A DIFFICULTY WITH THE ADDRESS MODELS
OF PRODUCT DIFFERENTIATION=*
Martin Peitz**

WP-AD 98-21

Correspondence to:
Martin Peitz. University of Alicante. Facultad de Ciencias Econémicas.
Dpto. Fundamentos del Andlisis Econémico. Ctra. San Vicente del Raspeig, s/n.

03071 ALICANTE-SPAIN

E-mail: peitzQmerlin.fae.ua.es

Editor: Instituto Valenciano de Investigaciones Econdémicas, S.A.
First Edition September 1998

ISBN: 84-482-1865-5

Dep6sito Legal: V-2884-1998

IVIE working-papers offer in advance the results of economic research under way in order to

encourage a discussion process before sending them to scientific journals for their final publication.

* T like to thank Egbert Dierker for helpful discussions and an anonymous referee for helpful
comments. Financial support from Instituto Valenciano de Investigaciones Fconémicas (IVIE) and
EU Human Capital and Mobility Program is gratefully acknowledged.

** University of Alicante.



A DIFFICULTY WITH THE ADDRESS MODELS
OF PRODUCT DIFFERENTTATION

Martin Peitz

ABSTRACT

In models of product differentiation and location models it is implicitly assumed
that consumers can afford to buy the differentiated goods in the market. I show that
with income heterogeneity there are severe existence problems of a price equilibrium in
models of horizontal product differentiation with unit demand because some consumers
are income-constrained. The result generalizes to other models of product differenti-
ation, search, and switching costs. I present an alternative specification of variable

individual demand in which this kind of existence problem cannot arise.
JEL-Classification: D43, .13
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1 Introduction

The literature on product differentiation is dominated by one-dimensional models of
unit demand, i.e. the characteristics space is one-dimensional and consumers buy one
unit of the product which comes in different variants. Starting with a so-called indirect
utility function no formal distinction is made between a location model and a model
of horizontal product differentiation.

In this note I analyze models of horizontal differentiation where the so-called trans-
portation cost is a disutility due to the difference between the actual variant of the
product and the consumer’s ideal variant. I derive individual demand functions from
utility maximization (section 2). Section 3 studies models of horizontal product differ-
entiation with heterogeneous income. Models of product differentiation suffer from the
nonexistence of symmetric price equilibria when for some consumers the willingness
to pay exceeds the income (or capacity to pay) and income is sufficiently heteroge-
neous (Proposition 1). The literature does not address this issue. Proposition 2 shows
that in the Hotelling model with quadratic transportation costs also asymmetric price
equilibria in pure strategies fail to exist for some locations of the goods in the charac-
teristics space, a result which seems surprising in the light of the literature (given the
specification I have chosen).!

It should be pointed out that Caplin and Nalebuff (1991) make the incorrect claim
that their approach allows for heterogeneous income and that their derived reservation
price rule is concave. The Hotelling model with quadratic transportation costs is a
special case of their model. The results in their section 8.1 are not correct.

Section 4 contains an alternative specification with variable individual demand in
which the non-existence problem of the previous section does not arise. Section 5
concludes with remarks on the generality of the result. In particular, I point out
that existence problems also arise in other models of product differentiation (vertical
differentiation, quasi-linear preferences, random utility models), and in models of search

and switching costs.

1Only in Peitz (1996) a possibly binding capacity to pay has been considered (in the circle model).
The issue of a binding capacity to pay enforcing zero consumption of the differentiated goods also
arises in models of vertical product differentiation (see concluding remarks). There the problem has
been avoided by explicitly assuming that income is sufficiently high (Mussa and Rosen, 1978, and
Peitz, 1995).



2 Consumer Behavior

I demonstrate the importance of the budget constraint in discrete choice models when
income is heterogeneous by a simple example of a model in the spirit of Hotelling
(1929) and Salop (1979). With w I denote the type of consumer which is a number
denoting his location or ideal point, w € Q € {|w, @], Cx}. C) denotes the circle with
circumference k. A consumer is in addition described by his income y which defines
his capacity to pay for a unit of any of the goods i = 1,...,n available in the market.
I; is the location of good i, I; € L € {[L,1], C,} where L is the product space which is
either an interval or the circle with circumference k. The transportation cost function
t: %, — N, depends on the distance between consumer and good. It is assumed to
be convex and £(0) = 0. In a model of product differentiation the transportation cost
describes the disutility which is due to the distance between the location of good 7 in
the product space and the ideal point of a consumer. z denotes a positive constant
which will be interpreted below. In models of horizontal product differentiation or
location models consumers are described by an evaluation function (often a positive

constant is added)

v*¥(p) = max{0, (v/""(p:));} with
v () = 2 —t(lw—L) —p (1)

In the literature (see e.g. chapters 6 and 8 in Anderson, de Palma and Thisse, 1992,
or section 2.4 in Beath and Katsoulacos, 1991) the functions v*¥ are called indirect
utility functions. As I will show, v*"¥ cannot always be used in models of product
differentiation. In contrast, location models do not suffer from this problem because
the transportation cost has to be paid out of the budget.

Below I construct conditional direct utility functions. Consumers derive utility
from one unit of one of the differentiated goods and the composite commodity 0 which
is perfectly divisible. Consumers are nonsatiated in the composite commodity and
therefore will exhaust their budget. 7 denotes the willingness to pay for the ideal
differentiated good at location w.

I call the model a location model if the consumer heterogeneity over locations does
not affect their preferences but leads to different transportation costs which have to be
paid out of their budget. Hence, the transportation cost increases the price a consumer

effectively has to pay to p; + t(Jw — I;|). The direct conditional utility functions and



budget constraints in a location model are given by

v

ﬂg(%) =To;, Y

@ (vo) =7 +m0; Yy > zo+pi+t(w—1L]),i=1...,n (2)

Zo

According to the specification goods are perfect substitutes and consumers have iden-
tical utility functions. A heterogeneity of consumers can only arise because their trans-
portation cost enters their budget constraints.

In models of product differentiation the transportation cost has to be interpreted
as a disutility in the utility function. All consumers pay the same price but their
preferences on the differentiated goods are different. According to this terminology
a spatial model in which the transportation cost is travel time and thus a disutility,
is analyzed as a model of product differentiation. If a consumer chooses option 7 her

budget constraint is denoted by (be;).

v

Ug(%) = Zo; (bco) Ly

uf(wo) =7 — tlw — L) +zo; (bei): y =2 wo+p, i=1,...,n (3)

Zo

When in a spatial model only part of the transportation cost is to be thought of a
disutility then the consumer decision problem has to be formulated using a convex
combination of (2) and (3). The nonexistence problem of the next section also holds
for this case.

Up to a constant, (3) and (1) give the same ‘utility’ values when consumers can
afford to buy the goods.

Utility maximization can be written as max{max,, ug(zo) s.t. (bcg), (maxy, u;(zo)
s.t. (b¢;));}. The individual demand function for good i = 1,... n following from (3)

takes values

1 ifp,<yandp; <r—t(lw—14)
and p; —p; < t(Jw —1;]) —t(Jw — &) for all j # i with p; <y

& (p,y) = 0 ifp,>yorp >r—t(lw—1U4)

(4)
or p; — p; > t(Jw —1]) — t(Jw — 1;]) for some j # i with p; <y

An option is not feasible for a particular consumer if the price of one unit exceeds his
capacity to pay. A consumer buys one unit of good i if she can afford to buy it, if
she prefers it to the outside option, and if she prefers it to all other feasible options in

which she buys one unit of some other good j # 1.



Remark 1 The functions with values v¥(p) and z = r are indirect utility functions
(for allw) if r < y.

This remark is proved as follows. First I show that (1) is an indirect utility function
to (2). When a consumer cannot afford to buy good i she also would not like to buy it
compared to the outside option. Then one can replace zg by y — p; — t(Jw — [;|) in the
conditional utility function for good i and y by xq for good 0. Rescaling all conditional
utility functions by subtracting y gives (1) with z = r.

Since y > r > r —t(Jw — ;]) a consumer who cannot buy good i also does not want
to do so in the model of product differentiation. Replacing z¢ by y — p; for good i and
by y for good 0 and rescaling as above gives (1) with z = r.

When r = y, the maximal budget y available for the differentiated market coincides
with the maximal amount a consumer would be willing to give up to buy a good at his
ideal point. When r > y, evaluation function (1) with the choice z = y is an indirect
utility function in the location model.

Without a restriction on y relative to r the evaluation function defined in (1) cannot
be used in models of horizontal product differentiation: ©* is not an indirect utility

function because a consumer cannot afford to buy a good at a sufficiently high price.

Remark 2 In a model of product differentiation an evaluation function specified by

(1) is inconsistent with utility mazimization under a budget constraint.

The proof goes as follows: for p; < y, (3) is determined (up to monotone transforma-
tions) by (1). Hence it is sufficient to show that (1) generates demand functions which
differ from (4) if » > y. For prices y < p, < r a consumer would rather buy his ideal
good with I; = w than the outside option but she cannot afford to do so. There is no

choice for z in (1) which generates (4).

3 Horizontal product differentiation with Hetero-

geneous Income

In this section I first explain why there cannot exist symmetric price equilibria in unit

demand models with heterogeneous preferences and sufficiently heterogeneous income.
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Figure 1: Consumers in a Model of Product Differentiation.

Figure 1:

Then I show nonexistence of equilibrium in a particular model. For simplicity, firms are
assumed to have constant marginal costs of production ¢ (this can be easily extended).
Hence firms maximize profits (p; —¢)X;(p) with respect to p; where X is the demand of
firm i. Consider a model of product differentiation in which all consumers are identical
apart from their ideal point w and their income 7. A consumer type is identified by a

point in the (w,y)-space (see Figure 1).

Proposition 1 For locations l; # 1; for all j # i, if (A) holds there does not exist an

imperfectly competitive equilibrium in which py = p;, 1 = 2...n.

Sketch of Proof. In any equilibrium p; > ¢ and p; <y for all i = 1,...,n. Iso-
profit curves of firm i are smooth in the (p;, X;)-space. Because of (A) an inside kink
of the demand curve occurs at p; = p; > ¢ for all © = 2,... ,n. Due to the property of
this kink, profits locally improve by a price change above or below p; = p;, j # i, or
reach a local minimum in p; at p; = p;, j # i for any p; with c < p; <y. O



The result is easily extended to transportation cost functions which partly operate
on the utility function and partly are a real cost in the budget. Also a heterogeneous
willingness to pay 7 can be incorporated (under some restrictions on the stochastic
dependence of  and y). On the robustness of the result see also the concluding remarks.

I will demonstrate the importance of the kink of the demand functions in a par-
ticular specification. I take Hotelling’s duopoly model with quadratic disutilities in
distance (d’Aspremont, Gabszewicz, and Thisse, 1979) supplemented by consumers
who are uniformly distributed by income. In particular, let w be uniformly distributed
on [0,1] and y|w be uniformly distributed on [0,1] for all w € [0,1]. The disutility
in distance takes values t(d) = 7d*, 7 > 0. Without loss of generality the mass of
consumers is 1. Aggregate demand for good 1 with Iy < I (excluding consumers in

situation (5)) is given by the following expression

S . P2 — D1 lh+ 1 T —P1 r—m
X = (1— l — 0.l —
1<p> ( pl) (mln { 2T<l2 — ll) + 2 s U1 + - } maX{ 5 U1 - })

for p; < 1 and 0 for p; > 1. Analogously for good 2. X; would arise in an ad hoc

model in which all consumers have identical income y > r and linear demand 1 — p;,.
In order to reduce the number of intervals to be considered for the demand functions,
I assume that 7 is sufficiently high such that there are no consumers in situations (2)
and (3). I now write aggregate demand functions X;, i = 1,2, as the mass of consumers
who are in situations (1) or (5) who buy good i, i.e. X; = X; + X;. One has

. P2 — D1 I+ 1y

) P2 — 1 I+ 1y
Xolp) = (1—po)(1— .
2<p> ( p2) < 2T<l2 _ ll) 2 >

: p2—p (1— B —““2) if pr < p
Xl(p) = { ( 2 1) 27(la—11) 2 . 1 2
0 if p1 > py
X p1—p (f“’f’l +“+l2) if py < p
Xo(p) = 1= p2) (5 5 Lo
0 if po > py

X, has a kink in p; at p} = py. At p¥ + ¢, € > 0 the demand function is flatter than at

Pt — € because
X,
lim —(p) < 0.
1,/ P2 8]?1 <p)



Analogously for good 2. The two goods are produced by two single-product firms at
constant marginal cost of production c¢. Contrary to the model with identical income
(and contrary to the location model, see concluding remarks) there cannot exist a
symmetric equilibrium in prices. In particular, the result holds for symmetric locations.
However, there may be asymmetric price equilibria.

I will restrict attention to the case of symmetric locations, i.e. Iy = 1—1y. If there is
an equilibrium p; < ps or p; > ps. Because of the symmetry of the model asymmetric
equilibria come in pairs. In order to know the set of equilibria it is sufficient to look
for equilibrium prices p; > py for given locations. In such an equilibrium first-order

conditions of profit maximization are

(=2p1+14c)py—pr+7(1=20L) = —pi+(14+c)p —c (5)
pitc  S(1—p) 6)

17
2 L+ 27(1f)21z1)

D2 =

Substituting (6) into (5) gives a polynomial of degree 3 for which an explicit solution
can be obtained. I will impose particular values for the parameters and analyze whether
under these parameters an equilibrium does exist.

Consider the parameter constellation ¢ = 0, 7 = 1 under maximal differentiation,
ie. l1=0,0y =1

Proposition 2 Forc=0,7=1,1; =0, ly =1, there does not exist a price equilibrium

1 pure strategies.

Proof. In an equilibrium first-order conditions (5) and (6) have to be satisfied.
Under the parameter choice one obtains p; = 0.417 as the only admissible solution to
the polynomial of degree 3 of (5) where py is replaced by the right-hand side of (6).
It follows that ps = 0.886 which contradicts the assumption that p; > ps under which

the equation system was derived. O

The result holds for any symmetric location and for other parameter choices where
7 > 0 and c are free to choose. By continuity the result holds in a neighborhood around
symmetric locations. Hence, existence of price equilibrium is not a generic property in
the parameter space [0,1] x [0,1] x %%. The nonexistence implies that there does not

exist a subgame perfect equilibrium of the product choice-then-price game.



4 An example with unit-elastic demand

In this section I present a different specification of a Hotelling model in which con-
sumers have unit elastic demand. With this specification one avoids the problem of
the kinked demand which occurs with unit demand or, more general, quasi-linear pref-
erences. Further more elaborate examples are presented in Peitz (1998). In other work
I generalize this specification to a wider set of individual demand functions. As before,
I; € [0, 1] denotes the location of the good in the product space, I = (I;);, and Q = [0, 1]
is the space of taste parameters of the consumers which determines the relative evalua-
tion of the differentiated goods. Taste parameter o« € A C [0, 1] determines the relative
evaluation of any differentiated good relative to the composite commodity. The utility

function of a consumer with taste parameters (w, ) € Q x A is defined as
U(a?(), x, l) = (Z ﬂ'l<ajlu li))aaj(l)ia
i

where 1;(x;,1;) denotes the direct conditional utility function. If @;(x;,/;) is convex in
Z;, a consumer buys only one good in the differentiated market. The conditional utility
function takes the form

(i, ;) = e T,

Hence, the consumer spends ay in the differentiated market. If a consumer buys
good i, then a monotone transformation of indirect utility is v, (p;) = éy — logp; —

(w — 1;)?. Consequently, in a duopoly a consumer has the demand function

ay if logpr —logpy < 2w(ly — 1) + 15— 13

0 else

& (py) = {

The decision to change from one good to the other has the same formula as in the
Hotelling model with quadratic transportation costs except that price differences are
replaced by logarithmic price differences.

Consider a population which is heterogeneous in income and taste parameter w.

Consider the example in which y and w are stochastically independent and w is uni-
amy
1

where 7/ is mean income and m is the taste parameter of the marginal consumers who

formly distributed on [0,1]. In a duopoly demand for firm 1, I} < I, is X;(p) =
are indifferent between the two goods. In this case it is easy to show the existence of

a unique price equilibrium (see e.g. Peitz, 1997). In addition, prices for symmetric

locations can be calculated.
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Proposition 3 For symmetric locations (11,1 —1y), I} < %, equilibrium prices are

P =ps =c(2—2).

Proof. Define i : 8 — R with m(0) = 2(l2(il1) + b2L where § = logp, — logp.

The first-order conditions of profit maximization then can be written as

en(0) = (p1— )il (0)
(L —1n(0) = (ps—c)ii(6)

Rearranging and taking ratios yields

~ 1
1—mm(0) + 20-1) _ 0 _

~ 1
m(&) + 2(la—11)

Clearly, # = 0 is a solution for Iy = 1 — [;. One can show that the left-hand side is a
decreasing function in §. Hence, # = 0 is the unique zero and p} = p}. Substituting

p1 = pe and Iy = 1—1; into the first of the first-order conditions gives p} = ¢(2—21;). O

pi—c
C

From the explicit formula of equilibrium prices it follows that the markups are
constant in marginal costs. This is different from the Hotelling model with quadratic
transportation costs where the price-cost margin p; — ¢ is constant. For more details

see Peitz (1998).

5 Concluding Remarks

In this paper I provided two insights: first, location models and models of product dif-
ferentiation are formally not equivalent. Second, in models of product differentiation
there cannot exist symmetric price equilibria if some consumers are sufficiently poor.
Furthermore, in a standard specification also asymmetric price equilibria fail to exist
and consequently there does not exist a subgame perfect equilibrium of the product
choice-then-price game when some consumers are constrained due to the budget con-
straint. The inside kinks in the aggregate demand functions are independent of the
particular specification of the “transportation cost function”.

A model in which transportation costs are real costs this problem does not arise:
individual and aggregate demand functions in the associated location model differ from
the model of product differentiation and there exists a subgame perfect equilibrium for
the specification which has been considered. The model with quadratic transporta-
tion costs is merely a reformulation of Bockem (1994). Bockem (1994, 1996) shows

11



the uniqueness of price equilibrium when reservation prices (not income) are heteroge-
neous.

The existence problem in the model of product differentiation is due to quasi-linear
preferences of the consumers. I took a specification of horizontal product differentiation
and unit demand. Kinks in the aggregate demand functions also occur in models with
random utility and unit demand. Also in models of vertical product differentiation an
inside kink occurs if income and quality sensitivity of the consumers do not depend in
a particular way on each other. The model of Gabszewicz and Thisse (1979) is such
an exception. Whether or not an equilibrium exists in a model of vertical product dif-
ferentiation with inside kinks depends on the specification and the parameter choices.
Clearly, from Cremer and Thisse (1991) it is known that one can rewrite a horizontal
model as a vertical model of product differentiation and hence one can obtain nonexis-
tence of equilibrium. The nonexistence problem (i.e., inside kink) seems to be a general
property of unit demand models with heterogeneous preferences and sufficiently het-
erogeneous income. It is an open question whether one can find a formulation of unit
demand which is consistent with some consumer theory and which does not lead to
existence problems of the kind pointed out in this paper.

Finally, not only models of product differentiation suffer from the problem pointed
out in this paper. In models of search or switching costs, when the search cost or
switching cost respectively is not a monetary cost but a disutility one encounters the
same type of problems whenever one has unit demand, and heterogeneous search or
switching costs, and income heterogeneity. (On the literature on switching costs see

e.g. Klemperer, 1995).
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