Ty and ¥ (1,33) pair of strategies
Of Pd.'

(a) Ug*(‘ﬂ +e2 % Zle E(ﬁl,Uz,P) (ul;L)

(b) Ui*(0) +& 2 7 iy Blovonm (1)

Let us denote by UNIFCP* the set of all the payoffs associated to uni-
form equilibrium strategies.

The same definitions can be obtained by adding to I' a correlation device

which is not an autonomous device, i. e. a device which only operates at
the first stage of ' and remains inactive afterwards. Hence, four different
definitions of correlated equilibrium arise, with payoff sets defined by UCP,
LCP, B, CP and UNIFCP respectively.

13



The following relationships are a direct consequence of the definitions of
the twelve sets of payoffs'9:

1. UNP C UCP C UCP*
2. LNP C LCP C LCP~
BLUNP C B,CP C B,CP*, V Banach limit L.

- W

UNIFNP C UNIFCP C UNIFCP*

ot

UNP C LNP, UCP C LCP and UCP* C LCP*.
6. UNIFNP C UNP, UNICP C UCP and UNIFCP* C UCP™.

7. UNIFNP C B;NP, UNICP C B;CP and UNIFCP* C B; CP*, V¥ Banach
limit B.

Moreover, Lehrer (1992a) shows that

1. LNP = LCP = LCP *

2. UCP = UCP* = B;,CP = B.,CP* = UNIFCP = UNIFCP*, V Banach
limit L.

Hence, adding an autonomous device does not enlarge the Nash equilib-
rium payoff set of players when we consider the ’lower’ equilibrium concept:
any infinitely repeated game with any kind of imperfect monitoring is 'lower-
saturated’?®. The question whether games with imperfect monitoring are in
general saturated (i.e. saturated for the other three equilibrium definitions)
remains still open. Partial results have been obtained for particular informa-
tion structures. For standard information, the result is a direct consequence

of the folk theorem (see Aumann 1985). Lehrer (1991) shows that general
saturation holds in games with symmetric standard-trivial information?!
We say that a game with imperfect monitoring has symmetric standard-

trivial information when its information functions satisfy that, V(a,b) €

19Gee Lehrer (1992a).
20A game is said to be saturated when its Nash and correlated equilibrium payoff sets

coincide.
21

14



A either:00161 053jp type="texpara’ tag="Body Text” et="enumerate”
ili(a,b) = ly(a,b) = (a,b), and in this case we say that the information is
standard or00162 053jp type="texpara” tag="Body Text” et="enumerate”
ili(a,b) = a and ly(a,b) = b, and in this case we say that the information
is trivial.00169 038;p type="texpara” tag="Body Text” ;In this types of
games, any pair of indistinguishable actions are not comparable by using the
partial order relation >.00000 .

5 Unmediated communication: the main re-
sult.

We want to consider the decentralized situation in which players communi-
cate without the help of any external mediator: P, and P, just exchange
messages from a finite set along the whole game. This communication mech-
anism is known as plain conversation or unmediated communication. Clearly,
if a payoff is obtained by adding to I' a plain conversation scheme, the same
payoff could be also obtained by adding an autonomous device. The question
that arises at this point is: given an extensive form correlated equilibrium
payoff of I (with any equilibrium definition), could players obtain the same
payoff with the help of no external mediator, by just using a plain conver-
sation scheme? Moreover, could it be used in any game, regardless of its
particular information structure?. The answers to these questions are affir-
mative:

Theorem (Main result) Let T be a two-player infinitely repeated game
without discounting, with imperfect monitoring and with rational payoffs.
Given an element x € in UCP = UCP* = B CP = B CP* = UNIFCP =
UNIFCP*, N Banach limit L, there exists an extension of I' by a universal??
unmediated communication scheme such that x is the (Upper, Banach, Uni-
form) Nash equilibrium payoff of the extended game.

This result shows the power of unmediated communication as a way of
generating internal correlation by means of the underlying information struc-
ture, in repeated games with imperfect monitoring. Jointly with the main
results of Urbano and Vila (1997, 1998), we have that players can eliminate

22Which does not depend on the particular information structure of T'.
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the mediator role in a wide class of two-player games without any loss of
efficiency.

Our main result is closely related to that of Lehrer (1991). It is shown
there that the mediator of an imperfect monitoring repeated game can be
substituted by unmediated communication in the particular case of symmet-
ric standard-trivial information. Hence, our main result could be understood
as an extension of this saturation theorem for arbitrary imperfect information
structures. However, it is important to point out a basic difference between
both approaches: Lehrer builds up conversation schemes by using actions
as messages at some stages. We interpret this process as an wnvestment in
communication: players choose actions that could be inefficient at some one-
shot games in order to coordinate and to obtain bigger future payoffs. Since
average payofls are considered and short communication phases are able to
support coordination during a large number of stages??, the whole process is
actually efficient. Under this approach of low cost communication, internal
correlation arises from the private histories of both players and the satura-
tion of the original game is established. The problem with this analysis is
that it cannot be easily extended to more general information structures,
since players could learn about the rivals’ actions during the process and
problems of incentive compatibility may appear. In other words, the sym-
metric standard-trivial information structure is needed also in the design
of the master plan. In the latter, the players play over and over again ac-
cording to the same correlation and, due to the symmetric standard-trivial
information, without impairing its effectiveness (i.e., the correlation remains
incentive compatible).

In contrast, our communication scheme is based on a cheap talk mecha-
nism which allows players to exchange messages, out from the original game
itself. Hence, we deal with the extension of the original game by a uni-
versal unmediated costless communication scheme. This extended game is
saturated, and we establish that its Nash equilibrium payoffs include all the
(upper, Banach, uniform) extensive form correlated equilibrium payoffs of
the original game.

23This fact is a consequence of the symmetry of the information structure involved,
where a player is unable to learn about the action played by the other one without giving
him extra information about his own action.
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The next sections are devoted to constructing this communication proto-
col and to proving the theorem. To this end, and following Lehrer (1992a),
we characterize the (extensive form) correlated equilibrium payoffs in terms
of the one-shot game parameters. This characterization is based on two sub-
sets By, (h = 1,2) of A(A) = the set of probability distributions on A. These

subsets are defined as follows:

By, = {q € A(A4)| Z q(ap, b)uy(ag, b) > Z q(ag, b)up(a,b)

be Ay be Ay

Yag,a € Ay such that a > ag}. In words, By contains the probability
distributions on A which do not admit any unilateral profitable deviation
by P, to indistinguishable and more informative actions. Let us notice that
the condition defining Bj, is analogous to the characterization of a canonical
correlated equilibrium of a one-shot game (see, for instance, Aumann 1974).
Hence, we can understand BN By as the 'canonical correlated distributions’
of the one-shot game considering only indistinguishable and more informative
deviations. Is it easy to check that the set By N By is a convex polyhedron
contained in A(A).

Let I R denote the individually rational payoffs of the one-shot game, i.e.
the payoff in which each player receives at least his minimax payoff. We have
the following proposition that characterizes the extensive form correlated
equilibrium payoffs of the repeated game in terms of the parameters of the
one-shot game:

Proposition 1 (Lehrer, 1992a) UCP = UCP* = B, CP = B, CP* = UNIFCP
— UNIFCP* = u(Bi N By) N IR,

Y Banach limit L, where u = (uy X ug).

To prove the main result, we must show that Vg such that u(q) € (uy x
us)(B1 N By) N IR, there exist a (uniform, upper, Banach) Nash equilibrium
of T extended by a plain conversation protocol which gives a payoff of u(q).
The first step consists on building up a communication protocol that allows
players to choose their actions according to ¢ (or, at least, to a probability
distribution very close to ¢ in a sense that will be specified below). Secondly,
we have to establish mechanisms to prevent indistinguishable less informative
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deviations that could be profitable. These ideas will unfold in the next sec-
tions: let us start by defining the finite message set and the one-way functions
needed in the sequel. Then, we define formally the universal communication
protocol and we analyze its main properties.

6 The set of messages and the one-way func-
tions.

A protocol is an agreed upon procedure according to which players exchange
a set of messages. A message is a piece of information transmitted from one
player to another one.

Thus, in order to construct a communication procedure, both players have
to agree first on the space of messages and to associate to every pair of actions
of the original game a pair of messages - a two letter word - from the message
space. Notice that if we work with distributions g that are (Q-evaluated, it is
always possible to associate to every pair of actions (a;,b;) € A a number of
different two letter words such that if one of these words is selected uniformly
at random, the probability that it is associated to the pair (a;,b;) is exactly
q(a;,b;). Once the space of two letter words is constructed, players proceed
to exchange messages, i.e. words.

However, since the main problem is that in this process of exchanging
messages players have no reason to trust each other, we organize the con-
versation in such a way that messages are public but with private meaning.
Hence, one of the players, say player 1, encodes separately (by using a one-
way function) every letter of all two letter words and sends them to the other
player. This second one selects a encrypted word without knowing its real
meaning, and encodes its letters and send them back to the first player.

Note, however, that in order to control the integrity of the whole exchange
of information process, we need to impose some properties on the one-way
functions being used. In particular, we need that they commute among
them. Commutation allows players to deal with public messages but private
meaning, since they can encode and decode previously encoded messages
while keeping privacy over their real meaning. A nice physical analogy for
the above process is the following: we can view encryption as equivalent
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to placing a padlock on a box containing the message. A player, say Bob,
initially locks all the messages in individual indistinguishable boxes with
padlocks all of which have key B. The other player, say Alice, selects a box
and then sends it back to him the chosen box to which she has also added
her own padlock with key A. Bob removes his padlock from the box and
returns to Alice the box still locked with her padlock. Notice the implicit use
of commutativity in the order in which padlocks are locked and unlocked.

Hence, in order to build up the communication protocol we need to use
ciphering and deciphering one-way functions with commutative properties.
These functions are defined by using exponential ciphers in the way proposed
by Pohling-Hellman (1978)%*. This methodology is based on Number Theory
results. In this section we show the basic concepts of Number Theory in order

to understand our constructions?.

Two integers a and b are Congruent Module another integer m if and
only if 9 k integer such that a — b = km. Let us denote by a + mZ the
set of all integers congruent to a module m. When the integer m is clear
from the context, we write a + mZ = a. Given m, it can be proved that

there exist exactly m of these distinct sets given by 0,1,...,m — 1. We write
Zm =1{0,1,....,m —1}.

Algebraic operations with these sets are performed in a similar way to
common integers, i. e. @+ b = (a+b) ab = (ab). It can be proved that
(Zm,+,.) is a commutative ring. It is easy to see that a € 7, has an inverse
in Z,, if and only if a is prime to m (i.e. the maximum common divisor of
a and m is 1). If @ has an inverse it is said that it is a unit of the ring 7,,.
The number of units of Z,, is then the number of integers lower than m and
prime to m. This number is denoted by ¢(m), where ¢ is known as Fuler

function ?6. If @ is a unit, then a~' = a?™~1, So, a¢(™ =1.

Let us consider the ring Z, with p a prime number. Then, every no null

24The existence of one-way functions is still an open problem. The schemes of Pohling
and Hellman (1978) and Rivest, Adleman and Shamir (1978) are usually considered as
functions with this property. For a more detailed discussion of this topic, see Gossner
(1998).

25 A more complete exposition of them can be found in Vinogradov (1955) and Le Veque
(1977)

26This function is given by ¢(m) = Hle P (p; — 1) where m = p™..pJ™ is the
prime factor decomposition of m.
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element of Z, is a unit. The ring Z, is in fact a finite field of p elements

called Galois Field of order p and denoted by G F(p).

To define the set of basic messages (or ’letters’), both players choose
jointly a prime number p large enough in a sense that we will make precise

below. This set will be given by all the units of GF(p) but 1:

M = Units GF(p) — {1} = {2,....,p — 1}

To define the ciphering and deciphering functions of the players, each one
of them, P, takes secretly and independently two integers e, dj such that

(en +@(p)Z)(dn + 9(p)Z) = (1 + ¢(p)Z)

where ¢(p) is the Euler function acting over p?’. Functions are con-
structed from these numbers in the following way, Ym € M, E,(m) = m
and Dy (m) = m?. It can be proved that:

1. B, y Dy, are inverse. (Since (en, + ¢(p)Z)(dn + ¢(p)Z) = (1 +
we have that 3¢t € Z such that end, = t¢(p) + 1. Hence E,(Dy,
mi@H = @)’ and because m?®) = 1, then En(Dp(m)) = m and
these two functions are inverses).

2. The four permutations commute. (FEy(Dy(1h)) = méin = mincn =
Dy (B (m)) and similarly for any other combination.)

3. m cannot be calculated by P, (h = 1,2) from Ej (m) and Dy (m)
(h # 1'). In order to break the cipher, P, needs to know the keys e
and dj of player P,:,. The knowledge of one of these integers allows to
ascertain the other, since they are inverses in Z4p). The information
that a player has is just a list of messages, i.e. m, and its codification
m’'. Hence, breaking the code used by P} is the same than calculating
the logarithm in base m of m®' in the Galois field GF(p), i.e. ¢, =
log,.,(m®'). The fact that P, cannot decipher this key is due to the
difficulties to calculate this logarithm?®.

#7Since p is already a prime integer, we have that ¢(p) = p — 1.
2This calculation takes exp((ln(p)ln(ln(p)))%) steps (See Adleman (1979)). If both
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7 Structure of the communication protocol.

In this section we show the structure of the game extended by the universal
scheme of plain conversation. This communication protocol acts twice in
every stage of the repeated game. Firstly, both player communicate before
simultaneously choosing their actions. This part of the protocol will be called
‘correlation phase’. After playing actions and receiving signals, both player
engage in a 'report phase’ where information on the chosen actions and on
the received signals is exchanged. This report phase is constructed in order
to check deviations. If a deviation is observed, the cheating player will be
punished by pushing him down to his minmax payoff for the rest of the
repeated game. Before formally describing the stage communication phases,
let us build up the set of messages to be exchanged in them.

The common language space V.

The protocol is a communication scheme defined on a common language
space. This space is jointly constructed by the players from the set A by
using the distribution ¢ and its rationality.

This construction is made in two steps: Firstly, both players jointly select
the set of messages (or alphabet) by choosing a big prime number p and
taking M = GF(p) — {1}. Any element of the set M x M will be called a
two letter word. Secondly, both players selects n words from M x M with
no letter in common 2°. Afterwards, they associate to each pair of strategies
(a;,b;) € A, ry; words (o, ﬂl] ) from the set previously chosen. Hence if one
of these n words is selected at random uniformly, the probability of this word
to be associated to a pair of actions (a;,b;) is = = g(a;,b;)*°.

players agree on the use of a prime large enough (200 digits, for instance), it would take
1.2 x 10?3 steps to calculate it. Even if it is assumed that P, may use a computer, which
could make an operation every useg (i. e. 10! steps a day), he would need 10'? days
or, in other words, several billions of years to make the above calculation. Thus, it is not
possible to ascertain m from its codification. This kind of exponential ciphers, jointly with
the one proposed by Rivest-Shamir-Adleman (1978), are being applied in real situations
where the integrity of the exchanged information is very important (military cryptography,
sales through Internet, etc.) and they are usually considered as one-way like functions.

29The n selected words will be formed by 2n different letters of M.

3080, if an external mediator selects one of these words and says both players the let-
ter associated to their actions, every pair of strategies will be suggested with the same
probability than the induced by the distribution q.
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However, notice that the knowledge of his own letter by a player may give
him more information about the other player’s strategy than the knowledge of
the action he is suggested to play. This information can be used in a strategic
way. Hence, in order to reduce a player information, it is needed to associate
new words to every pair of actions. This process is performed by building a
'replication tree’ in the following way: let us consider the original set of two
letter words. They form the first 'branch’ of our replication tree. We proceed

from this ’branch’ by induction. For every action aq,..., as, b1,...,b; we add a
new row of 'branches’ to our tree in the following way: for every ’branch’
(o}, )

(5,9

in the previous row we add r;! new ’branches’ by permuting o, ..., o

in all the feasible ways and keeping the other letters (denoted by *) in their
old order3!:

(a7, 1), %) (a7, 1)) (%, @y *)

(O[Z_l (ri_)7 *) (OZ(Z‘TQ(TZ*_V *) (Oé(i)'ri.!(m_)’ *)

(%, %) (¢, %) (%, %)
(%, %) (¢, %) (%, %)
,al .

Let us denote by V' the subset of M x M which is formed by the words
of all the 'branches’ of the last row obtained after the above construction 2.
This set of valid words, which may be much bigger than the original one,
satisfies the following properties:

for all o, (w=1,..,7;!) in the group of permutations of o, ...

31'We show the construction for any action a,; of player 1. The addition of new rows for
an action b; of player 2 is done in the same way.

321t is easy to check that this construction does not depend on the order in which these
actions are considered.
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1. Car(V)isamultiple of n (i.e. Car(V) =vnwherev = ryl..rtril.rgd).
2. The number of words associated to any pair of strategies (a;, b;) is vr;;.

3. The knowledge of any letter associated to a; does not give more infor-
33

mation than that of a;.
Thus, the probability of choosing a pair of messages in V associated to
the strategies (a;, b;) is T—;bl and the knowledge of a component of the message
gives the same information about the other than the correlated equilibrium
distribution ¢(a;|b;) and q(b;|a;), respectively.

We have now all the elements to write down a formal description of both
the correlation and the report phases:

The correlation phase.

Each player selects independently two functions I} and Dy, permutations
of M, by using exponential ciphers, in the way above considered.

Notice that there will not be a previous agreement about the pair of
actions to play, since every player may prefer a different choice. Thus, to
choose a pair of messages at random, our communication scheme is based
on a codification of every word by, say, player 1, to allow the second one to
select a pair of strategies at random without knowing its actual meaning. In
the encryption process every letter of a words is codified independently of
the other. Also, to avoid a player to change the order of the letters among
different words, to make some actions more likely than others, we add to
every word an extra letter which, once encrypted, allows players to check if
two codified letters are members of the same original word. In particular,
this third letter could be calculated as the product of the two letters of every
word®* | i. e. ’y,?l = a,@ﬂlj

Our protocol has the following steps:

331t is important to remark that different words can appear a different number of times.
In this way, although a player does not know the real meaning of a word, he could obtain
some advantages by analyzing the frequencies of the different words in the list of messages.

34 P, has no chance of changing letters from an original word to another without being
detected by P, since he needs to find ez what, as we saw above, it is not possible. The
checking that the second player has to make when he receives ((ad)®, (87)°1, (7,7)12) is
to calculate ('y]ijl‘)el‘e?d2 = ('y%)el and to control if this element, which belongs to GF(p),
is the product of the two first letters of the work. It is important to remark that this
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Step 1 Player 1 adds to every word (az,ﬂlj) a third control letter £ (’y,?l)
and he sends them to .

Step 2 For every word in the list, the second player calculates (Ey(ad),
E2(8)), Ea(Er(7y3))) and he sends them to P;.

Step 3 For every word (Fy(a}), Ey (ﬂl]), Ey (B, (’y,?l))), P calculates (B (Ey((ad)),
By (EQ((ﬁl])), Ey(F4 (’y,?l))) and he checks that every (a}, ﬂl]) corresponds
to an original word. Afterwards, P; selects n different codified words
satisfying that 2n different letters appear in them (without considering
the control letters)35. These n words are sent to B,.

Step 4 P, checks that there are exactly 2n distinct codified letters in the
list of n words received from P;. Afterwards he calculates

Dy(Er(Ey(ag))) = Ei(ay)

Dy (Ey(Ba(3]))) = E(3])
Dy(E1 (B2 (7)) = Er()

and he checks, by using £, (’y,?l), that the two codified letters (F;(at), Ey (ﬂl]))
are members of the same original word of the set V 3. If it is de-
tected that P’} has deviated, the protocol will start again. Otherwise,

checking procedure is made by the second player without having any information about
the real meaning of the words ciphered by P;.

35 A more intuitive way to see what P; is doing at this step is the following: after building
up the replication tree some new ’branches’ of words have been added to the original list.
Each one of these "branches’ is a replication of the original list, where the way in which the
letters are combined has been altered. At this step of the protocol, P; selects one of these
"branches’ (without knowing which is the chosen one) and sends it to ;. Afterwards, P
can select uniformly at random a word of this block. The two-step selection is necessary to
restrict P, extra information from analyzing the number of times that every word appears
in V. For instance, one can realize that in the set V of our example (section 4) the words
associated to (ag, by) appear once, but those associated to the other pairs of actions appear
twice. Since the codifying and deciphering functions are bijections, the same difference in
the number of words will be maintained after their encryption.

36Tn order that the protocol works correctly, the knowledge of Ey ('y]?l) must allow P> to
be sure that (F; (at), Fy (ﬁlj)) are the two letters which constitute an original word, without
giving him any information about the real meaning of the associated word (Oé;l{, ﬁlj ).
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P, selects at random uniformly a pair (E (&), Ey (ﬂ_l] )) and he sends
(B2 (Ev(ay)), Bx(E(3]))) to P

Step 5 P calculates Dy (Fy(E4(aL))) = Fa(al) and Dy (Ey(Ey(5))) = Eq(57).
Step 6 P, sends EQ(BZJ) to P, and P, sends F,(a%) to P.
Step 7 P calculates D(F(a%)) = @ and P, calculates DQ(EQ(BZJ)) = BZJ

At the end of this correlation phase, both player are suggested to play
actions (a;,b;) € A. These actions have been selected according to the prob-
ability distribution q. Let us notice that the way in which the protocol is
established guaranties that the only information that P; has about the ac-
tion to be played by P, is q(b;|a;). The same remark can be done on the
information which P has about P; suggestion.

This correlation phase allows players to choose a pair of actions in A
according to a rational probability distribution. However, the distribution
q € Bi1 N By that we are trying to emulate is not, necessarily, rational.
Forges (1990) and Urbano and Vila (1997) show a way to extend this kind
of protocols to real distributions by just adding a previous jointly controlled
lottery: the convex polyhedron BN Bsy is defined by linear inequalities whose
parameters are rational numbers (the payoffs of the stage game, that are
rational in our case). Hence, the vertices of By N By are rational distributions
and any ¢ € By N By can be written as a convex combination of a finite
number of Q-evaluated distributions (the vertices of the set). Therefore, the
one-stage payoffs associated to ¢ can be obtained by playing firstly a jointly
controlled lottery in order to choose a vertex. The probability to choose any
vertex is given by the convex coordinate of ¢ in that given vertex®’. Then,
players apply the described coordination phase to choose a pair of actions
in A according to the vertex distribution previously selected. See Forges
(1990) for details. Hereafter, we consider that the distributions involved are
rational. This assumption is done without loss of generality®.

Once the correlation phase is finished, P; and P, play their actions (not
necessarily the suggested ones) and receive their signal. It is clear that if

37"Two concrete ways to performance this jointly controlled lottery can be found in
Aumann, Maschler and Stearns (1968) and Urbano an Vila (1997).

3 Otherwise, both players would engage in the described jointly controlled lottery before
performing the correlation phase of the protocol.
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both players follow the above protocol for a distribution ¢ such that u(q) €
u(By N By) N IR | they obtain the same payoff than that of the extensive
form correlated equilibrium associated to g. But player may have incentives
to deviate from the suggested actions®®. Hence, further controls are necessary.

The report phase.

After playing the action of the stage game, a second communication phase
takes place. This report phase, much shorter than that of the correlation
phase, will be used by players in order to decide whether ascribing or not a
deviation to the opponent and hence whether starting or not a punishment
strategy. The steps of this phase can be described as follows:

Step 8 P sends the signal’® [, (a;, Z_)j), where <C_fi’ Z_)j) are the actions actually
played in the stage game. P, sends l4(a;, b;) to P;.

Step 9 P sends Fy(a}) to P, and P, sends F) (ﬂ_l]) to Py.

Step 10 P, calculates D;(F) (BJZ)) = BJZ and he discovers that P, has been
actually suggested to play b;. By the same procedure, P, discovers that
the action suggested to P, was a;.

This report phase will provide the players with the elements that they
need to detect deviations and to support the equilibrium by the threat of
minmax punishments. These aspects will be clarified when the equilibrium
strategies will be precisely defined.

3Since ¢ € By N By it can be shown that there does not exist profitable unilateral
deviations from the protocol if players are restricted to use indistinguishable more infor-
mative deviations (this can be proved by just replicating the proof of appendix 1 of Urbano
and Vila (1997) for more informative deviations.). However, distinguishable and indistin-
guishable but less informative deviations may produce profitable results. Therefore, more
complex strategies must be defined in order to establish our main result.

40Gince the signal sets Lj are finite, players are able to associate to each signal an
element of GF(p) and to exchange the associate element of GF(p) instead of the signal
itself. We prefer to describe the step as if the actual signal were sent, in order to avoid
unnecessary complexity in the process.
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8 ¢ - sureness of communication protocol.

In this section we analyze the security level of our protocol, i. e. the proba-
bility of a player to detect a rival’s deviation*'. This analysis is undertaken
under the assumption that player 1 deviates and player 2 faithfully follows
the protocol.

A ’deviation from the rules’ by a player is a plan to correlate actions in
a way different from that prescribed by the protocol. Here, the plan consists
of sending different messages from the ones specified by the rules.

Definition 5 A communication protocol is e-sure if any deviation from the
rules is detected with probability 1 — <.

As it was said above, to construct the set of messages both players have
to start by choosing jointly a prime number p. The next proposition shows
that this prime can be chosen in such a way that the correlation phase and
part of the report phase are e-sure, for each positive e.

Proposition 2 The communication protocol (but step 8) is e-sure, i.e. ¥ & >
0, 3 p prime such that P, detects that P, has deviated with probability 1 — <.

Proof: Let us analyze first the correlation phase. Let Fy(J3) be the mes-
sage suggested by the protocol to player 1 at step 6. The deviation of P,
consists of sending to P, a message Fy(3*) different from Fy(3). P will
detect this deviation if and only if §* is not associated to any feasible action

bj, j - 1, ,t

Since 3* # 3, there are card(M) — 1 = p— 3 possible values*? from which
[* can be selected uniformly at random. Also notice that there are exactly
card(M) —n = p — 2 — n messages associated to no action of P. So

“Notice that we are dealing with deviations from the rules that define the communi-
cation protocol, not with deviations of a player from his suggested action when he plays
the stage game. This second kind of deviations will be analyzed when proving the main

result.
4Notice that Card(M) = Card(Units of GF(p) —{1}) =p—2.
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Prob(P, detects) = Prob(3* is associated to no action b;)
p—n—2
p—3
Given ¢, n is fixed, thus

p—n—2

lim Prob(P, detects) = lim =1

pP—00 p—o0 P — 3
and then the result of the proposition follows.

The same reasoning can be applied to prove that sending a message dif-
ferent from Fy(a%) at step 9 will lead with probability 1 — € to a message in
GF(p) associated to no action in A;.

O

If the distribution ¢ satisfies that u(q) € IR, the above proposition guar-
anties that the threat of a minimax punishment is enough to prevent devia-
tions from the rules at every step of the protocol, but step 8: with a prob-
ability as high as we want, P;’s deviation will reduce his average expected
payoff until his minmax payoff. This idea will be formalized below.

9 Strategies of the extended game.

We have now all the elements to construct a uniform equilibrium of the game
I' extended by a universal mechanism of unmediated communication. This
equilibrium emulates any extensive form correlated equilibrium payoff of the
original game. The key ideas of the construction can be expressed in the
following way. We know that given x an extensive form correlated equilibrium
payoff of I there exists ¢ € A(A) such that u(q) € u(ByNBy)NIR and u(q) =
x. Since g € B1N By there are no profitable unilateral indistinguishable more
informative deviations from ¢. Hence, if a player, say Pi, is suggested to
play a according to ¢ (by the correlation phase of our protocol), the only
way to get an extra profit consists on deviating to a distinguishable or less
informative action a. But this kind of deviation can be detected in the report
phase of the protocol:
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1. If P, deviates to a distinguishable action, it may be detected as follows:
by steps 9 and 10, P» knows that the suggested action for P, was a.
Then, he computes Ily(a,b) (where b is the action actually played by
Py) and compares it with his received signal. These signals may be
different and the deviation may be detected.

2. If Py deviates to @ such that a = @, Jby,by € Ay such that I;(a, b)) #
l1(a,by) but Iy(a,by) # 11(a, by). Hence if P, plays by and he knows that
P, should play a, he will expect to receive at step 8, l1(a,b;). But,
since P has actually played a, player 1 is not able to distinguish if P
has played b; or by. Hence, an inconsistency on reports may take place
and the deviation may be detected.

Since I' has an infinite number of stages, P, needs to deviate an infi-
nite number of times in order to change the global average payoff. Hence,
the probability to detect one of these deviation (by the above checking pro-
cedures) should be large enough to prevent cheating by the threat of the
punishment.

Let us notice that in order to distinguish among distinguishable actions, a
player may need to play an action out of the support of ¢, and this situation
will never take place (actions out of support of ¢ have zero probability to
happen). To avoid this problem, we will apply the above ideas not to ¢ but
to a perturbation of it, denoted by g, such that limy .., gx = ¢ and every ¢
is of full support. Every g; will be used in a number of stage games large
enough to guarantee that profitable deviations will be detected with a high
probability. Then, the threat of punishment will prevent any deviation.

Let us formally write the strategies to be used by the players.
Formal description of the strategies.

Let x be an extensive correlated equilibrium payoff and ¢ € By N By C
A(A) such that x = u(q) € u(By N Bz) N IR. Let us define first a sequence
of full support distributions converging to ¢q. Let supp(q) denote the support
of ¢q. ¢, is defined as follows:

L qk<aub) = q<aub) - mu Zf (aub) S Supp<q)
2. qx(a,5) = sy o (a:b) € A — supp(q)
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Let us remark that for low values of k it may happen that ¢(a,b) —

—L - < 0. To avoid this situation, we define the distributions g just
k|supp(q)| ’

for k > ko, where kg is the lower natural number such that that g(a,b) >
1

Tosa (@, D) € supp(q).

In words, gy, is a full-support perturbation of ¢ where % of the probability
density has been taken away from actions in supp(q) and equally shared
among the actions out of the support of ¢. Clearly, limy ., q; = q.

For any k > ko, let us consider the finitely repeated truncated game S,
formed by the A first stages of I'. Each Sy will be called thereafter a block.
The size of such a block, Az, will be made precise below and it will be large
enough in order that profitable deviations along a block could be detected
with high probability.

Let us denote by 4 = arg ming 4, maxyea, us(a,b) the action that in-
duces the minmax payoff of P, and b the corresponding to P;. We define
now the strategies for the block Si. At every stage game of Sy, players act
as follows:

1. Both players engage in the correlation phase of the communication
protocol in order to choose a pair of actions (a,b) € A according to gy.
If P, detects a deviation from the rules of %, he will play a. P, acts
in the same way*. At the end of the correlation phase, players know
their suggested actions, say a for P; and b for P;.

2. P, and P, play their actions _following the suggestion of the correlation
phase. Let us denote by (a@,b) the actually played_actions45. Once the
stage game is finished, P, receives the signal 1,,(a,b).

3. Players engage in the report phase. If a deviation from the rules is de-
tected at steps 9 or 10, the non-cheating player will punish the cheating
one by 'minmaxing’ him from this moment until the end of the game.

43Gince the correlation phase is € — sure a deviation from the rules will be detected with
a probability as high as we want.

441f both players detected simultaneously a deviation from the rules they would play an
action at random and they would go to the next stage game

45 Although played and suggested actions should coincide if both players follow the de-
scribed strategy, we use different symbols for them in order to write down clearly the
checking procedures that players will perform.
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At the end of the report phase, P, knows b and has received a signal
s9 from P,. If the second player has faithfully followed the process,
sy = l15(a,b). P, also receives the corresponding messages s; and a.

4. P, computes [;(a@,b) and compares it with /,(a, Z_)) If these signals are
different, he ascribes to P a deviation to a distinguishable action from
the suggested one. In this case, P, will play a all the remaining stages.
P, develops the same checking procedure.

5. Py calculates l3(a, b) and compares it with the signal s, received at step
8. If these signals are different, P, knows that P, has deviated from
the suggested action b to another action b such that b > b. The reason
is the following: if P, deviated to b at the stage game, he would receive
the signal I5(a, 5) Since b is less informative than b, it may exist @ € A,
such that l5(a,b) = l5(a,b). Hence, P, does not know whether P, has
played a or a. At step 8, P, must report his signal but he doubts on
sending l5(a,b) or l5(a,b), since he does not know which action has P
actually played. Therefore, with some positive probability, P, will send
the wrong signal an it will be detected by FP;. Let us remark that the
order in which the steps of the report phase are organized is a key point
of this checking procedure: if the report of sy took place after step 9
and 10, P, would know the chosen action of P, and he would report
correctly his signal. If P; discovers that P, has cheated at this point,
he will play a thereafter.

The checking procedure for P, can be established in the same way.

Let (19, 74) denote the strategies of the block Sj, above described. Tt is
clear that:

1. By following (7F,75), P, only ascribes a deviation to Py if the latter
has actually cheated. However, some deviations of a player may take
place and remain undetected.

2. Any deviation of P, to an distinguishable or less informative action has

a positive probability of being detected.
3. The limit average expected payoff of (74, 7}) exists and coincides with

u(q), 1. e.
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Ak
3 fm ; Bet oty (tr) = u(q)
4. Since the protocol (but step 8) is e-sure for any £ > 0, we can prevent

deviations from the rules by just taking £ low enough or, what is the
same, a prime number p large enough.

10 Example.

Let us analyze an example of the above construction. The concerned game
is an adaptation of an example of Aumann (1987)%, whose stage game can
be described by the following payoff matrix:

by by b3
ay (0,0) (0,0) (0,0)
as (0,0) (0,0) (7,2)
as  \ (0,00 (2,7) (6,6)

where Ay = {ay,a9,a3} is the set of feasible strategies of P; and Ay =
{b1,by,b3} the set of those of B.

Let us assume that the information structure of this one-shot game is
trivial (i.e. l1(a;, b;) = a; and ls(a;, b;) = b;) but in the next two cases:

L. Li(ag,b1) = (as,b1)

2. lQ(CLl,bl) = (al,bl)

Let T" be the infinite repetition of the above one-shot game. Notice that,

in this case the quotient sets for the equivalence relation ~ are as follows*:

46 Alternative adaptations of this basic example have been also developed in Lehrer
(1991, 1992a) and Urbano and Vila (1997).

4"The information structure in this example is not a symmetric standard-trivial one,
since there exists pairs of actions where a player receives standard information and the
other one does not.
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1. A7 = {{a1},{as,a3}}
2. AQN = {{bl}, {62763}}

and also notice that a3 is indistinguishable and less informative than a,

(since l1<a2, bl) = (CLQ, bl) 7é a9 = l1<a2, 62) and l1<a3, bl) = a3z = l1<a3, 62))
It is easy to check that the probability distribution ¢ € A(A), given by

b by b
ay 000
as 00 3
as 0%%

is an element of the set B; N By *. Moreover
(5, 5) = U((_I) < U(Bl N BQ) NIR

and by proposition 1, (5,5) is the average expected payoff of an extensive
form correlated equilibrium of I'.

Fixed k € N, let us construct the strategies (77, 74) in the following way.

We start by defining q;,, a full-support perturbation of ¢ given by 4%:

by by bs
1 1 1
ay 6k 6 Gk
a i A Y
2 6k 6k 3
a T rS1 B2
3 6k 3k 3k

Recall that the block S is the truncated game formed by the first

one-shot games in I'. The strategies (7, 75') are given by:

First communication round: the correlation phase. Both players build
up the elements to engage in the communication procedure. They start

481t is, in fact, a canonical correlated equilibrium of the stage game.
94, can be defined Yk > ko = 2.
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by selecting a large prime number p. Let us assume that, in our con-
crete case®®, p = 43. Afterwards, both players choose 6k elements from
the message set M x M = (GP(p) —{0,1}) x (GP(p) — {0,1}) (whose

elements are called 'words’) and associate them to pair of actions in A

as follows:

<a17 bl) — (?7 %)
<a17 62) — (Z_L ‘i))
(ab b3) — (6_;7 Z)
(a2, bl) — (_8, 9_)
(ag,by) «— (10,11)
(CL3, bl) — (1_2, 1_3)
(CLQ, bg) — (1_4, 1_5)

((14 4 (4k — 6)), (14 + (4k — 5)
(a3,by) +—  ((14+ (4k — 4)), (14 + (4k — 3))
((14 + (8k — 10)), (14 + (8k — 9))
(az,ba) «— ((14+ (8k —8)), (14 + (8k — 7))...
(14 + (12k — 14)), (14 + (12k — 13))

)

In words, players associate

1. a single word to each pair of actions that has probability of 6—1k to
happen

2. 2(k — 1) words to each pair of actions with probability % to
appear.

In this example, words have been assigned consecutively, but any other
association procedure could be used.

The role of the communication phase is to allow players to choose one
of this words at random uniformly. Then, the probability of a pair
of actions (a;,b;) to be associated to the selected word is precisely

50The assumption of such a small prime number is made in order to simplify the exam-
ple. Actually, both players should choose a p much larger (a two hundred digits one, for
instance). The size of p is determined by the security level of the functions Fy, Dy an it
will be made precise in the proof of our main result.
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qr(a;,05). A complete description of how this correlation phase works
for this concrete example is too long to be considered here (see Urbano
and Vila (1997) for a detailed example of this communication protocol
in a simpler case). An sketch of the main facts of this message exchange
procedure is the following:

The replication of the associated words and steps one to four of our
protocol, allows P, to choose one of the 6k words above at random
without obtaining extra information. This situation is possible since
Py does not know the real words (o, B), (I, m = 1,...,6k) but their
codification by FE;. Let us suppose that, in this example, the chosen
codified word is (F,(R), E1(9)). At step 5, P, knows (Fy(R), E5(9)) =
Dy (Fy(FE1(4))), D1(Ey(E1(5)))). By steps 6 and 7, P, learns that his
suggested action is associated to 8 and he keeps the information that
P has been advised to play according to a message whose codification
is F5(9). The situation is symmetric for player 2.

Let us remark that if P, deviates at step 6 (checking procedures pre-
vent deviation from the rules at the other steps), he does it in a com-
pletely uncontrolled way: since he does not know Fj, he can only send
a message B + E2£9). Then, P, deciphers this message by calculat-

~

ing Dy(5). If Dy(8) is not one of the 6k valid letters (i.e. Dy(8) ¢
{3,5,...,(1+12k)}) P, discovers the deviation and punishes ;. Let us

notice that, since P has no control on the cheating process, his prob-
ability to be discovered increases with the size of the message set?!.

Stage game. Both players act according to the protocol’s suggestions: P

plays a associated to 8 and P, plays b; associated to 9. Then, P,
receives the signal Iy (as,b1) = (ag,b1) and P, receives ly(ag,by) = by.

Second communication round: the report phase. At this phase, play-

ers exchange information about their past behavior. At step 8, they
make public their received signals ((as,b) for P, and by for P). By
steps 9 and 10, Py is able to calculate D{(F;(9)) =9 and he discovers

51The probability of not being detected is given by the ratio of the number of valid
messages (fixed) over the cardinal of the whole message set. Hence, the larger is the set
of messages, the smaller is the probability of a deviation to be undetected.
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that P, was suggested to play b;. In the same way, P, is informed about
the action selected for P, say as.

Deviations here have the same properties than in the correlation phase:
since there is no control on the meaning of a false message, a cheating
behavior can be detected with high probability by making wide enough
the set of messages. Let us notice that the order of the steps in the
report phase is a key point for the checking procedures to work (if P,
knew the suggested action of P, before reporting about his signal, he
would be able to calculate the signal corresponding to his suggested
action and to send it to P,, instead of the actually observed one).

Checking procedures. P, (h = 1,2) compares the received and expected
signal in order to detect deviations. To clarify this control process, let
us suppose that P; deviates at the stage game by playing an action
distinct from ay. Two possibilities arises:

1. P1 can play an action distinguishable from a,, say a;. Since
Py knows that P, should have played as, he expects to receive
Is(a2,b1) = by but he actually receives a different signal I5(ay,b1) =
(a1,b1). Hence, he ascribes a deviation to Ps.

2. P1 can play an action indistinguishable from as but less informa-
tive, say ag. Since I knows that P; should have played aq, he
assumes that P, knows when P, is playing by or by (I1(ag,b1) =
(ag,b1) # ag = l(ag,bs)). But, after the deviation, the situation
is completely different: P; has actually received [;(as, by) = a3 =
I1(as,by) and he does not know if P, has played either by or by.
Hence, when P is asked to report his observed signal at step 8, he
hesitates between sending either Ii(as,b;) or li(as,by) which are,
in fact, different. If P; finally sends I;(as, bs), P will discover that
a deviation has taken place. Let us remark that the probability
of this situation to happen is always positive.

11 Proof of the main result.

The key idea of the proof is the following: Let us suppose that P; is the
cheating player. Since gy is very close to ¢ € By N By the payoff that P,
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could obtain by just deviating to indistinguishable but more informative
actions should be very close to the expected payoff of ¢. Hence, to reach a
more profitable payoff, he should play with distinguishable or less informative
deviations. If the length of Sy is very large, many of these deviations will take
place in order to increase significativelly the average payoff of the block. But,
P, is able to detect such deviations at the end of each one-shot game with a
positive probability. Hence, by making A\, very large we can guarantee that
the total probability of detecting a deviation will be high enough to prevent
Py from cheating. The formal proof of this idea is as follows:

Let z be an extensive form correlated equilibrium payoff of I'. Without
loss of generality, we assume that z assigns to each player a payoff that is
strictly bigger than his minmax level®?. We will show that z is a uniform
equilibrium payoff of the game extended by plain conversation. To reach
this goal, we will use the following characterization (See Sorin 1990): z is
a uniform equilibrium payoff if and only if there exists a sequence &, with
lim, .o &, = 0 and sequences of strategies (77,74') and natural numbers
Mg, such that (79, 75') is an g,-equilibrium of the truncanted repeated game
consisting on the first Ay stages of I', leading to a payoff within &, of z. Fix

&gn > 0.

Given z, we know that there exists a (rational) probability distribution
q € A(A) such that x = u(q) € w(B1 N By) N IR. Let uy(q) denote the
expected payoff of P; at the one-shot game, when both players are choosing
their actions according to ¢:

uilg) = Y. ala,bu(a,b)

aEAl, bEAQ

In the same way, Vk > ko®®, we define:

wlg) = Y alab)ui(a,b)

aEAl, bEAQ

521f one player is assigned his minimax payoff by z, he will be indifferent between
following or defeating the protocol. Since Nash equilibrium inequalities are defined by
using ’lower or equal’ conditions, following the strategies constitutes a Nash equilibrium
of the extended game.

53Recall that ko is the lower natural number such that ¢(a,b) > ———.
kolsupp(q)|
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Let u"™ and u}’* denote the minimax and the maximax® payofss of P,
at the stage game.

Before engaging in each correlation communication phase, P; has to de-
cide whether following faithfully the protocol or cheating. Let us notice that,
since u"™ < u,(q), there exists a 1, > 0 such that

D™ 4+ (1 = p)uf™ < ui(q)

Hence, if the probability of P; to be detected when he deviates is at
least 1 — 1, the threat of the minimax punishment is enough to prevent any
deviation. Since the protocol is n,-sure for every 7, > 0, both players can
choose a prime number p,, large enough in order to make unilateral deviations
from the rules unprofitable. Let us assume that this is the case.

By deviating to indistinguishable more informative actions, P; can hardly
increase his expected payofl: let ui(gx) be the biggest payoff that P, can
obtain at any stage game of the block Sy, if he deviates in this way, 1. e.:

ullg) = Y ala,b)us(a*b)

aGAl, bEAQ

where a* = argmaxgca;, ara Y _pea, 4(@, b)ui(as;, b). Hence,

ullge) = Y gqla,b)u(a*,b)

aGAl, bEAQ

- ¥ <q<a,b>—%>,>ul<a*,b>

(a,b)csupp(q)

1
> A @)™

(a,b)¢ supp(q) )
= Z q(a,b)ui(a*,b) + %N
(a,b) € supp(q)
where
MM = maz,eca, mazpea,ur(a,d).
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! * b)) — 1 uy(a”
N=" D A @@ 2 1(a’.5)

(@) supp(a) @) rmpay |51PP()]

is a constant that does not depend on k.

Since ¢ € By N By, no indistinguishable more informative deviation may
improve the expected payoff of ¢. Then

ST glabu(atb) <)

(a,b)csupp(q)

Let k1 € N such that Vk > kq, %N < %” Assuming that k > kq, we have
that:

Therefore, if P; wanted to increase his average payoff in S;, by more than
22 he would have to play actions that are distinguishable or less informative
than those he has been suggested to play. Let dy the minimum proportion
of repetitions of the stage games in Sy in which P; needs to make detectable
deviations in order to reach an average payofl of at least ui(q) + 2—?‘ Let
us define 6 as the lower bound probability of P, to detect a deviation of
Py to a distinguishable or less informative action in each stage game. & is
always greater than zero, since gy is of full support and the action from A,
that precisely allows to detect any deviation has a positive probability to be
suggested by the correlation phase.

Thus, if P, deviates to a distinguishable or less informative action, he will
be detected with a probability at least 65. Since Sy lasts Ay stages, to obtain
an extra profit of £, P need to risk to commit detectable deviations at least
in Ardy one-shot games. Hence, he will be detected with probability at least
of M\pdi6,. We take \; such that®®.

55Since uf*™ < u;(q), there exists k3 € N, such that Yk > ks, u*™ < uy(qx). For any
k satisfying this assumption, it is clear that there exists a A\, that satisfies this property.
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Then, the length A\, guaranties that [’ has no incentives to deviate to
detectable actions in Agdy or in more stage games. Hence, P’} will obtain an
average payofl in Sy within u,(q) + 267” no matter what he has done. Notice
that A, depends of ¢, and that the lower is £, the larger is ;.

By taking k,, large enough (in a sense that will be made precise at the
end of the proof), we have defined a pair of strategies (77", 73') for the block
game S}, that satisfies:

1. (1], 73) is a gy-equilibrium of Sy, .

Proof: Let us assume that P; deviates by playing an arbitrary strategy
7. We have that:

ui(gr) = Z q(a,b)ui(a,b)

aEAl, bEAQ

= Y (@) - ———)u(a,b)

k
@b omion@) |supp(q)|

1
b FA T

(a,b)¢ supp(q)

= Z q(a,b)uy(a,b) + %M

(a,b)csupp(q)

1
= wq)+ M

where

1 1
M= D A Team@n e 2 @)

(a,b)¢ supp(q) (a,b)csupp(q)

is a constant that does not depend on k. Hence, there exists ky € N

such that, Vk > ko



and we have that:

Aoy,
En
—Z () (1) = (@) <ualg) + =
Ak
n =1
Moreover,
Ao

1 2e,
oV Z B oy (uh) < ui(q) + 5
not=1

Hence, by deviating from 7{', P; cannot increase his payoff in more than
En-

2. The average expected payoff of (7], 73') is within &, of z = u1(q), as we
can observe from the above inequalities.

Summarizing, given an extensive form correlated equilibrium payoft x of
I' and given any &, from a sequence converging to zero, by taking k, =
maz {ko, k1, ke, ks} we have built up a block game Sy, of size Ay, and a
pair of strategies of Sy, denoted by (7],75) such that: (1) (7]",75) is an
ep-equilibrium of Sy, and (2) (7], 75') leads a payoff within &, of x.

Thus, we have that z is a uniform equilibrium payoff of the game I' ex-
tended by our universal communication protocol. The fact that the uniform
equilibrium payoff set is included in both the upper and the Banach equilib-
rium payoff sets concludes the proof.

12 Concluding remarks.

We have applied an unmediated communication protocol to generate internal
correlation in infinitely repeated two-player games with imperfect monitor-
ing and without discounting. The key of our approach is that players can
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generate private information through public messages with a modern cryp-
tosystem. Our main result states that the Nash equilibrium payoffs of the
extended game contain the extensive form correlated equilibrium payoffs of
the usual repeated game. Similar results have been obtained by Gossner
(1998) by modeling agents by polynomial Turing machines (and assuming
the existence of a one-way function) in a context of perfect monitoring and
by Lehrer (1991) for the case of the symmetric standard-trivial information
structure of the perfect monitoring.

Communication using public messages in repeated games with discount-
ing (and imperfect monitoring) may be not too efficient. In particular, pro-
viding incentives for players to reveal their observations generate revelation
constraints which, combined with signal imperfections, may be a source of
inefficiencies. Hence, strong assumptions have to be made to keep payoffs
close to the Pareto frontier (see, for instance, Fundenberg, Levine and Maskin
(1994), Fundenberg and Levine (1991), Ben-Porath and Kahneman (1996)
and Compte (1994, 1998), among others). Hence, one may wonder if our
result extends to infinitely repeated games with discounting or to finitely
repeated games in order to achieve efficiency. Gossner (1998) claims that no
equivalent result could hold for such cases (with perfect monitoring) when
players are modeled as Turing machines. The reason is that the limitation
of the computational power is only effective when the horizon tends to oc.
Although we have not develop any intuition for these situations, we unfortu-
nately suspect that this negative result may be true.

The extension to games with more than two players seems to need some
work. In the case of two players, a deviation can be attributed to one player:
the opponent. However, if there are more than two players, who should be
blamed for the deviation and who should be punished?. Also, it may be the
case that not all the players realized the deviation and the information about
the alleged deviation should be spread among the players. This is left for
future research.
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