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AN EVOLUTIONARY MODEL
OF BERTRAND OLIGOPOLY

Carlos Alés-Ferrer, Ana B. Ania and Klaus R. Schenk-Hoppé

ABSTRACT

We analyze the long-run outcome of markets in which boundedly ratio-
nal firms with a decreasing returns to scale technology compete in prices.
The behavior of these firms is based on imitation of success and experimen-
tation. In this framework, we introduce a new approach to model boundedly
rational behavior, based on the idea of “behavioral principles,” i.e. formal
descriptions of how firms’ decisions are triggered by specific market situa-
tions. Even with the simplest ones, the result is that the prices announced
are a strict refinement of the set of Nash equilibria. With more sophisticated
behavioral principles, the long-run outcome corresponds to the concept of
“central prices” (which are also Nash equilibria) introduced here. This is a
robust and clear-cut prediction which, under quadratic costs and arbitrary
demand, essentially coincides with the Walrasian equilibrium.

KEYWORDS: Evolution; Mutation; Imitation; Bertrand Oligopoly.



1 Introduction

Evolutionary theory provides us with the tools to explicitly study the long-
run outcome of markets in which agents repeatedly make short-run decisions
on certain variables every period, according to a given type of behavior like
best response or imitation.

In the study of oligopolistic markets, price is considered as a key deci-
sion variable for the firm in the short run, since it is one of the instruments
that can be easily changed and adjusted. Only in the medium run are
firms able to adjust their production capacities. The study of price compe-
tition becomes then a fundamental part in the study of a market. See e.g.
Shapiro [10].

As a first approach, in the context of homogeneous product, the conclu-
sion is drawn that price competition will lead firms facing constant-returns-
to-scale technologies to set prices equal to marginal cost and thus earn zero
profits. This constitutes the well-known Bertrand paradox. A different look
to the models of price competition reveals that, if firms are not able to serve
the whole market (because of capacity constraints for instance), there is
room for equilibrium prices strictly above marginal cost. Nevertheless, price
competition in the context of homogeneous product was regarded as uninter-
esting and mainly ignored as a topic of research for a long time due to both
the paradoxical behavior and the fact that price and quantity competition
were reconciled in the context of monopolistic competition.

Only recently, the set of Nash equilibria of a Bertrand game under de-
creasing returns to scale has been characterized (see Dastidar [3]), and it has
been found that there is a continuum of pure strategy Bertrand equilibria,
which contains marginal-cost pricing, i.e. Walrasian behavior, see Dasti-
dar [4]. This could be regarded as the Bertrand paradox with convex costs.
Not only that, but also average-cost pricing, i.e. zero profits, is a Bertrand
equilibrium in this context.

A common ingredient of all these models is the assumption of full ra-
tionality on the part of firms. This is a very strong and even unrealistic
assumption, especially if firms only have diffuse knowledge of market condi-
tions and lack complete information.

Evolutionary models of imitation seem to be more realistic, simple, and
appropriate for the representation of a market. Models of social learning
by imitation have proven successful for the understanding of individuals’
behavior under conditions of limited information (see e.g. Bjonerstedt and
Weibull [2], or Schlag [9]).



Once one drops the assumption of full rationality, it is not clear anymore
how behavior should be modeled. In contrast to profit maximization, which
is always a well defined and very specific rule, there are many types of
behavior which could be considered as “boundedly rational,” even within
the specific framework of imitation models.

Instead of pretending to have a unique description of “bounded rational-
ity,” we want to introduce here a new approach to the problem of describing
social behavior.

The key to this new approach are what we call “behavioral principles.”
A behavioral principle is a formal description of a “rule of thumb” to be
followed to make a decision when a certain social situation is faced. For
instance a behavioral principle could require a firm to imitate every one of
the firms which have obtained maximal profits with positive probability, or
it could specify that only firms which have actually faced positive demand
are worth imitating.

Each behavioral principle characterizes a whole family of imitation rules.
We see our approach as an exploratory one: our aim is not to discuss a
particular model of boundedly rational behavior, but rather to explore the
properties of different families of imitation rules.

Here we apply this approach to the study of an oligopolistic market
in which identical firms, producing a homogeneous good under decreasing
returns to scale, decide on prices with the only information they can get from
the market alone: all prices announced in the previous period and all profits
obtained. Firms will then imitate those prices which have proven to be more
successful in terms of profits — a clear indicator of success in a market. There
are, though, many different types of imitation rules. As explained above,
we will describe them by behavioral principles which capture the underlying
rules of thumb.

We will find that, even under the simplest principles, the long-run pre-
diction selects a set of Bertrand-equilibrium prices such that all firms make
strictly positive profits, thus excluding the zero-profits equilibrium. Never-
theless, this set of prices could be quite big. We see this as a consequence of
the crudeness of the behavioral principles, and thus turn to analyzing more
detailed ones. Then, we obtain a clear-cut prediction which is a refinement
of the former and which is related to a certain idea of “central prices.” We
compare this new concept to Walrasian behavior in order to understand to
what extent the latter is a robust Bertrand equilibrium, finding that, under
specific conditions, the Walrasian price is central, although, in general, there
is no clear relation between “central prices” and the Walrasian ones.
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An evolutionary model of price competition has already been studied by
Qin and Stuart [7]. They use the deterministic, continuous-time replicator
dynamics based on expected payoffs to model economic natural selection in
a Bertrand game with constant marginal costs and show that the classical
Bertrand equilibrium fails to be an evolutionarily stable strategy. To justify
their use of expected payoffs, they postulate a very large number of different
markets and invoke a law of large numbers.

In contrast to Qin and Stuart [7], here evolution is based on actual
payoffs, and not on expected ones. Moreover, we model natural economic
evolution through a true stochastic dynamical system, where random mu-
tation is used to capture the idea of experimentation. In other models, this
randomness reflects trembling errors or mutation in a more biological sense.

We will rely on the techniques for discrete-time Markov processes with
finite state space as stated in Freidlin and Wentzell [5, Chap. 6], as applied
in Kandori et al. [6] and Young [12]. Similar evolutionary techniques in the
framework of Cournot competition have been used by Vega—Redondo [11],
Alés—Ferrer, Ania, and Vega—Redondo [1], and Schenk—Hoppé [8].

Section 2 presents the model. Section 3 defines what imitation rules
are and analyzes the most naive ones. Section 4 presents more sophisticated
imitation rules and obtains the main result as a refinement of the analysis in
the previous section. Section 5 compares this result with Walrasian behavior,
and Section 6 concludes.

2 The model

Consider a market for a homogeneous good where n firms compete in prices.
All firms are equal, using a technology characterized by a cost function
C': Ry — Ry, which is assumed increasing and strictly convex. We assume
zero fixed costs, but all results hold true for the general case. The consumer
side of the market is summarized by a strictly decreasing demand function

D : Ry — Ry. Suppose each firm ¢« = 1,...,n announces some price p;.
Then, defining p = (p1,...,pn) and
M(p) :={i|pi= min p;}, (1)
j=1,...,n

their profits I1;(p) = I;(p1,...,pn), e = 1,...,n are given by

() — | Pty = C (Witey) i€ Mp) o
0 if i & M(p)
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Figure 1:

Prices P, and Walrasian equilibrium P*

This defines a Bertrand game with the tie-breaking rule of equal shares.
For each k =1,...,n, and p € R define

H(p, k) = p22) _ ¢ <M> (3)

k k

We introduce the following key concept. Define P, € R, through the
condition

Py is such that (P, k) = 0 and D(F;) > 0.

Dastidar [3, Lem. 1 and 7] proves in quite generality' that these prices are
well defined and unique and also that Py is strictly decreasing in k. The
prices P, and the Walrasian price are depicted in figure 1.

1D(p) is twice continuously differentiable with strictly negative first derivative, and
there exist finite constants P™* > 0 and Q™** > 0 such that D(P™%) =0, D(0) = Q™**.
C(q) is twice continuously differentiable, strictly convex, and increasing.



A first, static interpretation of P, is that it corresponds to the price such
that & firms make exactly zero profits, when they announce the same price
and they are the only active firms in the market, i.e. all other n — k firms
announce a higher price and face therefore zero demand. A second, more
dynamic interpretation could be: the lower bound of the set of prices to
which % firms can jointly deviate, getting and sharing among them & the
whole demand, leaving the other n — k& firms without any market share, and
still making positive profits.

We assume that all prices that firms can announce belong to an a prior:
fixed and finite set I'. The only restriction on this set is that all P belong
to I', and that there exists at least one price strictly lower than F,, i.e. one
for which all n firms announcing the same price would make losses. This
restriction is made for the sake of clarity, but it could be largely dispensed
with.

Let us now turn to the description of the dynamic evolutionary model
studied. We assume that a fixed finite number of firms play the Bertrand
game at each discrete time period. When firms have to announce a price in
period t4+1 € N, the prices and profits of all firms at the preceding time ¢ are
known. Based on these data, each firm chooses a price for time ¢ 4+ 1. We
consider three different mechanisms, determining the price announcement
pi(t + 1) of the ith firm, given the prices p(t) = (p1(t),...,pn(t)) and the
profits I(p(t)) = (1(p(t)),...,U.(p(t))). With certain probabilities, a
firm upholds its price p;(¢), imitates a firm by announcing some price py(?)
that yielded maximal profit at period ¢, or randomly chooses some price from
I'. The sequential structure of these events is as follows. First, a choice is
made whether upholding or imitation takes place. Afterwards, it is decided
whether experimentation occurs or not.

Fix an imitation probability 0 < é < 1 and a experimentation probability
0 <e < 1. Wecall 1 —4 > 0 the upholding probability.

Upholding (occurs with probability 1 — 6 > 0) p;(¢ + 1) := p;(¢). That is,
firm 7 does not change its price announcement.

Imitation (occurs with probability 6 > 0) p;(t + 1) is some price pg(?)
which yielded maximal profit at period ¢. This behavior is precisely
specified by an imitation rule introduced in the next section.

After either upholding or imitation took place, it is decided whether the
firm experiments with some price or whether the choice made before is kept.
In the first case, we will say that a mutation occurs.



Experimentation (occurs with probability € > 0) p;(¢t + 1) is randomly
chosen from 1" according to some fixed distribution which assigns pos-
itive measure to every state.

This completely determines the new vector of prices p(t 4+ 1), given a
state p(t). Since firms are non-cooperative, we assume that each firm makes
its decision independently of the others and, therefore, we obtain a Markov
process p(t) in discrete time with finite state space I'".

It is worth to point out that each single firm may have its own pref-
erences and, for instance, may assign higher probability to imitation than
to upholding. It may even have a tendency to experimenting with high
prices and only very rarely with low ones. The same remark applies to the
imitation case. All these possibilities are only limited by the assumption
that certain events have to happen with positive probability and thus are
not allowed to be excluded when fixing the preferences of firms as discussed
above.

Lemma 2.1 The discrete-time Markov process p(t) with state space I'™ has
a unique ergodic measure . for each fixed = > 0. In particular, . is invari-
ant under the Markov process p(t) and completely determined by the (finitely
many numbers) p(p), p € IT™. ue is often called stationary distribution.

This statement follows immediately from the observation that the tran-
sition probability matrix of the finite state Markov process is irreducible, i.e.
for any two states there is a positive probability to reach the second state in
one step when starting at the first state. (This probability is bounded from
below by " [T Ai(p;) > 0 for each state (p1,...,pn), where \;(p;) is the
ith firm’s probability of choosing p; when experimenting.)

Recall that ergodicity of p. means that lim, .1 35 f(2(t) =
Jrn f(x) pe(dz) for each integrable function f (and for almost all sequences
of realizations of the random variables). In particular, if f = 14 is the char-
acteristic function, then this reads lim, 0o 2 353 14(2(t)) = pe(A), ie. the
average amount of time a typical sample path of the model spends in a set
A equals the p.-measure of this set. Note that the process may start at an
arbitrary state. Thus the unique ergodic measure . completely summarizes
the long-run behavior of the model from a statistical point of view.

We next discuss the role of the experimentation mechanism built into the
evolutionary model. First, consider the Markov process above in the absence
of experimentation (¢ = 0). Then each monomorphic state (i.e. each vector



with identical components) is obviously a fixed point under the previous
dynamics. Further, from each non-monomorphic state a monomorphic state
is reached with probability one as time goes by. Thus the system settles
down on the diagonal of the state space I'". The experimentation introduced
forces the system to occasionally move away from each state and in particular
perturbs all steady states of the system lacking experimentation.

The occurrence of experimentation is controlled by the value of . If
e = 0, then we obtain the model discussed in the preceding paragraph. If ¢
is large, then the system fluctuates fast through the entire state space I'™.
If £ is small, then upholding and imitation become important “pushing”
the price vector toward monomorphic states. The smaller ¢ is, the more
important these two mechanisms become. In the following, we will study
the ergodic measure p. (and thus the long-run behavior of the dynamic
evolutionary model) as the occurrence of experimentation vanishes, i.e. as
e — 0.

Two different interpretations of experimentation (and the method to
(slowly) decrease the probability for its occurrence) from a dynamical point
of view can be given.

On the one hand, experimentation is the source of new information in
our model. Since each monomorphic state is a steady state of the Markov
process introduced above for ¢ = 0, the only way the system can move away
from any of these states is via experimentation. For small ¢ > 0, the impact
of imitation becomes better observable than for large e, and, in particular,
the system will mainly rest on monomorphic states. Thus, as ¢ — 0, the
process can be expected to settle down on monomorphic states which are
stronger attracting than others.

On the other hand, one can interpret experimentation as an artificially
introduced stochastic perturbation of a deterministic model which is used to
move the system away from any steady state. A motivation for this comes
from the fact that most real-world systems are subject to (small) random
shocks. Then, letting ¢ — 0, the system will settle down on those steady
states which are more stable — and thus more important in the corresponding
real-world system — than others. In particular, this singles out unstable
steady states, and it helps to detect those states which are more likely to be
observed in the system modeled.



3 Imitation rules

Imitation is a kind of replicating behavior which enables firms to learn from
other firms’ experience, without them needing to have full knowledge of
market conditions, or to be able to make complicated calculations in order
to make a decision. We believe that imitation is a major determinant of
actual behavior in social and economic systems. In a market framework,
this can be attributed to the lack of information about market conditions
that firms must face when making a decision.

In particular, in the context of an oligopolistic market, if a firm has to
decide optimally what price to charge, it needs precise information about
the market demand function, the cost function, and the prices that other
firms are going to charge. Not only that, but also important requirements of
common knowledge of rationality, and computation capabilities are needed
in order for it to reply optimally to its competitors behavior.

There are a number of markets with only a small number of firms, but due
to the structure of these firms they are unable to fulfill all these information
and computation requirements. Fven in markets with a very small number
of big firms, concerned with the relevant data of the market, it is very
restrictive to assume that they have perfect or even sensible knowledge of
market conditions (demand and cost functions).

A simple way out for a firm that has to make a decision on what price
to charge is to imitate prices which other successful firms in the industry
have charged in previous periods. In that sense, profits obtained could be
regarded as the clearest indicator of success.

In the following, we will formally define what an imitation rule is. Then,
we will explore different sets of imitation rules characterized through specific
behavioral principles, and then study the implications of these principles in
our model.

Every period, we will consider the vector of prices that each of the n

firms in the market have set. Given a price announcement p = (p1,...,pn)
which yielded profits (II;(p),...,,(p)), define

B(p) = {px | Ix(p) = max I;(p)} (4)

j=1,...,n

Definition 3.1 An imitation rule of firm i is a family of random variables
Li(p) taking values in B(p), i.e. Prob{I;(p) € B(p)} = 1 for all p € T".
A collection of independent random variables {Ii(p)}per‘n’izl’“.’n is called
imitation rule.
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Imitation will have no effect on those states in which all firms are an-
nouncing the same price. Such states will be called monomorphic. We
will denote them by mon(p) = (p,...,p). We can extend the definition of
monomorphic states to sets.

Definition 3.2 We define for each set A, the set of all corresponding
monomorphic states by

mon(A) .= {(p,...,p) [ p€ ANT}.

Our definition of imitation rules is not sufficient to fully characterize the
behavior of firms. It is necessary to specify how firms will choose among
elements of B(p). This is done through the introduction of behavioral prin-
ciples. The first and most straightforward principle that we will consider
simply states that not only a firm imitates firms with highest profits, but
also any of them with positive probability.

(all-best) principle An imitation rule is said to satisfy the (all-best) prin-
ciple, if

Prob{I;(p) = px} > 0 for all p; € B(p) and for all 1.

Theorem 3.3 Let n > 3. Gliven any imitation rule which satisfies the
(all-best) principle, we have that in the long run, as the probability of exper-
imentation tends to zero, all firms announce identical prices p €P,_1, Py],
i.e.

1irr(1) pe{mon(|P,_1, A])} =1

Moreover, we have that lim._,o p{mon(p)} > 0 for all p €|Pp_1, | NT.

Proof. We will rely on the characterization of the stationary distribution
(e given by Freidlin and Wentzell [5]. This characterization involves the key
concept of a tree. Let p = (p1,...,pn) be a state of the system. A p-tree
is a directed graph without cycles, such that each state different from p is
the origin of exactly one arrow (denoted by —). A path is a sequence of
compatible arrows (for notational simplicity, we will also denote a path by
—, when there is no possible confusion about the corresponding sequence
of arrows.) Note that in a p-tree there always exists a path from any state
to p. The cost of an arrow between two states is the minimal number of
mutations needed to directly reach the second one when starting at the first
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one. In this sense, imitation and upholding have zero cost. The cost of a
path or a tree is the sum of all the costs of its arrows.

Freidlin and Wentzell [5, Chap. 6, § 3] prove that the stationary distri-
bution is well defined and that it assigns positive weight to and only to those
states with minimal-cost trees among all trees of all states.

Step 1. Non-monomorphic states cannot have minimal-cost trees. To
see this, suppose that a non-monomorphic state p were to have a minimal-
cost tree. Consider this tree, and choose some p' € B(p). We could then
construct a mon(p’)-tree by connecting p to mon(p’) and deleting the arrow
exiting mon(p’). The former can be done at zero cost, since there is positive
probability that all firms imitate the same price at the same time, while the
latter saves at least cost one, since no monomorphic state can be left without
any mutation. The mon(p’)-tree so constructed has lower cost, which yields
a contradiction.

Step 2. We will now consider all possible transitions (paths) between
monomorphic states in order to see what the minimal-cost trees are.

In a first step we will focus on downward transitions, i.e. undercutting
of prices. Consider all transitions of the form mon(p) — mon(p’) such that
p < pand p/ < P;. We will see that one mutation is not enough for this
transition to occur, but two mutations are enough. Start with mon(p) and
consider one mutation from p to p’. After mutation, non-mutants make zero
profits, since they do not get any demand, but the mutant makes losses, since
p’ < Py implies that a firm alone in the market cannot make positive profits.
Pure imitation can only lead the process back to mon(p). If p’ = min T, then
obviously the transition requires n mutations. Otherwise two mutations
suffice. Start again with mon(p) and consider two simultaneous mutations,
one to p’, and another one to p” < p’. After mutation, the p” mutant makes
losses since p” < Py, but both the p’ mutant and the non-mutants make zero
profits. Therefore, by the (all-best) principle, there is a positive probability
that the p’ mutant will be imitated by all other firms.

Consider now all downward transitions of the form mon(p) — mon(p’)
such that p’ < p and p’ > P;. Note that this implies p > ;. We will see that
one mutation is enough for this transition to occur. Start with mon(p) and
consider one mutation from p to p’. After mutation, the non-mutants make
zero profits, but the mutant makes a positive profit since p’ > P;. Pure
imitation can lead the process to mon(p'), relying on the (all-best) rule if
necessary.

Let us now focus on upward transitions. Consider all possible transitions
of the form mon(p) — mon(p’) such that p’ > p and p < P,_1. We will see
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that one mutation is enough for the transition to occur. Start with mon(p)
and consider one mutation from p to p’. After mutation, the mutant makes
zero profits, since it loses any possible share of the market it had before,
but non-mutants make losses or zero profits since p < F,,_1. Notice that if
p = P,_1, this transition relies on the (all-best) principle.

Consider now all possible upward transitions of the form mon(p) —
mon(p’) such that p’ > p and p > B,_1. We will see that one mutation
is not enough for this transition to occur, but two mutations suffice. Start
with mon(p) and consider one mutation from p to p’. After mutation, the
mutant makes zero profits, since it gets no demand, but the non-mutants
make strictly positive profits since p > F,_;. Then imitation can only lead
back to mon(p). Start again with mon(p) and consider two simultaneous
mutations, one to p’ and another one some p” < p, p” < P;. After mutation,
the p” mutant makes losses, since p” < P;, but both the p’ mutant and the
non-mutants make zero profits. Therefore by the (all-best) rule there is
positive probability that the p’ mutant will be imitated by all other firms.

Step 3. We have explored the minimal number of mutations required
to leave any monomorphic state. Any tree which uses exactly this minimal
number of mutations to leave each monomorphic state will be a minimal-
cost tree. Consider the mon(P;)-tree given by mon(p) — mon(P;) for all
p # P;. These transitions have cost one for all p < F,, ;1 and also for all
p > Py, but they have cost two for all p such that P, 1 < p < P;. Note that
these transitions use disjoint paths through the non-monomorphic states.
This proves that mon(P;) has a minimal-cost tree.

We will argue now that all states mon(p) such that P, ;1 <p < P; also
have minimal-cost trees. Construct a mon(p)-tree from the mon(P;)-tree
we have just constructed reversing the transition from mon(p) to mon(FP).
This new transition also needs two mutations. Therefore the new mon(p)-
tree has exactly the same cost as the old mon(P;)-tree. This proves that all
the states mon(p) such that P, 1 < p < P; have minimal-cost trees.

Let S = mon(]P,,_1, P1]). We have just shown that all states in S have
minimal-cost trees. Consider now any other monomorphic state mon(p’) not
contained in S. Any mon(p')-tree includes a link from some state in S to
another one out of S. Any transition of this sort requires two mutations.
The only cost that can be saved in this tree with respect to the previous
ones comes from the fact that no arrow leaving mon(p’) is needed, but such
an arrow was only at cost one. So any mon(p’)-tree would require at least
one more mutation than the minimal-cost trees. Thus mon(p’) cannot have
a minimal-cost tree. O

13



Remark 3.4 The previous theorem holds for n > 3 firms. If n = 2, then
the limit of the stationary distributions u. assigns positive weight to and only
to states in {mon(p) | p > P1}. This is because all transitions downwards
between monomorphic states corresponding to prices greater than or equal to
Py take only one mutation, all transitions upwards from other monomorphic
states take also only one mutation. The transitions upwards from mon(Py)
take only one mutation by the (all-best) principle, and the rest of the tran-
sitions take two mutations.

Remark 3.5 Under constant marginal costs and any number of firms, the
argument in the previous remark would yield the same conclusion. Note that
i this case Py s equal to the marginal cost.

It is important to notice that Theorem 3.3 already provides us with
some refinement of the set of Nash equilibria in the underlying static game.
Dastidar [3] proves that the set of Bertrand-Nash equilibria is formed by
(in our notation) all states mon(p) (symmetric Nash equilibria) such that
P, <p < P where P}, is such that [I( P}, n) = II(P), 1). Dastidar also shows
that P! > P;. Our prediction is obviously a strict subset of those. Moreover,
mon(F,) is a focal Nash equilibrium (there, price is equal to average costs)
where all n firms make exactly zero profits. In our framework, the limit of
the stationary distributions assigns no weight to this state as the probability
of experimenting tends to zero. All states in the support of this limit yield
strictly positive profits.

In any case, the prediction of Theorem 3.3 is not very sharp, i.e. a wide
range of prices can arise as a result of such a simple rule of price imitation.
This is a characteristic of the family of imitation rules described by the
(all-best) principle. This principle allows for very naive behavior, e.g. with
two mutations it is possible to lead the process almost anywhere. From
any monomorphic state, think of one mutation to a very low price and a
second mutation to a price only slightly higher than the first one, then there
is positive probability, according to the (all-best) principle, that all other
firms will imitate the second mutant without any particular good reason to
do so. In the next section we want to propose other, less naive behavioral
principles and study the long-run outcomes for the families of imitation rules
which they describe.

14



4 Alternative imitation rules

In this section, we introduce alternatives to the previous imitation rules
which were characterized by the requirement to satisfy the (all-best) princi-
ple. As explained above this simple principle may lead to very naive behav-
ior. The behavioral principles proposed below provide a more sophisticated
model for the imitation considerations of firms.

In what follows, we focus on the imitation of a particular type of success-
ful behavior displayed by firms. First, we assume that firms imitate only
active competitors among those who obtained maximal profits, i.e. firms
which produced in the preceding time period because they had some cus-
tomers and which obtained profits. This means that firms which did not
produce at all are not considered successful. We will call this the (activity)
principle.

This principle is relevant only in the states in which all firms earn zero
profits, but some of them are producing and the rest are facing zero de-
mand. The (all-best) principle required that both active and inactive firms
had strictly positive probability of being imitated. In general, it seems more
reasonable to imitate firms with customers rather than firms without. How-
ever, when the (activity) principle is relevant, it is more difficult to justify
such type of behavior, since all firms are obtaining zero profits. Neverthe-
less, two types of arguments should be considered. On the one hand, firms
that are not active in the market may even not be observable. On the other
hand, there is no hope for the inactive firms to have positive profits, but
slight changes of the market conditions could give profits to the active ones,
and ultimately firms aim at positive profits.

Second, it may occur that the firms which maximize profits are precisely
the ones that face no demand, and this is because all active firms, in that
case, have losses due to very low prices. Thus there may be no active firms
with profits. Then different ways of plausible behavior can be proposed. In
the sequel we will analyze two alternative behavioral principles for this case.
One will be called the (caution) principle, and the other one will be called
the (frequency) principle. Under the (caution) principle, firms which are
avoiding losses will refrain from revision of prices, upholding their current
prices. This can be seen as if they were imitating themselves, since they are
among the profit maximizers. Under the (frequency) principle, firms which
find themselves in the situation of choosing between low prices which give
losses and higher prices which yield zero profits will conform with the most
extended behavior, i.e. the most frequent price adopted by other firms. We
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think these are two general and reasonable simple rules of thumb, but of
course they are not the only ones. Nevertheless, the same conclusions are
reached under both of them. On the one hand, these imitation principles
are simple and thus keep the problem tractable. On the other hand, they
describe a less naive imitation behavior.

Let us turn to the formal definitions. The set of prices announced by
active firms obtaining maximal profits is given by

A(p) := B(p) N {p: | i € M(p)} (5)

The tie-breaking rule of equal shares implies that A(p) either contains
exactly one price or is the empty set. Following the first consideration of
imitating active firms when possible, we define the

(activity) principle An imitation rule is said to satisfy the (activity) prin-
ciple, if whenever A(p) # ()

Prob{I;(p) € A(p)} =1 for all 7.

The second consideration comes into play, if A(p) = (). Let us first
analyze the (caution) principle.

(caution) principle An imitation rule is said to satisfy the (caution) prin-
ciple, if whenever A(p) = ()

Prob{I;(p) = p;} = 1 for all i such that II;(p) = 0.

With the refined imitation rule we can make a more precise statement
about the long-run outcome as in Theorem 3.3. This is related to the fol-
lowing key concept.

Definition 4.1 The set of central prices CP(T) is

CP() = [Pl Plag N T

This set will prove to be very resistant to experimentation, and will turn
to be our long-run prediction. Notice that it reduces to the single price B, /9
when n is even, and it is a proper interval when n is odd, because the concept
of center changes with parity. The prices in this set have low risk attached
in the sense that more than half of the population would have to coordinate
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in a joint deviation to destabilize a monomorphic situation in which all firms
announce a price in this set, while it only takes half of the population or
less to destabilize any other monomorphic situation and to reach one of the
former. Note that if at least half of the population coordinates at these
prices, they will be able to make positive profits. It is precisely the cost
structure what underlies this phenomenon.

Theorem 4.2 Let n > 2. Given any imitation rule which satisfies the
(activity) principle and the (caution) principle, then in the long-run, as the
probability for experimentation tends to zero, all firms announce identical
prices p € CP(T), i.e.

1irr(1) pe{mon(CP('))} = 1.
e
Moreover, lim._,o pe{mon(p)} > 0 for all p € CP(T').

As we have said before, the “precision” of the result depends to a certain
extend on the fact whether there is an even or an odd number of firms. The
crucial difference (which plays a role in the proof) is that an even number
of firms can be divided in two groups of the same size.

Proof. We are going to apply the method of Freidlin and Wentzell [5], as
introduced in the proof of Theorem 3.3, showing that only states mon(p)
with p € CP(I") possess minimal-cost trees.

It follows analogously to Step 1 of the proof of Theorem 3.3 that non-
monomorphic states cannot have minimal-cost trees, because each arrow
starting at some monomorphic state has at least cost one, but the proposed
imitation rule leads from each non-monomorphic state to some monomorphic
one at cost zero. Let us show the latter fact. In any non-monomorphic state
p, if A(p) # 0, there is positive probability that all firms will imitate the
same price by the (activity) principle. If A(p) = @, then by the (caution)
principle non-active firms will uphold their prices, but by the definition of an
imitation rule there is positive probability that all active firms will imitate
some other price, thus yielding a new state where strictly less different prices
than in p are observed. Applying the same reasoning iteratively we will
arrive either to a monomorphic state or to a state p’ such that A(p') # 0.
We next determine the less costly paths between different monomorphic
states.

Transitions which use different mutations. Because of the (caution)
principle, any transition between two monomorphic states driven by mu-
tations to two or more different prices will have cost higher than or equal
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to that of some transition between the same two states which uses only
mutations to one price. Thus, we only need to study the second type of
transitions. Let us show this fact. Suppose we want to study the transition
mon(p) — mon(p). If the transition uses mutations to two different prices
p' and p”, then the process will go by an intermediate, non-monomorphic
state where at least three different prices are present. Let us call this state
q=(p,....,0,0,...,0,0",....,p"). If A(g) # 0, then, by the (activity)
principle it has to be the case that A(q) = {p'} if the process has to reach
mon(p’). But then, the same result would be achieved if only the muta-
tions to p’ occurred. If A(q) = 0, then the active firms are making losses.
Obviously, it cannot be the case that they are announcing p’ if the process
has to reach mon(p’). If they are announcing p”, then by the definition of
an imitation rule, these firms can only imitate p or p’ while the non-active
firms uphold their prices because of the (caution) principle. This leads to
another intermediate state which could have been reached directly with the
same number of mutations, but all of them to p’. Finally, if active firms are
announcing p, then they will be forced to imitate either p’ or p”. But then,
it is clear that having all the mutants announce p’ instead of p” will give
us a different transition with the same cost where the non-mutants will be
forced to imitate p’.

Obviously, these arguments turn even stronger if mutations to more than
two different prices are invoked. This way, we can discard the “naive transi-
tions” where some mutant firms announce a very low price and some other
mutants are imitated only because the former made huge losses.

Mutations to lower prices. Consider some fixed state mon(p), p > minT".
The minimal number of mutations needed to reach mon(p’) where minI" <
p <pand P; <p < Pj_; is precisely j. This can be seen as follows.

Let us analyze how many mutations are needed to obtain the state
mon(p’) by applying the (activity) principle. In order to make the price
p/ appear in the set A(-) it takes at most and at least j mutations. Af-
ter 7 firms mutated to p’, these firms obtain non-negative profits and thus
Alp,...,p,7,...,p) ={p'}. (Note that the number of mutations needed to
reach minI" < p < B, is equal to n.)

The (caution) principle can only be used if the set A(-) is empty. But
such a situation can not lead to the state mon(p’) unless mutations to at
least two different prices are invoked. It is clear that no combination of the
(caution) and the (activity) principle yields less costly paths.

Mutations to higher prices. Consider some fixed state mon(p), p < max D’
with P, < p < P;—1. The minimal number of mutations needed to reach
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mon(p’) with p’ > p when starting in mon(p) is n — ¢ + 1. This can be
proved as follows.

It is clear that the (activity) principle cannot be applied to obtain imi-
tation of higher prices with less than n mutations. Let us now analyze the
(caution) principle. The firms announcing p only obtain losses (and thus
make the set A(-) empty) if at least n —¢ + 1 firms move to the higher price
p'. Then, the mutants will uphold their prices by the (caution) principle
and the non-mutants will imitate them by definition of an imitation rule.

Minimal-cost trees. We next show that all states mon(p) with p € CP(I)
have minimal-cost trees by using only the minimal-cost paths obtained
above.

Connect all states mon(p') with p’ < p to mon(p) taking the minimal-
cost path given in the “mutations to higher prices” case. Connect all states
mon(p’) with p’ > p according to the following rule. Each price p’ > p is
connected to the next lower price in I' by taking the minimal-cost path given
in the “mutations to lower prices” case.

If n is even, then the interval consists only of one element. If n is odd,
then one has to show in addition that all states mon(p) with p € CP(I)
have a minimal tree of the same cost. But this is due to the fact that
transitions between different monomorphic states corresponding to this set
are of cost j = [§] = (n 4+ 1)/2 to lower prices, and that they are also of
costn—i+1l=n—(n+1)/24+1=(n+1)/2 to higher prices.

We finally show that all trees of the remaining monomorphic states are of
strictly higher costs. Let mon(p’) be some monomorphic state not contained
in mon(CP(T')). On the one hand, each mon(p’) tree has to contain a path
from some state in mon(CP(I")) which gives an additional cost of at least
n—[5]+1=[(n+1)/2]. On the other hand, one saves the cost of some
path by not having to connect p’, but this is at most [(n—1)/2]. Hence this
less costly mon(p’)-tree is of strictly higher cost. Note that all minimal-cost
paths are non-intersecting. O

Remark 4.3 Let us analyze the case of constant marginal costs.

Following the procedure of the previous theorem, we do a quick consid-
eration. Transitions from states mon(p) with p > Py to states mon(p') with
p' < Py have cost n, but in the other direction they have cost one. Down-
ward mutations in [Py, max '] have cost one. Upward mutations have cost
n. This yields

liH(l) pe{mon(Py)} = 1.
E—
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giving a quite clear-cut prediction which simply reproduces the Bertrand-
Nash equilibrium.

Theorem 4.2 provides us with a significant refinement of both the set of
Nash equilibria and the prediction of Theorem 3.3. The prediction of central
prices not only yields strictly positive profits for all firms, but also it is quite
clear-cut, reducing to a single price in the case of an even number of firms.
Also, as the previous remark shows, this prediction reduces to the classical
Bertrand-Nash equilibrium in the particular case of constant marginal costs.

We are going to consider now a second possible behavioral principle for
the case when there are no active firms with positive profits in the market.
This new principle specifies that, in this case, instead of upholding their
prices, non-active firms will try to mimic some market price, i.e. one of the
most frequent price among those which yield maximal profits. The set of
such prices is

F(p) = {px | k € argmax|{j | p; = pm, pm € B(P)}[}- (6)

m=1,...,.n

The corresponding assumption on the imitation behavior is as follows.

(frequency) principle An imitation rule is said to satisfy the (frequency)
principle, if whenever A(p) =0

Prob{I;(p) € F(p)} =1 for all

and
Prob{I;(p) = pr} > 0 for all py € F(p) and for all i.

Note that A(p) = () implies F(p) # 0 and thus the above principle is
well defined.

If this principle is used instead of the (caution) one, then we obtain
exactly the same prediction CP(T"), thus revealing that the prediction of
central prices is robust with respect to the specification of the behavior in
the situation A(p) = 0.

Theorem 4.4 Let n > 2. Given any imitation rule which satisfies the
(activity) principle and the (frequency) principle, then in the long-run, as
the probability for experimentation tends to zero, all firms announce identical
prices p € CP(T), i.e.

iiir(l)us{mon(CP(F))} =1

Moreover, lim._,o p-{mon(p)} > 0 for all p € CP(T').
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Proof. It follows analogously to Step 1 of the proof of Theorem 3.3 that
non-monomorphic states cannot have minimal-cost trees, so attention can
be restricted again to monomorphic states.

The only change with respect to Theorem 4.2 is that, now, it is possible
to construct transitions mon(p) — mon(p’) by having one mutant announce
a very low price p”, obtaining the whole demand and making huge losses,
and also having half of the remaining firms mutate to p’ and making zero
profits. Such transitions cost [(n + 1)/2]. Taking them into account and
following the lines of the previous proof, it is straightforward to see that
transitions to lower prices p’ with P; < p' < P;_y cost min{j, [(n + 1)/2]}
and transitions to higher prices from p such that P; < p < P, 1 cost min{n—
i+ 1,[(n+1)/2]}. The minimal-cost trees are then constructed exactly as
in the previous proof. O

Remark 4.5 Again, let us make a quick consideration of the case of con-
stant marginal costs. Transitions from states mon(p) with p > Py to states
mon(p') with p' < Py have cost [(n + 1)/2], but in the other direction they
have cost one. Downward mutations in [Py, max '] have cost one. Upward
mutations cost [(n+1)/2]. This yields again the Bertrand-Nash equilibrium

liH(l) pe{mon(Py)} = 1.
E—

5 Central prices and Walrasian behavior

In order to understand the concept of central prices better, we want to
provide with some examples and compare our prediction with the Walrasian
price. Dastidar [4] shows that the Walrasian price is always in the set of
Nash equilibria when costs are convex. We would like to know to what
extent our prediction of central prices departs from the Walrasian one.

To this purpose, we first prove a proposition which states that under
quadratic costs and arbitrary demand central prices essentially coincide with
the Walrasian one. However there is not a general relation between these two
concepts and we provide with two counterexamples which show that central
prices can be either lower or greater than the Walrasian price, essentially
depending on the curvature of the cost function.

Example 5.1 Consider a market with linear demand and quadratic costs.
D(p) == 10-p
Clg) =
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Elementary calculations yield Py = 10/3, P =2, P3 = 10/7.

Then, if n = 3 the Walrasian price PY = 5/2 € [Py, P|, i.e. the Wal-
rasian price is a central price. Also, if n =5, then P¥ = 5/3 € [P3, Py],
which is the set of central prices in this case.

If n is even, there is only one central price, F, ;5. Consider, for the sake
of illustration, the case n = 4. In this case, the Walrasian price coincides
exactly with the central price, i.e. PY =2 = Py,

The next proposition shows that this property is independent of the
particular demand function, provided that costs are quadratic.

Proposition 5.2 For every quadratic cost function, i.e. C(q) = c-q*> +b-q,
the Walrasian price is a central price. More precisely:

(i) If n is even, then P = P,
(Z) If n is odd, then P¥ € [P(n+1)/27 P(nfl)/Q]
Proof. PY is a root of the function p—C’ (ﬂn@). However, as this function

is strictly increasing when costs are convex, it follows that P¥ is also its
unique root. Under quadratic costs

Pw—C’<M>:0 = Pw—26'<w>—b:0.

n n

Notice that P, /5 can be defined, even if n is odd, by the equation

[(Pa,n/2) = Ps - % e (D<P%)> —0

D(Py) D(Pz)\? D(Py)
= Pn.( n/2 )—c( n/2 ) _b( n/2 )Z

D(Pz)
= P%—2c~ 2 —b=0

Sl

n

where the last equivalence holds because D([, /) # 0.
Since P is a unique solution of this equation, P* = B, 5. If n is even,
this completes the proof. If n is odd, P* = P,y € [P(n+1)/2, P(n,l)/Q]. O
This result suggests that, in the particular case of quadratic costs,
marginal-cost pricing is very robust in evolutionary terms, i.e. it takes many
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mutations to destabilize it. It is interesting to find that, under quadratic
costs there is a reconciliation of quantity and price competition. An evolu-
tionary model of quantity competition also based on imitation of successful
behavior has been studied by Vega-Redondo [11].

However, this property depends crucially on the fact that costs are
quadratic. With different cost functions, one can build counterexamples
where P* > P, /9 or P < P, /.

Example 5.3 Consider an economy with the demand and cost functions

D(p) = 10—p
Clg) = ¢

We will show that, in this example, the Walrasian price is essentially lower
than the central prices.

1. PY=C"(g¥) =3 (¢¥)? and ¢* = D(P¥)/n = (10 — P¥)/n.

The only solution of this system of equations which is lower than the
mazimum possible price P = 10 is the lowest root of the polynomial

2

f(z) =2 — (20+%> -2 + 100

i.e. P(n) =10 — ¢ - (vVn?+120 —n).

2. T(Py, k) = Py - 200 _C<D(5k)) — 0 P, (m;sk) _ <1o;pk)3 _0.

The only solution of this equation which is lower than the mazximum
possible price P™** =10 is the lowest Toot of the polynomial

gr(r) == 2% — (20 + k2) -z 4 100

ie. Py=10—% - (VE? +40 — k).

3. The above expressions imply that f(x) < gnje(x) for all 0 < x < 10.
In particular, f(Pn/q) < gno(FPnje) = 0. Thus P*(n) < B,y for alln,
because PY(n) is the lowest root of f(x). This implies, in particular,
that our prediction is strictly greater than the Walrasian price in the
case where n s even.
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4. Analogously, with 0 < x <10, f(x) < gny1)/2(x) for all n > 6, which
implies that in the case where n is odd P*(n) < Ppp/q) for alln > 7.
One can also check that P*'(n) € [Pr, 91, Prin—1)/21] for alln <5.

Example 5.4 Consider an economy with the demand and cost functions
D(p) = 10—p
3

In this example, it is not difficult to see that P*(n) = 3(y/1+ (160/9)n—1)
and, if n is even, P9 = /1 +20n—1. Then, e.g. withn = 6, we have that
the Walrasian price exceeds the central one: P* = 11.5483 > 11 = B, /5.

All the previous examples use power cost functions, C(g) = ¢-¢*. In fact,
it is not difficult to fully characterize the relationship between the Walrasian
price for n firms, P%, and the central price P, /5 (which can also be defined if
n is odd). Figure 2 depicts both Walrasian and central price for a particular
case.

Proposition 5.5 Under power costs, i.e. C(q) = c-q%, with a > 1 one has:
(i) If a =2, then P¥ = P,y
(i) If a > 2, then P < P,y

(ii1) If a <2, then P¥ > P,y

Proof. P" is the unique root of the strictly increasing function f(p) =
p—C'(D(p)/n) =p —ac-(D(p)/n)* '. P,y is defined through

n D<P%) D<P%)
H(P%,§>:P%~ 2 —C( /2 ):0

Since D(P,/3) # 0, it follows that P,/ = ¢-2* 1. (D(p)/n)*'. Thus
F(Papp) = c- (201 = a) - (D(p) fm) .

If the last expression is positive, 7,9 has to be greater than P*, and
vice versa. But the sign of this expression depends exclusively on the sign
of the function g(a) = 2% ! — a, which is strictly negative for all a € (1,2),
strictly positive for all a € (2,400), and zero if a = 2. This completes the
proof. O
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L s .
1 12 1.4 1.6 1.8 2 2.2 2.4 26 2.8 3

Figure 2:

Walrasian price P* and central price £, /5 forD(p) =10 — p,n = 10, and
power costs C(q) = ¢*
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We should note that extending the analysis of the previous proposition to
the case of linear costs, the Walrasian price again coincides with the central
one, since then g(1) = 0. Therefore, this proposition is consistent with the
previous result (see Remark 4.3) for the case of constant returns to scale,
given that Py = P, /5. In fact, both the central price P,/ and the Walrasian
one will be very close when costs are almost linear or almost quadratic, but
they will differ (with the latter being higher) under intermediate returns to
scale.

How should we interpret this last result? If returns to scale are not too
decreasing, then there is room for even tougher competition. In other words,
as long as the cost structure allows for it, it seems that competition as tough
as possible will be evolutionarily successful.

6 Conclusions

The introduction of a dynamics of economic natural selection based on im-
itation and experimentation provides us with new insights in the theory of
price competition.

First, very low prices are very unstable in an evolutionary sense, because
unilateral deviations to higher prices would leave active firms making losses.
In particular this is the case of the price equal to average cost. This insta-
bility is reflected by the fact that, even under very simple imitation rules,
such low prices have zero weight in the long-run prediction.

Second, if one introduces sensible refinements of the imitation rules, it
is possible to single out a price (or a very narrow set of prices) that has the
property of being central in the sense that it would take more than half of
the firms present in the market to destabilize it.

This last result resolves to a great extent the problem of the multiplic-
ity of equilibria present in models of oligopolistic markets for homogeneous
goods with price competition and decreasing returns to scale analyzed from
a classical game-theoretic point of view. Moreover, it allows us to recon-
sider the question of “paradoxical,” competitive price-setting behavior in
such markets.

26



References

1]

Alés—Ferrer, C., Ania, A. B., and Vega—Redondo, F. (1997). “From
Walrasian Oligopolies to Natural Monopoly: an Evolutionary Model of
Market Structure,” Working Paper AD 97-24, Instituto Valenciano de
Investigaciones Econémicas, Spain.

Bjonerstedt, J., and Weibull, J. W. (1996). “Nash Equilibrium and
Evolution by Imitation,” in The Rational Foundations of Economic
Behaviour (K. Arrow, E. Colombatto, M. Perlman, and C. Schmidt,
Eds.), pp. 155-171. London: Macmillan.

Dastidar, K. G. (1995). “On the Existence of Pure Strategy Bertrand
Equilibrium,” Feonomic Theory 5, 19-32.

Dastidar, K. G. (1997). “Comparing Cournot and Bertrand in a Homo-
geneous Product Market,” Journal of FEconomic Theory 75, 205-212.

Freidlin, M. L., and Wentzell, A. D. (1984). Random Perturbations of
Dynamical Systems. Berlin: Springer—Verlag.

Kandori, M., Mailath, G.J., and Rob, R. (1993). “Learning, Mutation,
and Long Run Equilibria in Games,” Fconometrica 61, 29-56.

Qin, C.-Z., and Stuart, C. (1997). “Are Cournot and Bertrand Equi-
libria Evolutionarily Stable Strategies?” Journal of Evolutionary Eco-
nomics 7, 41-47.

Schenk—Hoppé, K. R. (1997). “The Evolution of Walrasian Behavior in
Oligopolies,” Discussion Paper No. 344, Fakultit fur Wirtschaftswis-
senschaften, Universitat Bielefeld, Germany.

Schlag, K. (1998). “Why Imitate, and If So, How? A Boundedly Ra-
tional Approach to Multi-Armed Bandits,” forthcoming in Journal of
Fconomic Theory.

Shapiro, C. (1989). “Theories of Oligopoly Behavior,” in Handbook
of Industrial Organization, Volume I (R. Schmalensee and R. Willig,
Eds.), pp. 329-414. Amsterdam: North Holland.

Vega—Redondo, F. (1997). “The Evolution of Walrasian Behavior,”
Eeconometrica 65, 375-384.

27



[12] Young, P. (1993). “The Evolution of Conventions,” Fconometrica 61,
57-84.

28



