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SINGLE-PEAKED PREFERENCES
WITH SEVERAL COMMODITIES

Pablo Amordés

Abstract

We consider the problem of allocating m (m > 2) infinitely divisible com-
modities among agents with single-peaked preferences. In the two-agents
case any strategy-proof and efficient solution is dictatorial. First, we pro-
pose a solution that, in the two-agents case, is the only one that satisfies
strategy-proofness, no-envy and a weak requirement related to efficiency.
Moreover, it is implementable in dominant strategies and satisfies consis-
tency properties. Second, we propose an extension of the Mas-Colell’s Wal-
rasian equilibrium with slack to characterize the efficient allocations. This
new solution allow us to associate with each efficient allocation an income
redistribution necessary to obtain it. We prove that the original solution
proposed by Mas-Colell is the efficient selection which requires an income
redistribution with smallest range, and that it satisfies consistency proper-
ties.

Keywords: Consistency; Single-peaked preferences; Strategy-proofness;
Walrasian equilibrium with slack.
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1. INTRODUCTION

The problem of allocating an infinitely divisible commodity among a group of
agents who have single-peaked preferences has been extensively studied in the
literature. In this model it is assumed that a fixed amount of a unique commodity
has to be distributed, and that each agent has a critical consumption level (called
his peak): above (below) that level, increases (decreases) in the consumption make
him worse off. The total amount of the good must be allocated. Examples of these
situations are exchange/production at fixed prices/wages (see Sprumont [15]), or
the redistribution of toxic residuals in different villages in such a way that each
village will be paid a fixed price per ton stored.

In this paper we study the possibility of extending the single-peaked prefer-
ences model to the case of more than one commodity. The notion of single-peaked
preferences in several dimensions was first introduced in a discrete model by Bar-
bera, Gul, and Stacchetti [1]. In a continuous setting, the notion was introduced
by Barbera, Massé, and Serizawa [4]. See also Barbera, Massé, and Neme [3].
Following these papers, we say that a preference relation defined over the m com-
modities is single-peaked if it is single-peaked commodity by commodity, according
to the definition for just one good: there is a critical consumption level for each
good; above (below) that level, increases (decreases) in the consumption of this
good, the consumption of the rest of commodities fixed, makes the agent worse
off.

There are many economic situations in which this model makes sense. Think
for example on the monetary contributions of the countries of the Furopean Union
(EU) to different research projects, such as the Furopean Space Agency, the Eu-
ropean Fighter Plane, etc. In order to carry out each project, a fixed amount of
money is necessary. The EU has to decide the percentage of the total cost of each
project that will be paid by each country. Depending on these contributions, each
country will be benefited from the resulting scientific discoveries. The preference
relation of each country over these economic contributions will be single-peaked.
Another type of examples are the cases in which various perishable goods have
to be distributed among a group of agents. The agents have single-peaked prefer-
ences defined over these goods. Here, the critical consumption level of each good
is the amount that he can consume before it goes bad.

The question is to find solutions (i.e. allocation rules that associate, with
cach profile of single-peaked preferences, some distribution of the good) satisfying
desirable properties. The first axiomatic analysis in the one-good case (Spru-



mont [15]) was concerned with strategy-proofness (every agent’s best interest is
to announce his true preferences) and Pareto-efficiency, in addition to some other
properties related to fairness (anonymity or no-envyness). Sprumont proved that,
in economies with one good and single-peaked preferences, strategy-proofness,
efficiency and anonymity (alternatively, no-envyness) characterize a unique solu-
tion: the Uniform Rule (see also Ching [6] and [7]). It gives everyone his preferred
consumption within an upper or lower bound (the same for all agents), which
are given by the feasibility condition that the total amount of good must be dis-
tributed.

These successful results encouraged researchers to attack the single-peaked
preferences model from other angles. Thomson focused on equity properties. One
of his results (Thomson [16]) characterizes the Uniform Rule making use of con-
sistency and other related properties (such as bilateral consistency or replication
invariance). There are other characterizations of the Uniform Rule based on prop-
erties such as resource-monotonicity (Thomson [17]) or population-monotonicity
(Thomson [18]).

Following the steps given in the case of one good, we first focus on strategy-
proof solutions. We prove that, in the two agents and m-commodities (m > 2)
single-peaked preferences model, any strategy-proof and efficient solution is such
that one agent always gets his most preferred allocation (i.e. it is dictatorial).

How can we relax the requirement of efficiency in order to obtain strategy-
proof solutions? We would like that our solutions verify at least a weak efficiency
requirement that we call Condition E. We say that a solution satisfies Condition E
if it is not possible to redistribute the amount of only one good in such a manner
that no agent is worse off and at least one agent is better off.

We propose a strategy-proof solution verifying Condition E: the Generalized
Uniform Rule. It involves applying the original definition of the Uniform Rule
in each separate commodity. This solution satisfies some interesting properties
related to fairness, such as Pareto-domination of equal division, no-envyness and
most consistency related properties. Obviously, it fails to be efficient. However,
we provide a characterization of this solution for economies with only two agents
based on strategy-proofness, no-envyness and Condition F. Moreover, we prove
that it is implementable in dominant strategies by means of its associated manip-
ulation game.

Next, we focus on efficient solutions. Unlike the one-good case, there is no
simple way to characterize the Pareto-efficient allocations when there are several
commodities and preferences are single-peaked. However, we can solve this dif-



ficulty by making use of a concept introduced by Mas-Colell [9]: the Walrasian
equilibrium with equal slacks. This is an extension of the Walrasian equilibrium
for economies with possibly satiated preferences, by giving all consumers an iden-
tical extra amount of income (called slack).

We use a generalization of this concept, by allowing the slack to be different
among agents and adding up to zero. We call it Walrasian equilibrium with
balanced slacks. One can interpret these slacks as income redistribution among
consumers: agents with negative slacks subsidize agents with positive ones. This
solution allow us to extend the first and second welfare theorems to the single-
peaked preferences model, and then to characterize the efficient allocations.

If we look for solutions satisfying additional properties, we just have to impose
additional restrictions over the slacks. An example of that is the original Walrasian
equilibrium with equal slacks (any Walrasian allocation with equal slacks can be
obtained as a Walrasian allocation with balanced slacks). We prove that, given a
Walrasian allocation with equal slacks, there is not any other Walrasian allocation
with balanced slacks in which the income redistribution that allows us to achieve it
is smaller (i.e. there is not any other efficient allocation in which, either the agent
who makes the larger income contribution pays less, or the agent who receives
more income obtains less). In this sense, we can think of Walrasian allocation with
equal slacks as the efficient allocation which requires smaller income redistribution.
We have also checked that when applying this solution from equal division, it
satisfies most of the consistency related properties. It is also easy to see that this
solution coincides with the Uniform Rule when m = 1.

The paper is organized as follows. The model and some basic definitions are
presented in Section 2. In Section 3 we prove that strategy-proofness and efficiency
are not compatible. In Section 4 we focus on strategy-proofness and present the
Generalized Uniform Rule. Section 5 deals with efficiency and Walrasian solutions
with slacks. In Section 6 we study consistency related properties. Concluding
comments are gathered in Section 7.



2. THE MODEL

Let M = {1,...,,m} be the set of m infinitely divisible commodities. For each
commodity r € M there is an amount 2, € R, that has to be distributed among
the agents in a set N = {1,....,n}. Let Q = (Q4,...,Qn) € RT. Each agent i € N
has a preference relation R; defined over R which is single-peaked over [0,9] C
R, Single-peakness means that there is a vector p(R;) = (p1(#:), ... pm (1)) €
[0, Q] called agent i’s peak such that for all x; = (1, ..., Zim), T, = (251, ..., i)
with x;, 2, € [0,9Q] and x; # «, if for each r € M either p,(R;) > x; > 2, or
pr(R:) <z < &, then x; P (where P; denotes the strict preference relation
associated with R;; in the same way, I; denote the indifference relation). TLet R
denote the class of all these preference relations. Figures 2.1 and 2.2 show some

examples.

An economy is a profile R € R". A feasible allocation for R € R" is a list
x = (X;)ien € R x RY} such that > x; = Q (notice that free disposal of the
commodities is not assumed). Let X denote the set of feasible allocations. A
solution is a mapping, ¢, which associates with every preference profile R € it" a
non-empty subset ¢(R) of the set of feasible allocations. Some examples are the
following;:

Pareto-efficient solution, PE. Given R € ", z € PE(R) if x € X and there
is no other feasible allocation 2’ € X such that for all i € N, z,R;x;, and for some
JEN, 2l Px;.

No-envy solution, F. Given R € ®", 2z € F(R) il x € X and for all i,j € N,
QTZRZQTJ

Pareto-dominant of equal division solution, D. Given R € ", z € D(R) if
x € X and for all i € N, z;R;(2/n).
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Figure 2.1:

Occasionally, we will find it convenient to make additional assumptions on
economies. Given R € ", i € N an z; € R7, let U;(z;, R;)={«, € R : z/R;x;}
and L;(x;, R;)={x] € R™ : x; R;x} be the upper and lower contour sets of R; at x;
respectively (when it is clear we will write U(x;) and L;(z;)). Replacing preference
by strict preference we have the strict upper and lower contour sets: SUs(x;, R;)
and S L;(z;, R;) respectively. Agent i’s preference relation R; € R is continuous if,
for all z; € R, U;(z;, R;) and L;(x;, R;) are closed sets (equivalently, SU;(x;, R;)
and SL;(x;, R;) are open sets). We say that R; is weakly convex if, for all x;, x} €
R™ with z;R;x; and for all p € (0,1), (pz; + (1 — p)x)) Rz} R; is strictly convex
if, for all x;, 2, € RT with 2;R;2} and for all p € (0,1), (pux; + (1 — p)x;) P,
We will say that R; € R is monotone in [0,Q] when p(R;) = Q. Finally, R; is
smooth in the interior of [0, Q] (Int[0,Q)) if for all z; € Int]0, Q] with z;p(R;), the

indifference curve passing through z; can be supported by only one hyperplane.
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Figure 2.2:

3. INCOMPATIBILITY BETWEEN STRATEGY-PROOFNESS
AND EFFICIENCY

For all preference profile R € R and all agent i € N, we denote by R_; the list
of preferences for all agents except agent i, that is, R_; = (R;)jen f3}-
A single-valued solution ¢ is strategy-proof if for all R € R", all i € N, and
A single-valued solution ¢ is dictatorial when there is some i € N such that,
for all R € R, ¢,(R) = p(R;). In the case of only one good, m = 1, we define the
Uniform Rule as follows:

Uniform Rule, U. Given R € R, z =U(R) if x € X and, (i) when > p(R;) >
Q, z; = min{p(R;),\} for all i € N, where A solves Y min{p(R;),\} = Q,
and (i) when Y p(R;) < Q, z; = max{p(R;), A} for all i € N, where X solves
Y - max{p(R;), \} = Q.

The Uniform Rule has been characterized making use of variety of properties
(see Thomson [19], Chapter 11, for a good survey). Sprumont [15] proved that,



when m = 1, the Uniform Rule is the only strategy-proof selection from the Pareto
and no-envy solution (see also Ching [6]). Is it possible to extend a similar result
to the case of more than one commodity? What we know of classical economies is
not very encouraging. Zhou [20] proved that, in two-agents, m-goods (m > 2) pure
exchange economies with monotone, continuous, and strictly convex preferences,
any strategy-proof and efficient solution is such that one agent always receives
nothing. Similar results hold in economies with public goods (Border and Jordan
[5] and Zhou [21]) and economies with public and private goods (Moreno and
Walker [11] and Moreno [10]).

Unfortunately, at least for the two-agents case, negative results reappear when
preferences are single-peaked over more than one commodity. As a matter of fact,
this can be directly deduced from the previous results for economies with public
goods. Notice that, when there are only two agents, the distribution problem of
the single-peaked preferences model can be reinterpreted as one of public goods
(see Barbera, Jackson, and Neme [2]). Suppose that N = {i,j}. Since the total
amount of all commodities has to be allocated, we have that for all x € X,
x; = 0 — x;, and therefore the redistribution problem is just to select some
z=ux; € [€,9Q]. Then, for all R;, R; € R, we can redefine the preference relations
of the agents in such a way that both of them depend on the same variable 2z, and
they remain single-peaked.

Some of the impossibility results on strategy-proof and efficient solutions for
economies with pure public goods can be extended to our model. We first intro-
duce some notation. We say that a preference relation is separable quadratic if it
can be represented by a utility function of the form w(z;) = — > a.(z; — piT)Q,
where a, > 0 for all r € M. Let 3° be the class of separable quadratic preferences.
Notice that 3¢ C It.

Border and Jordan [5] proved that, in economies with pure public goods where
the space of admissible economies is i&° and there are two or more commodities,
any strategy-proof and Pareto-efficient solution is dictatorial'. Given the previous
interpretation of our model in terms of public goods when n = 2, we can state
the following theorem:

Theorem 3.1. (Border and Jordan [5]). Let n =2 and m > 2. Let ¢ : (R°)* —
X be a strategy-proof and Pareto-efficient solution. Then ¢ is dictatorial.

Applying this result to our model we have the following corollary:

'See Border and Jordan [5], Corollary 4.



Corollary 3.2. Let n =2 and m > 2. Let ¢ : ®" — X be a strategy-proof and
Pareto-efficient solution. Then ¢ is dictatorial.

Proof. Suppose that N = {i,5}. Let R* be a class of preference relations
defined over R such that ®° C #* C N. Let ¢* : (R*)2 — X be a strategy-
proof and Pareto-efficient solution. Let ¢ : (%¢)> — X be such that for all
R € (R)? ¢(R) = ¢*(R). Then, by Theorem 3.1, ¢ is dictatorial. Sup-
pose w.lo.g. that agent ¢ is the dictator. Let R; € ®* and R; € R°. Then
©*(R;, R;) = p(R;). Suppose not. Let R, € R be such that p(R]) = p(R,).
Then, since ¢*(R}, R;) = ¢(R;, R;) = p(R}) = p(R;) # ¢*(R;, R;), we have that
©* (R}, R;) Pip*(R;, R;), which contradicts strategy-proofness. Let R; € R and
R; € R*. Then ¢*(R;, R;) = p(R;). Suppose not. Let R € R° be such that
p(&)) = " (R, R;). Then, since p* (R, I}) = (R, ) = p(R;) # ¢ (B, R;) =
p(R), we have that o*(R;, R;) Pip*(R;, R}), which contradicts strategy-proofness.
Let R; € ®* and R; € ®*. Then ¢*(R;, R;) = p(R;). Suppose not. Let R; € R°
be such that p(R}) = p(R;). Then, since p*(R;, R;)=p(R})=p(R;) # ¢*(R:, R;),
we have that ¢*(R}, R;)P,¢*(R;, R;), which contradicts strategy-proofness.

Corollary 3.2 states that Sprumont’s positive results on strategy-proofness and
efficiency depend essentially on the number of commodities: if it is larger than
one, the results do not hold, at least for the two-agent case®.

The proof of this corollary is based on an argument similar to the one used
in Schummer® [13], and it follows from the result by Border and Jordan and the
fact that the class of separable quadratic preferences are included in the class of
single-peaked preferences. It is easy to see that the negative result remains for all

subdomain of ¢ including $°.

’For economies with more than two agents, there are examples of strategy-proof and ef-
ficient solutions where there is no agent who always obtains his peak (see Satterthwaite and
Sonnenschein [12]). However, any such solution will not be individually rational from equal
division.

3Schummer [13] prove that, in pure exchange economies, even if we restrict the domain
of admissible economies to linear and monotone preferences, any strategy-proof and Pareto-
efficient solution is such that one agent always receives nothing. Then, he uses essentially the
same argument of the proof of Corollary 3.2 to show that the result by Zhou [20] can be obtained
just as a consequence of his own result (the domain considered by Schummer is included in the
one considered by Zhou). One could think that, since linear and monotone preferences are
also included in the single-peaked preferences domain, the same argument is valid to extending
Schummer=s result to our model. However, in the proof of Schummer, the fact that all preference
relations in the largest domain are monotone plays a crucial role.

10



One could think that some other stronger impossibility results on strategy-
proof solutions for economies with public goods apply here (for instance, the result
by Zhou [21] that states that any strategy-proof solution is dictatorial). However,
this is not true, because the preference domain considered in these results contains
the class of all quadratic preferences, which itself contains preferences which do
not verify our definition of single-peakness.

Corollary 3.2 is related with the result by Zhou [20] (or the more general
result by Schummer [13]) for pure exchange economies. Monotone preferences
is the special case where agents’ peaks are equal to €2, and then Corollary 3.2
predicts that, the agent who is not the dictator obtains nothing. However, as we
comment in Footnote 3, Corollary 3.2 can not be deduced from these results.

In view of this incompatibility between strategy-proofness and efficiency, we
analyze both problems separately. First, we focus on strategy-proof solutions.

4. STRATEGY-PROOF SOLUTIONS: THE GENERAL-
IZED UNIFORM RULE

A good way to look for strategy-proof solutions with a good behavior in our model
is to try to extend the Uniform Rule to the multi-commodity case. There is, a
priori, a natural way to do that: the application, in each separate good, of the
original definition of the Uniform Rule. This is what the next solution does:

Generalized Uniform Rule, V. Given R € %", x = V(R) if z € X and, for
all 7 € M, (i) when Y, p,(R;) > Q,, then z;, = min{p.(R;), A, } for all i € N,
where A, solves > min{p,(R;),\,} = Q,, and (ii) when >, p,(R;) < Q,, then
zir = max{p.(R;), A} for all i € N, where A, solves > . max{p.(R;), \r} = Q,.

The Generalized Uniform Rule maintains some of the nice properties of the
Uniform Rule. First, as the following proposition states, V is strategy-proof.

Proposition 4.1. The Generalized Uniform Rule is strategy-proof.

Proof. Given R € ®",i € N, R, € %t and r € M, suppose that EjpT(Rj) >
Q.. Then V;(R) < p.(R;). In case that Vi.(R) < p.(R:), if p,(R)) > Vi (R),
Vi (LR 5) = Vi (1), and it () < Vi (R) then, cither (i) pr ()43 pr () >
Q. and Vi, (R, R_;) = p(R)) < Vir(R), or (ii) p.(R;) + Ej#pr(Rj) < Q, and
Vie(RS, R ;) < Vir(R). Hence, Vi, (R, R ;) < Vir(R) < p.(R;). In the same way it
can be proved that, if ijT(Rj) < Q,, then V. (R, R_;) > Vi(R) > p.(Ry).

11



Notice that then, for all r € M, either Vi (R, R ;) < Vi.(R) < p.(R;), or
Vie(RL, R ;) > Vir(R) > pr(R;). Therefore V;(R)R;V;(R., R ;). &

Furthermore, V' also satisfies some interesting properties related to fairness,
such as no-envy or Pareto domination of equal division:

Proposition 4.2. The generalized uniform allocation is no-envy.

Proof. Given R € ", x = V(R),4,j € N and r € M, suppose that Y, p,(Ry) >
Q.. Then, there exists some A, > 0 such that, for allk € N, 2, = min{p,(Rx), A }.
Therefore, either z;, = p.(R;), or z; < x; = A < p(R;). Suppose now
that > . p.(R;) < Q.. Then, there is A\, > 0 such that, for all k € N, x;, =
max{p,(Ry), A+ }. Therefore, either z;. = p,(R;), or p.(R;) < zsr = A\ < x4 In
any case, either p,(R;) > xi > xjr or p(R;) < x4 < xjr. Therefore, if x; # x;,
r; Px;. B

Proposition 4.3. The generalized uniform allocation Pareto-dominates equal di-
vision.

Proof. Given R € ®", x = V(R), i € N and r € M, suppose that p.(R;) < Q,/n.
It Z pr(Ry) > Qp, zir = pr(R:) < Q,/n, and if Z pr(R;) < Qp, pr(Ri) < 24 <
Q /n Suppose now that p,(R;) > Q. /n. Ifz pr(R;) > Qp, U/ <z < pr(Ry),
and if ijr( D < Q. Q./n < p.(R;) = x. Then, for all r € M, either
pr(R;) <z < Q. /0, or p(R;) > x> Q. /n. Therefore z;R;Q/n. B

From Corollary 3.2 of the previous section and Proposition 4.1 it follows that
V is not a Pareto selection. However it is easy to see that it satisfies the following
weaker requirement related to efficiency:

Condition E. A solution ¢ satisfies Condition E when, for all R € R" and
re M, (1) if > p(R) > Qp, then ;. (R;) < p-(R;) for all i € N, and (i) if
S pe(Rs) < Qp, then ¢, (R;) > p.(R;) for all i € N.

As Sprumont [15] shows, Condition E is a characterization of the Pareto-
efficient solution when m = 1. However, when m > 2 Condition E is only a
necessary condition for Pareto-efficiency. If a solution does not satisfy Condition
E, there are economies for which the allocation selected by the solution can be
improved in a simple way: it is possible to redistribute the amount of only one
good in such a manner that no agent is worse off and at least one agent is better off.

12



In this sense Condition E can be interpreted as a minimum efficiency requirement.
Given the results of the previous section, if we insist on strategy-proofness, we
have to study how efficiency can be relaxed in order to obtain solutions other than
the dictatorial. Condition E is an obvious way to do that.

Although Condition E is a weak requirement, when combined with strategy-
proofness and other properties related with fairness like no-envyness we obtain
a characterization of the Generalized Uniform Rule. Theorem 4.4 states that in
two-agents and m-commodities economies, there is no strategy-proof and no-envy
solution satisfying Condition FE other than the Generalized Uniform Rule.

Theorem 4.4. The Generalized Uniform Rule is the only no-envy and strategy-
proof solution satisfying Condition K when n = 2.

Notice that, although our notions of single-peakedness, Condition F and Gen-
eralized Uniform Rule are just multidimensional extensions of the correspond-
ing one-dimensional concepts of single-peakedness, Pareto-efficiency and Uniform
Rule respectively, Theorem 4.4 can not be deduced from the characterization of
the Uniform rule given by Sprumont [15], since the multidimensional concepts of
non-envyness and strategy-proofness are not one-dimensionally based properties.
This is also the reason that our result is restricted to the n = 2 case, whereas the
result of Sprumont holds for all n € N.

In order to prove the theorem we need five lemmas. The first lemma give us
conditions under which, given three bundles, there exists a single-peaked prefer-
ence relation with its peak equal to the first bundle, and such that the second
bundle is strictly preferred to the third one.

Lemma 4.5. For all agent 1 € N and all three bundles, x}, x;, ] € R with
x, # 2}, and such that it does not happen that, for allr € M, either x}, < x). < .
or xi, > xj. > xi., then there exists some R; € % with p(R;) = z} and z,Px].

Proof. (Figures 4.1 and 4.2). Let x},z},2] € R} be as defined. Let @ =
(ar,a?)renr € R2™\ {0}. Let uz : RT — R be an utility function such that, for all

)T

x; € RT,

) =~ 3 a2, — 3

r

where, for all r € M,

13
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Let R;(@) be the preference relation represented by the former utility function.
Now we will prove that, for alla € R2™\{0}, R;(a) is single-peaked. Let z;, 2, € R
be such that z; # 2} and, for all r € M, either x, < z;,, < 2/;, or ¥, > 2 > 240
Notice that for all » € M, (2, — x}3)? < (75 — x1.)%, and that at least one
of these inequalities is strict. Moreover, for all @ € R?™ \ {0} and all 7 € M,
either (z;, — x3)2 = 0 or a% = a;'. Therefore ug(z;) > ugz(2)), and R;(a) € R
with peak p(R;) = z}. Now, we will prove that there exists some @ € R¥" \ {0}
such that ugz(z]) > ua(a:”). Let M' = {r € M : neither z[, > 2/ > z} nor

7

z, < & < z}.} First notice that, for all @ € R2™ \ {0} and all r € M such
that either x, > xl, > xf or a < x, < ¥, we have that —a,* (a:r —zr)? >
—ay* (2l — a:”,) Let now a = (a}, a )TeM e R?™\ {0} be such that for all r € M

ir K2

T
with o, # z (1) if 2, > =}, and 2}, < zf,, then al < a? with (a? — a}) large
enough for —al(a:”, —x3)? > —a?(z], — x3.)? and, (i ) if o, < af and 2z > xf
then a! > a? with (a! — a?) large enough for —a?(z}, — x}, )2 > —a}(a:;’r -z )2

o) @
Then, for all 7 € M’ a} and a? are such that —a,*(z,, — z},)? > —a,* (2, — z3.)%

Moreover, it is clear that for all » € M\ {M’} and for some s € M’ we can choose
a € R?™\ {0} in such a manner that — D re MM} ar*(z), —xt )2 a5 (z),—x3,)% >

— E,GM\{M/} afé/ (2l — a:;?;,)Q —I—afsy( Xy —xk ) . Therefore, we can construct a utility

function ug(.) as defined for which ug(x}) > ug(z). B

Now we introduce some additional notation. For all 7 € N, all R;, R, € 3t and

all z; € R, let M*(R;, R, x;)={r € M : either (i) p.(R;) < x;r and p,(R}) < z,
v (i) p,(R:) > @ and p,(R]) > 24, or (ili) p,(R;) = x4 and p,(R}) = 3},
and M(R;, R, x;)={r € M : either (i) p.(R;) < 4 and p.(R)) < w;, or (ii)
pr(R;) > x; and p,(R)) > x;, or (ili) p,(R;) = x4 }. In words, commodity 7 is in
set M*(R;, R, x;) when, (1) if the peak for this commodity in R; is strictly smaller
(greater) than the amount of that commodity in ;, the peak in R} remains smaller
(greater), or, (2) if the peak for this commodity in R; is equal to the amount of that
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commodity in z;, the peak in R} is the same. Commodity r is in set M (R;, R}, x;)
when it satisfies (1).

The next four lemmas apply only when there are two agents. Lemma 4.6 estab-
lishes a limited invariance property of strategy-proof solutions satisfying Condition
E. Tt states that, given any initial announcements, if agents change them in such
a manner that one agent announces his new peak just in the bundle selected by
the solution for him with the initial announcements, his consumption of any com-
modity does not change if the other agent announces a new peak which, for this
good, remains smaller, greater or equal (depending on the initial announcements)
than his own initial consumption.

Lemma 4.6. Let N = {i,j}. Let ¢ be a strategy-proof solution satis{ying Con-
dition . Then, for all R € R", all R} € % with p(R}) = ¢,(R), all R} € % and
all r S M*<Rj7 R;; @](R)% we have @zr(R;k? R;) = ¢ZT<R>

Proof. Tet N = {i,j}. Given R € R", let R} € R be such that p(R}) = ¢,(R).
Step 1. Since ¢ is strategy-proof, ¢,(Rf, R;) = ¢,;(R) = p(R}), and then p(R}, R;)
= p(R).
Step 2 (Figure 4.3). For all R} € R with p(R}) = p(R;), (R}, R;) = ¢(R). Notice
that, for all» € M, p.(R})+p-(R;) = p.(R})+p-(R;). Since ¢ satisfies Condition
B, for all r € M, (i) if p.(R;) = p,(R}) < ¢, (R, R;) then p.(RY) < ¢, (1, i),
and (i) if p.(R;) = p.(R}) > ¢, (R}, R;), then p.(Rf) > ¢, (R}, R;). There-
fore, if p,(R;) < ¢, (B}, R}), ;. (05, R;) < @, (Rf, R;) (otherwise, by feasibil-
ity, ¢,.(R}, R;) < ¢, (R, R;) = p.(R}), which contradicts (i)). In the same
way, if p,(R;) > ¢;.(Bf, R}), ¢, (R}, R) > ¢, (1], R;) (otherwise, by feasibility,
0. (R, RY) > @, (RY, R;) = p.(R), which contradicts (ii)). Therefore, for all
r € M, either p.(R;) < ¢, (R}, R;) < ¢, (7, R;) or p.(R;) > ¢, (R, k) >
@jr(R;'k7 RJ) Hence ij(R:7 R;) = @j(RL RJ) (OtherWiSG QOj(R;F7 R‘;)PJCIO‘]<R:7 Rj)v
which contradicts strategy-proofness), and so (R}, ;) = ¢(R}, R;).
Step 3 (Figure 4.4). For all R; € R and r € M*(R;, R}, ¢;(R)), ¢, (R, R}) =
©;r(R). I pr(R})+pr(R;) < Q,, by Condition E and Step 1, p,(R;) < ¢;, (RS, R;) =
©;(R), and then, since p.(R;) = ¢, (R) and r» € M*(R;, R}, p;(R)), we have
)
)

P (B + 01 () < oo () 4 o (R) = 0. Similarly, i p, (R) + p, (Ry) > O, then
pr(R}) + p-(R;) > Q,. Given this, by Condition E, (i) if p.(R;) < ¢,,.(1, R;),
pT<R:) < @ir(R:7R;)7 and (11> if pr<Rj) > @jr(R:7Rj)7 p7’<R:> > QO”,<R:,R;)
Suppose by contradiction that ¢, (R, R;) # ¢;.(R). Then p,(R;) # ¢, (1) (oth-
erwise p,(R;) = gpjT(R) = pT(R;-), and since p,(Rf) = ¢,,(R), then ngT(R;?‘, R) =
pr(R;) = ¢;,(R)). Moreover, we can not have p,(1;) < ¢;,(R) < ¢, (R}, R})

16
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(otherwise, by Step 1, p.(R;) < ¢,,(£}, R;), and by definition of R} and feasi-
bility, p.(R}) = ¢, (R) > ¢, (R, R;), which contradicts (i)). In the same way,
we can not have p.(R;) > ¢; (R) > ¢, (1], R;) (otherwise we have a contra-
diction with (ii)). Therefore, by Lemma 4.5 and Step 2, there is some R} e %
with p(R]) = p(R;) such that ¢, (R}, R)P/p,(R) = ¢;(R;, R}), a contradic-
tion with strategy-proofness. Then (R}, R;) = ¢;.(R), and by feasibility,

Now we show that the consumption of any commodity for any agent is mono-
tonic with respect to his peak for this good. We say that a single-valued solution
@ is own-peak monotonic when for all R € ", i € N, R, € R and r € M, if
P (1) < pr(B;) then @, (B, R_;) < ¢, (R).

Lemma 4.7. Let n = 2. If a solution satisfies strategy-proofness and Condition
E, then it is own-peak monotonic.

17
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Proof. (Figure 4.5). Let N = {i,j}, and suppose by contradiction that for
some R € ", R, € R and r € M, p.(R]) < p.(R;) but ¢,.(R,, R;) > ¢, (R).
Suppose first that p.(R;) + p(R;) < Q.. Then p.(R}) + p,(R;) < Q.. By
Condition E, p,(R;) < ¢;,(R). Moreover, p.(R;) # ¢;,(&) (otherwise, since
0 (R, Ry) > @, (R), by feasibility ¢, (1}, R;) < ¢;,(R) = p,(R;), which con-
tradicts Condition ). Therefore p.(R;) < ¢;,(R). Let R}, R € R be such that
p(R;) = @, (R) and p(R) = ¢,;(1;, R;). Then, since by feasibility p,(R}) =
0 (R, R;) < @;,(R), we have r € M*(R;, R}, ¢;(R)). Hence, by Lemma 4.6,
©.-(Rf,R;) = ¢;,,(R). On the other hand, since, by Condition E, p.(R}) <
pr(Rs) < ¢, (R) < @i (R, By) and po(R}) = ¢, (R) < ¢;, (B, R;), we have that
r € M*(Rj, R}, ¢;(R;, R;)). Then, by Lemma 4.6, ¢, (R}, R}) = ¢, (1%, R;). But
then, @zr(RLR;>+<70]7’<R:7R;):¢ZT<R)+<70]7’<R;7RJ) < @zr(R;7R])+<70]r<R;7R]):
€2, which contradicts feasibility. Suppose now that p.(R;) + p.(R;) > Q,. Then,
by Condition E, p.(R;) > ¢, (R) and p,(R;) > ¢;,(R). Moreover, p,(R;) # ¢;,(R)
(otherwise, pr(F;) < pr(Ri) = ¢;,(R), and then @, (K}, R;) > ¢, (R) > p.(R;),
and by feasibility ¢, (R}, R;) < ¢;,(R) < p,(R;) which contradicts Condition
E). Since p.(R;)) > ¢;(R) and p(R}) = ¢;(R,R;) > ¢, (R) we have that
r € M*(R;, Rf,¢;(R)), and therefore, by Lemma 4.6, ¢, (R, ) = ¢;,(R).
On the other hand, by feasibility, p.(R}) = ¢;.(R) > ¢;.(1, R;). Moreover,
pr(Ry) > ¢, (R) > @, (R}, R;). Then r € M*(R;, R}, ¢;(R;, R;)), and by Lemma
4.6 @zr(R;k?R;) = @ir(R;7Rj)' Hence, @zr(R;k?R;) + @jr(R:7R;f):90ir<R;7Rj) +
@5 (R) > ¢, (R) + ¢,;,(1R)=0Q,, which contradicts feasibility. B

We say that a single-valued solution is peak-only when, for all R € ", 7 € N,
Rj € Rt and r € M, if p.(R}) = p.(R;) then, for all j € N, ¢, (R}, R_;) = ¢;,(R).
If a solution is peak-only, the only relevant information in order to calculate the
allocation are the peaks of the agents. An obvious consequence of Lemma 4.7 is
the following:

Lemma 4.8. Let n = 2. Let ¢ be a strategy-proof solution satisfying Condition
E. Then ¢ is peak-only.

Finally, we say that a single-valued solution is wuncompromising if for all

R e R R, € Rand r € M, (i) if p.(R;) < ¢,(R) and p.(R.) < ¢;.(R)
then @zr(R;7R3> = @zr(R% and (11> lf p7’<RZ> > @zr(R) and p7’<R;> Z @zr(R) then
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Figure 4.5:

(R R;) = ¢;,(R). That is, suppose that given any initial announcements one
agent changes his announcement in such a manner that, for some commodity, if
the initial peak was strictly smaller (greater) than his consumption, the new peak
remains smaller (greater). Then, if the solution is uncompromising, his consump-
tion of that commodity remains the same. Given the previous results we can
prove the next lemma®:

Lemma 4.9. Let N = {i,j}. Let ¢ a strategy-proof solution satisfying Condition
E. Then ¢ is uncompromising.

Proof. (Figure 4.6). Let N = {i, j}, and suppose by contradiction and w.l.o.g.
that for some R € ", R, € R and r € M, p.(R;) < ¢;.(R) and p,(R}) < ¢,.(R)
but ¢, (R}, R;) # ¢, (R). Then by Lemma 4.8 p.(R}) # p,(R;). Suppose first that
pr(R) < p.(R;). By Lemma 4.7 ¢,.(R,R;) < ¢;,(R). Then, neither p.(R;) <
wir(R) < @ (B, Ry) nor pr(R;) > ¢,,(R) > ¢, (1], R;) happens. So, by Lemma
4.5, there is some R} € R with p(R)) = p(R,) such that ¢;( R}, R;) P/ ¢,(R). Since,

4The concept of uncompromising, as one of the consequences of strategy-proofness, was
suggested and studied in the public goods context by Border and Jordan [5]
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by Lemma 4.8 ,(R!, R;) = ¢,(R), we have ¢,(R;, R;)P!'¢,(R/, R;), a contradic-
tion with strategy-proofness. Suppose now that p.(R}) > p.(R;). By Lemma 4.7
¢ZT<R> < @ir(R;7Rj)7 and then pr(RZ) < p7’<R;) S ¢ZT<R> < @zr(R;7RJ> Then7
neither p.(R;) < ;. (B, B;) < ¢, (R) nor p(R;) > ¢, (B}, R;) > ¢;,(R) hap-
pens. Therefore, by Lemma 4.5, there is some R € R with p(R!) = p(R.) such
that o, (R)P/'g,(R}, R;). Since, by Lemma 4.8 ¢,(R!, R;) = ¢,;(R}, R;)), we have
©;(R)P!",(R!, R;), which contradicts strategy-proofness. B

Now we can prove the theorem®:

>For economies with pure public goods, Border and Jordan [5] proved that, in a reduced
domain included in the single-peaked one, a solution is strategy-proof and unanimous (i.e. for
all admissible economy with > p(R;) = €, then ¢,(R) = p(R;) for all i € N) if and only if it
can be decomposed into a product of one-dimensional mechanisms (one for each commodity)
which are strategy-proof, unanimous, peak-only and uncompromising. Since, when n = 2 the
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Proof of Theorem 4.4 (Figure 4.7). We have already proved that V is
no-envy, strategy-proof and satisfies Condition E. Let N = {i,7} and let ¢ be
a solution satisfying all these properties. Let B € RN and r € M and suppose
w.lo.g. that p.(R;) < p.(R;). If p.(R;) + pr(R;) = Q, then by Condition E, for
alli € N, ¢, (R) = p.(R;) = Vi (R). Suppose w.l.o.g. that p.(R;) + p.(R;) < Q,.
Suppose first that p,(R;) > Q,./2. Then V,.(R) = p.(R;). Suppose by contra-
diction that ¢, (R) # p,(R;). Then, by Condition E, ¢, (R) > p,(R;), and so,
by feasibility, ¢, (R) > p.(R;) > Q,/2 > ¢, (R). Let R} € R be such that
1) pr(R;) < @i (R) < p(R;), and (ii) for all s € M\ {r} p,(R};) = ps(R;).
By Lemma 4.8, for all s € M\ {r}, ¢;,(R;, R}) = ¢,,(R), and by Lemma 4.9,
since pr(R;) < ¢,,(R) and p,(R}) < ¢, (R), ¢;,(R;, R;) = ¢;,(R). Therefore
@ (R, R;) = ¢;(R). On the other hand, since p,(R;) < ¢;,.(R) < ¢,,(17), neither
pe(B) £ o0 () < i (B) nor py(F)) > i, (B) > p, () happens, and so, by
Lemma 4.5, there is some R € § with p(R]) = p(R}) such that ¢,(R)P]¢;(R).
However, by Lemma 4.8, ¢;(R;, RY) = (R, R;) = ¢,;(R), and then ¢,(R;, R}) =
@;(R). Hence p;(R;, RY)P{¢;(R;, RY), a contradiction with no-envy. Suppose now
that p,(R;) < Q,/2. Since p,(R;) < p.(R;), V;r»(R) = Q,/2. Suppose by contra-
diction and w.l.o.g. that ¢, (R) > Q./2 > ¢, (R). Since p,(R;) < p(R;) <
Q,/2 < ¢;,(R), neither p.(R;) < ¢;,(R) < ¢;,(R) nor p.(R;) > ¢;,(R) > ¢;,(R)
happens, and then, by Lemma 4.5, there is some R; € ® with p,(R}) = p,(R;)
such that ¢,;(R)P/p;(R). Moreover, by Lemma 4.8 ¢,(R;, R;) = ¢;(R), and
then ¢;(R;, R;) = ¢;(R). Therefore ¢;(R;, R;)P/o,(R;, R;), which contradicts

no-envy.

The good behavior of V' with respect to manipulation properties goes beyond
strategy-proofness. It is also implementable in dominant strategies by means
of the manipulation game associated to it. This game is the result of allowing
each agent to announce a preference relation for himself, and selecting for each

single-peaked preferences model can be reinterpreted as one of public goods, an alternative way
of showing Lemmas 4.8 and 4.9 is by proving that the previous result can be extended to the
single-peaked preferences domain. One could think that our Theorem 4.4 can be deduced from
this extension together with the characterization of the Uniform Rule given by Sprumont [15].
However, the fact that a solution is no-envy does not imply that it is no-envy commodity by
commodity.
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of these possible strategies profiles the allocation to be chosen by V. It can
be proved that in this game, not only is truth telling a dominant strategy (by
strategy-proofness), but also there is no other dominant strategy whose associated
allocation is different to the one associated to the truth®. All these results point
at the Generalized Uniform Rule as a well-behaved solution as far as strategic-
manipulation properties.

5. PARETO-EFFICIENT SELECTIONS: WALRASIAN SO-
LUTIONS WITH SLACKS

In this section we renounce strategy-proofness and focus on efficient solutions. In
the case of several commodities (m > 2) there is no simple necessary and sufficient
condition for Pareto-efficiency. All we have is a necessary condition (Condition
E). A good way to solve this difficulty is by extending the classical Walrasian
solution concept to our domain.

Mas-Colell [9] proposed the Walrasian equilibrium with slack to extend the
Walrasian equilibrium concept to economies with possibly satiated preferences.
The idea is to give each agent the same additional amount of income to spend
(the slack). We begin with the more general definition of this equilibrium concept,
by allowing the extra amounts of income to be different for different agents.

Given an economy R € ", two feasible allocations z,w € X, a vector of prices
p € R™ (possibly negative) and a vector 8 = (3;)ieny € A" = {(B))ien € R™ :
S B = 0}, we say that the profile (z, p, ) is a Walrasian equilibrium with balanced
slacks from endowments w for the economy R if, for all © € N, x; maximizes the
preference relation R; over the budget set Bi(p, 5;,w;) = {z; € R} : pz <
pw; + B,;}. The (,’s are called slacks. Notice that the sum of agent’s slacks is
equal to zero. Then we can think of the slacks as income redistribution among
consumers. Agents with positive slacks receive income from agents with negative
ones, and the sum of the amounts of income paid are equal to the sum of the
amounts of income received”.

5We do not include the proof of this result in the paper becouse it is relatively long and it
does not add a lot.

7 Alternatively, we may define the Walrasian equilibrium with balanced slacks just requiring
that 8 = (8;)ien € R". Let R € ", z,w € X, p € R™ and 8 = (8;)icn € R" be such that,
for all i € N, x; maximizes the preference relation R; over the budget set B;(p, 8;,w;) = {z} €
R : px} < pw;+B3;}. Then it can be shown that there exists some §' = (3;);en € A™ such that
(z,p, ') is a Walrasian equilibrium with balanced slacks from endowments w for the economy
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As in the standard Walrasian equilibrium, the Walrasian equilibrium with
balanced slacks applies from some endowments w € X. In our model, all agents
have the same rights over the goods to be divided. Therefore, the more appealing
allocation of endowments is equal division (Q/n). It is also the simplest one.
Nevertheless, most of the results in this section do not depend on the allocation
chosen as endowments. Given any endowments w € X, we define the following
solution:

Walrasian solution with balanced slacks from w, WBS,,. Given R € i",
x € WBS,(R) if z € X and there is some p € R™ and 3 = (3,)sen € A" such that

(x,p, ) 1s a Walrasian equilibrium with balanced slacks {rom w for the economy

R.

In Figure 5.1 we have an example of this solution for the two agents-two
commodities case.

The following two remarks are a generalization of the well-known first and
second welfare theorems. For all endowments, w € X, Remark 1 states that all
Walrasian allocation with balanced slacks from w is efficient. Remark 2 states
that, under continuity and weak-convexity, all strictly positive efficient allocation
is attainable as a Walrasian allocation with balanced slacks from w. Notice that,
in contrast to the classical second welfare theorem, no mention is made of income
redistribution from . This is due to the fact that, in W BS,,, the slacks play this
role. The slacks are also responsible for the fact that these results do not depend
on the chosen endowments.

Remark 1. For all R € R", all w € X and all x € WBS,(R), we have that
xz € PE(R).

Remark 2. Let R € R" be such that for all i € N the preference relation R;
is continuous and weakly convex. Let x* € PE(R) be such that, for alli € N,
xf > 0. Then, for allw € X, z* € WBS,(R).

R. Therefore, there is no restriction on making the sum of the slacks be equal to zero. It just
makes its economic interpretation easier.
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The proof of these results are very similar to the corresponding ones in classical
economies and we omit them. Remarks 1 and 2 allow us to characterize the
set of Pareto-efficient allocations for all continuous and weakly-convex profile of
preferences B € " by means of the Walrasian solution with balanced slacks.
Any strictly positive efficient allocation can be obtained as a Walrasian allocation
with balanced slacks, and any allocation like this is efficient. In Figure 5.1 we
have an example of this (here, the straight line between agents’ peaks is the set
of Pareto-efficient allocations).

Since we are interested in solutions satisfying additional properties, for all
R € R" and w € X, we will select subsets of WBS,(R). Proceeding in this
way we can be sure that our solutions will be efficient. Moreover we know that
any solution that selects efficient allocations can be obtained as a subsolution of
WBS,.

A natural way of choosing W BS,’s subsolutions is by demanding that the
slacks satisfy additional requirements. Given the former interpretation of the
slacks, this can be seen as the imposition of some properties on the procedure of
income redistribution among agents necessary to achieve some efficient allocation.

As we will prove, this is precisely what makes Mas-Colell’s original definition.
We will call it Walrasian equilibrium with equal slacks. 1t is defined in the same
manner as the Walrasian equilibrium with balanced slacks, but with the condition
that all agents have identical slacks (that is, for all i € N, 8, = «)®. Then, given
any endowments w € X, we define the following solution:

Walrasian solution with equal slacks from w, WES,. Given R € R",
x € WES,(R) if there is some p € R™ and o € Ry such that (z,p,«) is a
Walrasian equilibrium with equal slacks from w for the economy R.°.

As the next proposition shows, for all fixed endowments, w € X, the Walrasian
solution with equal slacks is a subsolution of the Walrasian solution with balanced
slacks!®.

8Tt is easy to see that, in all Walrasian equilibrium with equal slacks, the slack is positive
(> 0).

®Notice that, although if agents have strict-covex preferences, for some given prices there is
only one Walrasian allocation with equal slacks in each economy, the Walrasian solution with
equal slacks is not generally single-valued (the same examples showing that there can be more
than one Walrasian equilibrium in classical economies are valid here).

10Mas-Colell [9] already pointed at WS as a more general definition, but he used WES in his
existence theorems.
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Proposition 5.1. Let z,w € X, R € ", p € R™ and a € R, be such that
(x,p, ) is a Walrasian equilibrium with equal slacks from w for the economy R.
Then:

(1) there exists a unique 8 = (0;)ien € A™ such that (x,p, ) is a Walrasian
equilibrium with balanced slacks from w for the economy R, and

(ii) if preferences are smooth and > p(R;) # Q, there is not any p’ € R™ with
p # pand any ' = (0,);en € A" such that (z,p', ) is a Walrasian equilibrium
with balanced slacks from w for the economy R.

Proof. Tet z,w € X, R € ", p € R™ and o € R, be such that (z,p,a) is
a Walrasian equilibrium with equal slacks from w for the economy R. Take for
each i € N some 3, € R such that px; = pw; + 3,. Obviously x; maximizes R;
over the budget set B;(p,3;,w;). Furthermore, since p> x; = p> w; + Y. 5;,
> B; = 0. Therefore, (z,p, ) is a Walrasian equilibrium with balanced slacks
from w for the economy R. Suppose now that there exists some 3 € A" with
(' # 8 and such that (z,p, 3') is also a Walrasian equilibrium with balanced slacks
from w for the economy R. Obviously, for some agent j € N, ﬂ; < ;. Then,
pw; + ﬂ; < pw; + B; = px;, and therefore 2 # x;, which is a contradiction.
Suppose now that preferences are smooth and ) p(Ri) # Q, but there is some
p € R™ with p/ # p and some 3 € A" such that (z,p/,3) is a Walrasian
equilibrium with balanced slacks from w for the economy R. Since Y p(Ri) # Q,
there is at least one agent j € N with z; # p(R;), and then pr; = pw; + . On
the other hand, for all i € N, p'z; = pw; + 3, (otherwise, since Y 3, = 0, we have
P> x; < p' Y w;, which is a contradiction). Then, z; can be sustained by two
different hyperplanes, which contradicts smoothness. B

This proves that any Walrasian allocation with equal slacks from any fixed
endowments w € X can be attained as a Walrasian allocation with balanced
slacks from the same endowments and for the same prices (and, if preferences are
smooth, only for these prices). Hence, WES, C WBS,!, and then WES,, is
obtained as a subsolution of W BS,, by additional requirements over the slacks.
In Figure 5.1, the allocation x is the only Walrasian allocation with equal slacks,
and it is also attainable as a Walrasian equilibrium with balanced slacks.

In a sense specified below, for all fixed endowments w € X, WES,, selects
the efficient allocations that require smallest income redistribution between con-

UTf agents have continuous and weak-convex preferences, existence of Walrasian equilibrium
with equal slacks is guaranteed in our model. See Mas-Colell [9] for a complete proof of two
existence theorems.
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sumers. Actually, as Theorem 5.3 shows, given any Walrasian allocation with
equal slacks, there is no other Walrasian allocation with balanced slacks for which
the income redistribution that allows us to obtain it is such that, either the max-
imum payoff or the maximum subsidy are smaller. Since there is not any income
measurement valid for any two prices vectors, if we want to compare the neces-
sary income redistribution to achieve any two different Walrasian allocations, we
have first to fix some reference prices (identical for the two allocations). That is
what we do when comparing some Walrasian allocation with equal slacks with
any other Walrasian allocation with balanced slacks: we take as reference prices
those of the original Walrasian allocation with equal slacks.

Before proving Theorem 5.3, we need the following lemma, which establishes
the sign of the prices in any Walrasian equilibrium with balanced slacks depending
on the sum of the peaks. The proof of the lemma is omitted.

Lemma 5.2. Let z,w € X, Re %", p € R™ and § € A" be such that (x,p, ) is
a Walrasian equilibrium with balanced slacks from w for the economy R. 'Then,

for allr € M, (i) it Y, p-(R;) > Q,, pr >0, and (i) it Y, pr(R;) < 2, pr <O.

In case the sum of the peaks of some good be different from the amount that
has to be divided, Lemma 5.2 allows us to predict the sign of the price of this good
in any Walrasian equilibrium with balanced slacks. Now we can state Theorem

5.3:

Theorem 5.3. Let z,w € X, R € R, p € R™ and o € R, be such that (z,p, «)
is a Walrasian equilibrium with equal slacks from w for the economy R. Let
B € A" be the unique vector in A™ such that (x,p,3) is a Walrasian equilibrium
with balanced slacks from w for the economy R. Let ' € WBS,(R) be such
that ©' # x. For alli € N, let 3, € R be such that px, = pw; + ;. Then,
max;ey 3; < maxen 3, and miney 3; > mingen 3.

Proof. Letz, 2/, w e X, RER", pe R, a e Ry, € A", and f' = (B.)ien € R"
be as defined in the statement of the theorem. If o = 0 then, for all7 € N, 3, =0,
and the theorem is verified. If Y p(R;) = Q then, by efliciency of the Walrasian
solution with balanced slacks, for all i € N, x; = p(R;) = 2} and the theorem is
obviously verified. From now, suppose that « > 0 and > p(R;) # Q.

Step 1. max;en §; = a and min;en §; = minen p(p(R;) — w;) < a.  Given that
a>0and > p(R;) # 2, then, (i) there is at least one j € N with pr; < pw; +«
(and so x; = p(R;)), and (ii) there is at least one k € N with x;, # p(Ry) (and
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so pp(Rx) > pwy + «). Moreover, from the proof of Proposition 5.1 it is clear
that for all ¢ € N, 3, is such that pz; = pw; + 5;,. Then, for all i € N, (i) if
pp(R;) > pwi + o, pr; = pw; + @, and then 3; = a and p(p(R;) — w;) > a = G,
and (i) if pp(R;) < pw; + o, x; = p(R;), and then 5; = p(p(R;) — w;) < o
Therefore, max;ey §; = o and min;en 3; = minen p(p(R;) — w;) < .

Step 2. a < max;cny ;. For all 7 € M and j € N, by efficiency of the Walrasian
solution with balanced slacks, (i) if Y, p.(R;) > Q,, p,(R;) > @, and (i) if
Yo.pe(Ri) < Qp, pr(Ry) < x;,. Then, by Lemma 5.2, for all r € M and j € N
with 2%, # p.(R;), either (i) p,(R;) > o), and p, > 0, or (ii) p.(R;) < 2}, and
pr < 0. Therefore, for all j € N with pp(R;) < pw; + «, given that z; = p(R;),
px; < px;. Suppose, by contradiction, that o > max;cy B.. Then, for all j € N
with pp(R;) > pw; +  (and there is at least one agent like this), we have prl =
pw; + B < pw; + a = px;. Therefore, p 3~ < p> x;, which is a contradiction.
Step 3. minseny 3; > minseny 3. Suppose, by contradiction, that minsen 3; <
mingey 5. Let 5 € N be an agent such that B; = mingen ;. Then pp(R;) <
pw; + a (otherwise pr; = pw; + @, and then 8, = a = max;cy §;, which is a
contradiction since o # 0). Then, using an argument identical to the one in
Step 2, pz’; < px;. On the other hand, since for all i € N, pzj = pw; + 3},
we have pzi#j x, = pzi#jwi + Ei#j B.. Furthermore, since ﬂ; > (; and
>_ 3 =>20; =0, (and then Zi;&j 8 < Zi;&j B:),p Ei;&j T; <p Zi#j wi+zi7gj ;-
Moreover, since, for alli € N, pz; = pw;+3;, thenp Y, wit) . 8, =p D ;i
Then p >z, < p>  x;, which is a contradiction. B

In Figure 5.1, (z,p, «) is the only Walrasian equilibrium with equal slack, and
g € A" is the only vector in A" such that (z,p, ) is a Walrasian equilibrium
with balanced slacks. Any other Walrasian equilibrium with balanced slacks like
(z',p, ) is such that the maximum payoff and the maximum subsidy are larger
(le. 0 < ﬂj = maxpey O, < maxpen 35, = ﬂ; and 0 > (8, = mingey 3, >
mingey B = B;)-

The interpretation of this result becomes more transparent in the special case
in which, for some economy, any Walrasian equilibrium with balanced slacks is
achieved for the same prices (for example, when the preference relations of all
agents are quasi-linear). If this happens, Theorem 5.3 says that, for all fixed
endowments w € X and all Walrasian allocation with equal slacks from w, there
is no other Walrasian allocation from w with smaller range between the largest
payoff and the largest subsidy necessary to obtain it.

Suppose now that we take equal division (2/n) as endowments. Let W ES,4
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denote the Walrasian solution with equal slacks for that case. It is easy to see
that W ES,; is no-envy and Pareto-dominates equal division.

Theorem 5.3 is a generalization of a previous result by Schummer and Thomson
[14], who show that the Uniform Rule is the solution that selects the only effi-
cient allocation for which the difference between the smallest and largest amounts
any two agents are receiving is the smallest. Notice that when applied to the
one-commodity case, WFES,; coincides with the Uniform Rule. Moreover, if
Y.p(R) > Q (O, p(R;) < Q) any strictly positive (strictly negative) price of
the commodity, together with the suitable vector of balanced slacks, is part of
some Walrasian equilibrium with equal slacks from equal division yielding the
uniform allocation. The Schummer and Thomson’s result can be deduced from
Theorem 5.3 by fixing p = 1 when »_, p(R;) > Q (p = —1 when >, p(R;) < Q) to
calculate the W ES,,;.

6. CONSISTENCY AND RELATED PROPERTIES OF V
AND WES

We have proposed two different solutions to the single-peaked preferences model
with more than one commodity: the Generalized Uniform Rule and the Walrasian
solution with equal slacks from equal division. In this section we compare these so-
lutions studying other properties different from strategy-proofness and efficiency.
In order to do this we will focus on some of the properties that have been used
to characterize the Uniform Rule. Since one of our solutions (W FES,,;) can be
multi-valued, we have decided to base this comparison on those properties which
are valid for this type of solutions: consistency and related properties'?. For this
we first introduce some additional notation.

Let AV be the class of finite subsets of N. For all N € N, an economy is a profile
e=(Q,R) € RT x R". Let BV denote the class of economies involving the group
of agents N, and F = Uyepy EN. Given N € N and e = (Q, R) € EV, let X(e)
denote the set of feasible allocations for e: X(e) = {z = (2;)ien : Y, 2z; = Q}. For
al N e N,e=(Q,R) € EN, z € X(e) and N' C N, xy: is the restriction of x
to the members of N': xn+ = (2;);en. Similarly, Ry = (R;)sen. For allv € N
and = (x;);en € X(€), let v X e = (v x Q,v x R) € EV*N be the v-fold replica
of e (i.e. there are v agents of each type i € N, and the amount of goods to be
allocated is v times Q), and v x x the v-fold replica of the allocation x (i.e. each

2See Thomson [16] for these characterizations of the Uniform Rule.
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agent of type i € N receives z;). Given a solution ¢ on E associating with all
N € N and all e € EY a non-empty subset of X (e), we say that:

(1) ¢ satisfies consistency if, for all N € N, all e = (Q, R) € EN, all x € p(e),
and all N' C N, we have 2y € (> s, Bnv).

(i) ¢ satisfies converse consistency if, for all N € N, all e = (Q, R) € BV all
z € X(e), and all N' C N with |N'| > 2, zn € @3y @i, Rni), then z € (e).

(iii) ¢ satisfies replication invariance if, for all N € N, all e = (Q, R) € EV,
all z € p(e), and all v € N, v X z € (v X e).

In words, a solution is consistent if any recommendation it makes for any econ-
omy agrees with at least one recommendations it makes for any of its associated
reduced economies. It is conversely consistent if, when an allocation is such that
its restriction to each proper subgroup containing at least two agents is recom-
mended for the associated reduced economy, then it is also recommended for the
initial economy. Replication invariance is a weaker variation of this later property.
The next three results show that W ES,; satisfies the three consistency related
properties considered!®.

Proposition 6.1. The Walrasian solution with equal slacks from equal division
is consistent.

Proof. Let N € N, e = (Q,R) € EY and z € WES.4(e) be given. Then, there
is some p € R™ and « € R such that, for all i € N, x; maximizes R; over the set
{2 e R : px; < pQ/n+a}. Let now N’ C N be given and take o € R such that
PO ien i) /n +o = pQ/n+a. Then, for all i€ N', x; maximizes R; over the set
{o e RT - px, < p(> ,cn @)/ + '} That is, 2y € WES(Y oy i, Ry).

Proposition 6.2. If we restrict the economies domain to one with smooth pref-
erences, the Walrasian solution with equal slacks from equal division is conversely
consistent.

3 Dagan [8] proved that, in a model in which preferences are possibly satiated but may not
be single-peaked, any consistent, replication invariance, weak-eflicient and individually rational
from equal division solution is a subsolution from the Walrasian solution with slacks from equal
division defined by Mas-Colell (that is, our W ES,;). This generalizes a previous result by
Thomson [16] which characterizes the Uniform Rule by means of the same properties.

H4Tf non-smooth preferences are allowed, WSES.q is not conversely consistent. The reason
is that, when preferences are not smooth, even if for each two agents 7,7 € N we can find one
hyperplane supporting z; and z;, it may be the case that there is no hyperplane supporting x,
for all k € N.
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Proof. Tet N € N withn > 3, e = (Q,R) € EY and z € X(e) be such
that, for all i« € N, R; is smooth, and, for all N C N with n’ > 2, an €
WESea(d senwi, Ryr). If, for all i € N, z; = p(R;), then it is obvious that
x € WES,4(e). Suppose that, at least for one j € N, z; # p(R;). For each i # j
let N; = {j,1}. Since xn, € WES.q(x; + x;, Ry,), there are some py, € R™ and
ay, € Rsuch that z; maximizes R; over the set {&’ € R : py, @' < pn,(z;+x;)/2+
ay, }, and x; maximizes R; over the same set. Moreover, since z; # p(R;) then
PN, = pn, (2 + ;) /2 4+ ay,. On the other hand, if x; # p(R;), pn,z: = p,(x; +
73)/2 + an, = pn,x; and, if 2; = p(R;), py,vs < pw, (25 4+ 23)/2 4+ an, = pn,z;. By
smoothness of preferences, for all i,k € N\ {j}, pn, = pn, (otherwise z; could be
supported by two different hyperplanes). We call p* to this value. Then, (i) for
all i,k € N such that z; # p(R;) and zj, # p(Ry), then p*z; = p*zy; we call A to
this value; (ii) for all i € N such that z; # p(R;), x; maximizes R; over the set
{2, e R : p*az; < A}; (ili) for all i € N such that z; = p(R;), then p*z; < A. Take
now « € R such that p*Q/n+«a = A\. Then, for all i € N such that z; # p(R;), z;
maximizes R; over the set {«] € R : p*z, < p*Q/n + o}, and for all i € N such
that z; = p(R;), we have p*p(R;) < p*Q/n + « (and so x; maximizes R; over the
set {2} € RT : p*x; < pxQ/n+ a}). Therefore z € WES (). R

Proposition 6.3. The Walrasian solution with equal slacks from equal division
is replication invariant.

Proof. Tet N e N, e = (Q,R) € BV, x € WESg(e) and v € N. Then, there
exists p € R™ and a € R such that, for all i € N, x; maximizes R; over the set
{z, e RT :pa, <pQ/n+a}. Let € = (Y, R)=vxe=(vxQuxR)e BN
Since ' = v x Q and n’ = v X n, then, for all i € N, z; maximizes R; over the
set {2} € R : px, < pQ'/n/ + a}. Therefore v x z € WES,(e'). B

In order to complete the analysis, we next consider whether V' verifies the
consistency related properties analyzed before. As the following three propositions
show, V satisfies them.

Proposition 6.4. The Generalized Uniform Rule is consistent.

Proof. Tet N € N, e = (QR) € EN and z = V(e). Then, for all r €
M, (1) if Y, npr(R) > Qp, 25 = min{p,(R;), A\ ()} for all i € N, where
Ar(e) solves Y . v min{p,(R;), \-(e)} = Q,, and (i) if >, v 0r(Rs) < Qp, @ =
max{p,(R;), Ar(e)} for all i € N, where A, (e) solves Y . max{p,(R;), A\r(€)} =
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Q,. Then, forall N C N, (1) if Y,y p- (1) > Q,, since for alli € N p,.(R;) > 2,
EleN,pT( R;) > > .on ®ir, and (ii) if >, 2o (R) < Q,, since for all i € N
Pr(Rs) < Zir, D osenPr(Be) < D o @ir. Let € = (¥, Rys) be the reduced
economy where ' = > ., ;. Then, for all » € M, (i) if >, v o-(R:) > Q,,

Y ien Pr(Ri) > Q.. and then, for all i € N, Vi.(¢/) = min{p,(R;), \-(€')},
where A, (¢) solves . min{p,(R;), A\.(¢/)} = Q, and (ii) if ), o (R;) < Qp,
Yoien Pr(R;) < ., and then, for all i € N' V. (¢/) = max{p.(R;), \(¢')},
where A.(€') solves Y . . max{p.(R;),\.(¢/)} = .. Notice that, for all r € M,

Ar(e) = Ae(€'), and then Vi, (¢/) = Vi (e) for all r € M and i € N’.
Proposition 6.5. The Generalized Uniform Rule is conversely consistent.

Proof. Tet N € N, e = (Q,R) € EY and x € X(e). Given N' C N with
=2, let Q" = 5. o and ¢ = (0, Ry/). Suppose that for all N C N
with n' = 2, xy+ = V(¢/). Then, for all N' C N with n’ = 2, and for all
re M, (i) if ), e (Ri) > Q. x; = min{p,(R;), A\-(¢)} for all i € N, where
Ar(€') solves Y. min{p,(R;), A\-(¢')} = Q, and (ii) if Y, v pr(Bi) < Q, 24 =
max{p,(R;), A-(€/)} for alli € N', where A, (¢') solves Y. v max{p,(R;), \.(¢/)} =
Q. Notice that then, for all r € M, either (1) z;; < p.(R;) for all i € N,
or (i) x; > p.(R;) for all i € N. Moreover, for all » € M and all j,k € N
such that z;. # p.(R;) and zg # p.(Ry), jr = .. Then, it is easy to see
that, for all » € M, (i) > ,.ypr(R:) > Q, 25 = min{p.(R;), A\ (e)} for all
i € N, where A (e) = min;en z; solves Y . ymin{p.(R;), \-(e)} = Q,, and (i)
if Y. vor(R) < Qx5 = max{p,(R;), \(e)} for all i € N, where A.(e) =
max;cy i solves .y max{p,(R;), A\-(e)} = Q,. Therefore, z = V(e). B

Proposition 6.6. The Generalized Uniform Rule is replication invariant.

Proof. Tet N € N, e = (QR) € EY and x = V(e). Then, for all r €
M, (1) if Y, npr(R) > Qp, 25 = min{p,(R;), A\ ()} for all i € N, where
Ar(e) solves Y . v min{p,(R;), \-(e)} = Q,, and (ii) if >, v 0r(Rs) < Qp, @ =
max{p,(R;), \-(€)} for all i € N, where A, (e) solves > max{p.(R;), \.(e)} =
Q,. Given v € N, let v x e € EY*N be the v-fold replica of e, and v x x E
X (v x e) the v-fold replica of x. Notice that for all » € M, Y. p-(R

)
(D ienpr(B:) < Q.) if and only if > .. yp-(1:) > v x Q. (ZZEUXNP (R)
v X Q,). Moreover, for all r € M, if A.(e) solves >, y min{p,(R;), A\ (e)}

(EieN max{p,(R;), \-(e)} = Q,), then it also solves ZZEUmeln{pr( i) e)
v X Q, (Eieva max{p,(R;), \-(e)} = v x Q,). Therefore, for all » € M, (i) if
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Y icoxn Pr(B:) > vXQ,, x5 = min{p,(R;), A(e)} foralli € vx N, and A, (e) solves
Y icosy Min{p.(R;), Ar(e)} = v x Q,, and (ii) if Y, y2r(B) S v XQ,, 25 =
max{p,(R;), Ar(e)} foralli € vx N, and A, (e) solves >, .y max{p,(R;), A\, (e)} =
v % Q,. Hence, v x x € V(v xe). R

From these results we conclude that it is not possible to determine which of
the two solutions (V or W ES,,) is better if we base the comparison on consistency
and related properties.

7. CONCLUSION

We consider the problem of allocating m (m > 2) infinitely divisible commodities
among agents with single-peaked preferences. We first show that, in spite of what
happens when m = 1, in the two agent case any strategy-proof and efficient so-
lution is dictatorial. Then, we study strategy-proof and Pareto-efficient solutions
separately.

When we focus on strategy-proofness, we propose the Generalized Uniform
Rule. In the case of only two agents it is the only strategy-proof and no-envy
solution satisfying a requirement related to efficiency that we call Condition E.
Moreover, this solution is implementable in dominant strategies by means of its
associated manipulation game. It also satisfies some interesting properties as no-
envy and Pareto-domination of equal division. Obviously, by our first result, it
fails to be efficient.

We characterize the Pareto-efficient allocations by means of the Walrasian so-
lution with balanced slacks, and prove that a subsolution of this (the Walrasian
solution with equal slacks) is the one that minimizes the range of income redistri-
bution necessary to attain any efficient allocation. Moreover, when this solution
applies from equal division, it coincides with the Uniform Rule when m = 1, and
also verifies no-envy and Pareto-domination from equal division.

Finally, we compare both solutions focusing on some of the properties that
enabled different characterizations of the Uniform Rule. Both solutions seem to
have the same good behavior with respect to these properties. Comparison of V'
with W ES,,; is summarized in Tables 1 and 2 below.

The Uniform Rule has been characterized in many different ways, making
use of a variety of fairness properties, such as population-monotonicity, resource-
monotonicity, or consistency. The question of whether some of these characteri-
zations can be extended in the m-good case by V or W ES,,; is still open.
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ConditionE | Efficiency | Strategy— Implemt. No— Pareto
Proofness Dominant | Envyness | Domination
Strategies ed
v yes no yes yes yes
WES. 4 yes yes no yes yes
Table 1
Consistency Converse Replication
Consistency Invariance
v yes yes yes
WES.4 yes yes (SmOOthDGSS> yes

Table 2
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