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PRE-PLAY COMMUNICATION AND
COORDINATION IN TWO-PLAYER GAMES

Amparo Urbano and José E. Vila

ABSTRACT

The main result of this paper is that any correlated equilibrium pay-off
of a two-player complete information game with rational parameters can be
reached through an unmediated costless pre-play conversation scheme. This
problem was left open by Barany and Forges’” analysis. Our communication
protocol does not rely on external mediators of any kind. It is also self-
enforcing (in the sense that no player has an incentive to deviate if the other
does not) and quasi-sure (in the sense that a ’deviation from the rules’ of a
player can be detected by the other with a probability as close as one as we
want). Coordination failures that may arise in many economic situations are
solved by applying our pre-play communication scheme.

KEYWORDS: Communication; Protocol; Coordination.



1 Introduction.

Two strands of the literature dealing with the role of communication in
non-cooperative games theory have been developed recently. The first does
not model the process by which players exchange messages and 'reasonable’
arguments justify properties that we may expect from communication!. In
the second approach the communication process is explicitely modelled and
it 1s included as a preplay stage in which players exchange messages - in
some specified way - before actually playing. This paper follows the second

approach.

Also, it has been often suggested that if the players of a game can com-
municate, then the appropiate equilibrium notion should not be Nash equi-
librium but the larger class of correlated equilibria (Aumann (1974, 1987),
Myerson (1991)). The idea is that if agents can talk, they could reach a
self-enforcing agreement to let their actions be jointly conditioned on the
outcome of a stochastic trial, rather than independently as assumed by the
Nash construction. However, Aumann’s notion of correlated equilibrium is
not built on an explicit model of verbal communication, and correlated strate-
gies may require an outside correlation device, which may a priori depend on
the parameters of the game.

One may take the view that the correlation in correlated equilibria should
be thought of as the result of the players receiving ’endogenous’ correlated
signals, so that the notion of correlated equilibrium is particularly appropiate
in situations with preplay communication, for then the players might be able
to design and implement a procedure for obtaining correlate private signals.
Barany (1992) shows that if there are at least four players any correlated
equilibrium of a normal- form game with complete information coincides
with a Nash equilibrium of an extended game in which the players engage in
costless conversation (cheap talk) before they play the strategic-form game in
question. However, under this scheme of conversation - protocol - if there are
only two players then the set of Nash equilibria with cheap talk coincides with

!See for instance Rabin (1990, 1993), Farrell (1987, 1988), Farrell and Rabin (1996)
and Hurkens (1996) among others.



the subset of correlated equilibria induced by perfectly correlated signals, i.e.
publicly observed randomized devices.

Forges (1990) extends the result of Barany to games with incomplete in-
formation. She constructs a scheme of plain conversation which is a universal
mechanism for all noncooperative games with incomplete information and at
least four players®. In particular, she shows that every solution that can be
achieved by means of an arbitrary communication mechanism - a procedure
helping the players to exchange information and to coordinate decisions - is
a correlated equilibrium payoff of the game extended by the scheme of plain
conversation® and by Barany’s construction a similar result holds also with
the Nash equilibrium concept. The scheme of plain conversation is universal
because it does not depend on the specifications of the game, nor on the
solution to achieve.

Lehrer and Sorin (1994) and Lehrer (1996) relax the assumption of at least
four player by using mediated communication. They use communication pro-
tocols which rely on a mediator. This mediator receives private signals from
the players and makes deterministic public announcements. They show that
the players can implement any correlated equilibrium with the help of this
kind of communication *. Aumann and Hart (1992) present a type of pre-play
communication, called polite talk, in complete and incomplete information
games. It turns out that, in complete information games, the convex hull
of the Nash equilibrium payoffs set is generated. Gossner (1996) examines
how information stems from communication, therefore linking communica-
tion mechanisms and information structures.

In this paper we construct a scheme of unmediated communication (with
finite message sets) which is a universal mechanism for all noncooperative two
player games with complete information. Thus, we extend Barany’s results
to this class of games and we show that any correlated equilibrium payoff of
such games can be reached through a previous costless pre-play conversation
phase, that in turn, shows the power of plain conversation as a coordination
mechanism.

2If the requirement of finite message sets is relaxed, the result holds also for the three
player case. See Forges (1990).

3The corresponding equilibrium strategies use only finite set of messages.

“They also prove that any communication equilibrium of an incomplete information
game can be achieved in this way. See Lehrer and Sorin (1994) for details.
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Barany’s scheme assumes that there is a secure channel between any two
players. Hence, when there are only two individuals all messages are public
and the largest set equilibrium payoffs which can be achieved by extending
the game with the communication scheme is the convex hull of the Nash
equilibrium payoffs (jointly controlled lotteries).

We depart from this approach and since the main problem is that in the
process of exchanging messages, the players have no reason to trust each
other, we organize the conversation in such a way that messages are public
but with private meaning. This approach is closely related to the one used
to model ’oblivious transfers™ which has been used to solve problem such
that ’coin flipping by phone’ (Blumm (1981)) or ’'playing mental poker with
no real cards’ (Rabin (1981))°.

However, these public and private characteristics of messages have to be
related in some specific way in order to control the integrity of the whole ex-
change of information. Thus we have to use ciphers with some properties, in
particular, that they commute among them. The use of commutative ciphers
is also appealing by their ’fairness’ and ’usefulness’ in games where players
may cheat as the ones mentioned above. However, the main problem with
this approach is that it is very difficult to build up commutative ciphering
and deciphering functions in general spaces. In this paper we solve this prob-
lem by using exponential ciphers over a finite Galois field of prime order p
(p a prime number).

Thus, we construct a communication encryption scheme with private key,
which is based on computing exponentials over a finite field”. Our communi-

5 An oblivious transfer is a probabilistic information exchange such that both the sender
and the receiver cannot be sure of the real meaning of the message.

51n the ’coin flipping by phone’, the problem is to devise a scheme whereby a player,
say Bob, can call heads or tails and the other, say Alice, can flip in such way that each
has a 50% chance of winning. Flipping a real coin over the phone is clearly unsatisfactory
because if Bob call "heads’, Alice can simply say ’Sorry, tails’.

Mental poker is played like ordinary poker but without cards and without real verbal
communication; all exchange between the players must be accomplished using messages.
Obviously any player may try to cheat.

"See Pohling and Hellman (1978), River, Shamir and Adleman (1978). The enciphering
and deciphering transformations are based on Euler’s generalization of Fermat’s theorem.
The security of the scheme rest on the complexity of computing discrete logarithms in the
Galois fields.



cation scheme illustrates the familiar game-theoretic point that a player may
gain from limiting his own information if the opponents know he has done
s0, because in this way he may induce the opponents to play in a desirable
fashion.

We assume that the preplay communication phase is finite and that the
player have bounded calculation skills, i.e. they need a non-null period of

8

time to make any calculation®. Also a technical assumption, shared with

Barany and Forges, is needed: the payoffs of the game must be rational.®.

We will show that our scheme is self-enforcing, in the sense that no player
wants to deviate from it if the other does not, and that it implements any
correlated equilibrium as a Nash equilibrium of the game extended by a
preplay communication stage for the class of two-person games with complete
information. Thus, it allows to solve the coordination failures that arise in
many economic situations. For instance, our pre-play communication scheme
can achieve complete coordination in some two-player entry games whose
payoffs are qualitatively like the ’battle of sexes’ and in other situations
where a mixture of coordination and conflict arises.

The paper is organized as follows. Section 2 states our main result and
interprets it. Some useful key points of Number Theory are presented in
section 3. In section 4 we solve an example in order to make more clear
our theoretical construction. The structure of the communication scheme is
given in section 5. Section 6 analyzes its main properties and the proof of
our main result is undertaken. Economic applications are shown in section
7. Further extensions close our work.

2 The communication game and the main re-
sult

We present first the communication game and the statement of our main
result. Then we develop the communication protocol and prove our findings.

8This time can be as short as we want.

9This assumption is needed to replicate some probability distributions by choosing a
message uniformly at random from a finite set. Anyway this assumption is not a limitation
since it is always possible to approximate a real parameter by a rational one.



A ’protocol’ or scheme of communication is universal if it does not de-
pend on the parameters of the game (Forges (1990)). We are interested in
protocols which are universal for the whole class of all two-person games with
complete information. In this context, typical universal protocols are given

by ’plain conversation schemes’ or 'unmediated communication’'?

consisting
of several rounds in which each player sends a message to the others. With
such communication schemes the dependence of the environment is reflected

by the behaviour of the agents, not by that of informational intermediaries.

As Forges (1990) pointed out, 'to find a universal scheme of communi-
cation is not really an issue; but to communicate through such a protocol
might entail a loss of efficiency’. We will exhibit a plain conversation scheme
which can be used without any loss of efficiency in all two-person games with
complete information (with rational payoffs). More precisely, take any such
game and any solution achieved by adding to the game any communication
system (possibly depending on the parameters of this game and the selected
equilibrium). This solution can be achieved as a Nash equilibrium of the ex-
tended game obtained by adding to the basic game the universal scheme of
unmediated pre-play communication.

Consider a normal-form game I' with two players P, and P, with feasible
sets of actions A = {ay,...,as} and B = {by,...,b;} respectively and pay-offs
functions ug : AX B—Q, uy: Ax B— Q. (a;,b;) € Ax B, i=1,..,s,
j=1,...,t. We allow the players to communicate before they take an action.
The communication stage consists of a sequence of steps where the players can
exchange messages (‘cheap talk’, i. e. additional moves without any direct
effect on their payoffs). This can be interpreted as a conversation between
the players. Here, we do not restrict them to unmediated communication,
they can be helped by any communication device. Thus, consider the above
normal-form game I' and add a communication system to such a game.

This communication system can be formalized in the following way (My-
erson (1991)): Let Ry, (h = 1,2) be the set of reports that player h can send
out into the system and let M;, (h = 1,2) be the set of messages that this
player can receive from it. Denoting by A(M; x Ms) the set of probability dis-
tributions over the set of messages M; x M,, we can completely characterize

10We use the phrases ’plain conversation’ and *unmediated communication’ indistinctly.
The term ’plain conversation’ is due to Forges (1990).



the communication process by a function v : Ry X Ry — A(M; x M,) such
that for all (r1,79) € Ry X Ry and (my,mg) € My X My, v((my,mse)|(r1,72))
is the conditional probability that (my,ms) would be the messages received
by the the players when they sent reports according to (ry,79). Given a
communication system v, it is posssible to transform the original game I’
in a ‘communication game’ denoted by I', which can be formalized in the
following way:

1. The sets of pure strategies for both players in T', are A = {(r1,6;)|r1 €
Ry, 61 : My — A} B = {(rq,8)|rs € Ry, 63 : My — B} i.e. the set
of all the feasible reports that a player can send to the communication
system and all his possible decision rules &, from the set of received
messages into the set of his pure actions in the original non-cooperative
game.

2. The payoff function of player h, (h = 1,2) is given by:

un((ry,61), (re, 62)) = o wl(ma,ma)|(rr, ) )un(81(ma), 65(ms))

(ml,mg)EMl ><M2

i.e. the expected payoff under the probability distribution over the pure
actions of I induced by the communication system from the reports and
decission rules used by both players.

We are interested in the set of Nash equilibria of the game I', (for all
possible v), which can be understood as the set of all possible solutions of the
original game [' achievable through any communication system v. Myerson
(1991) proves that this set is equivalent to the subset of correlated strategies
q of T 11 satisfying the following incentives constrains:

>y q(a, by)ur(ai, by) > 30 g(as, by)ua(asr, by)
> i1 4(as, by)us(as, by) > 577 qlas, bj)ua(as, byr)
Vii =1,..sandV j,j =1, .1

LA correlated strategy is a probability distributions on A x B, i. e. an element of the
set A(A x B).



Notice that these inequalites are the conditions for ¢ to be a correlated
equilibrium distribution of T' (in the sense of Aumman (1974, 1987)) '2. This
fact, known as the revelation principle ** for complete information games,
allows us to focus our analysis on the set of correlated equilibrium distribu-
tions of the original game, instead of working with the mathematically more
complex set of Nash equilibria of arbitrary communication games obtained
from T'.

Hence, the basic situation to deal with is the following: the players of a
noncooperative game have the opportunity to communicate, prior to play,
to reach an agreement to coordinate their actions in a mutually beneficial
way. Specifically, they may try to correlate their strategies to get higher ex-
pected payoffs. Obviously this communication system might depend on some
external correlation device or 'mediator’ who chooses a pair of strategies ac-
cording to some ’out of the game’ probability distribution and informs each
player about his own component using some kind of messages. However, we
are interested in decentralized mechanisms, i. e. in the use of unmediated
communication in strategic settings. Thus, we want to analyze the power
of 'unmediated communication’ as a coordination device. But, talk may be
cheap: if making claims is effortless, an agent is likely to make a self-serving
claim, not necessarily a truthful one. We explicitely model unmediated com-
munication to design and implement a procedure for obtaining correlated
private signals.

So, the question is, could players find a procedure of preplay commu-
nication that replaces the 'mediator’?. The answer is affirmative and the
following proposition states this result:

Proposition 2.1 Let T be a two-player game with complete information and
rational payoffs. Let C(T) be the set of payoffs associated to all the correlated
equilibria of T'.

Then, every payoff in C(T') is the Nash equilibrium pay-off of the game
extended by a costless unmediated pre-play communication phase of finite

2These inequalities also show that the set of distributions associated to all the correlated
equilibria of I" forms a convex polyhedron.

BMore precisely, the revelation principle for normal-form games of complete information
states that any equilibrium of any communication game I',,, that can be generated from a
normal-form game I" by adding a system of pre-play communication v, must be equivalent
to a canonical correlated equilibrium of T'.



duration where both players can talk according to a universal scheme of com-
munication. The communication protocol does not rely on any mediator of
any kind and it uses messages in a finite set*t.

In general, correlated equilibrium strategies may require an outside cor-
relation device which may depend on the parameters of the game. The state-
ment above shows the power of unmediated communication as a coordination
mechanism.

The proof of Proposition 2.1 is the subject of the following sections.
Firstly, we focus just on correlated equilibrium distributions which are Q-
evaluated. Once our result is established for such rational distributions, we
will extend it for arbitrary R-evaluated ones. Hence, we start by constructing
a protocol or communication scheme for the more restrictive class of ratio-
nal distributions. The purpose of this phase of pre-play communication is
to replace the effect of the correlation device. In particular, players use the
ex-ante pre-play communication to agree on a protocol with public messages
but secret codes'®.

The following notation is used: g(a;,b;) = 2L € Q, r; = Y7 T4, 1 =

Zzzl ryand v =30 1 = 23:1 rj=nmn.

3 The set of messages and the ciphering - de-
ciphering functions.

A protocol is an agreed upon procedure according to which players ex-
change a set of messages. A message is a piece of information transmitted
from one player to another one.

MBarany (1992) obtains the same result but with the restriction of four players. Forges
(1990) proves a extension of Barany’s result for incomplete information games of at least
four players.

5Under Barany’s construction there is a secure channel between any two players. In
other words, each two players choose a jointly controlled lottery. However, when there are
only two players in the game, the largest set of equilibrium payoffs which can be achieved
by extending I' in this way is the convex hull of the Nash equilibrium payoffs, since all
messages are public and with public key.
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Thus, in order to construct a communication procedure, both players
have to agree first on the space of messages and to associate to every pair of
strategies of the original game a pair of messages - a two letter word - from
the message space. Notice that since the distribution ¢ is ()-evaluated, it is
always possible to associate to every pair of strategies (a;,b;) a number of
different two letter words such that if one of these words is selected uniformly
at random, the probability that it is associated to the pair (a;,b;) is exactly
q(ai, b;). Once the space of two letter words is constructed, players proceed
to exchange messages, i.e. words.

However, since the main problem is that in this process of exchanging
messages players have no reason to trust each other, we organize the con-
versation in such a way that messages are public but with private meaning.
Hence, one of the players, say player 1, encodes separately (under a private
coding) every letter of all two letter words and sends them to the other player.
This second one selects one of the encrypted words without knowing its real
meaning, and encodes his corresponding letter and sends it back to the first
player.

Note, however, that in order to control the integrity of the whole exchange
of information we need to impose some properties on the ciphers being used.
In particular, we use cipher and decipher functions which commute among
them. Commutation allows players to send public messages with private
meaning without any loss of efficiency of the real information been transmit-
ted. Thus, they can encode and decode previously encoded messages while
keeping privacy and control over the real meaning of them?!®.

Hence, in order to build up the communication protocol we need to use
ciphering and deciphering functions with commutative properties. These
functions can be defined by using exponential ciphers in the way proposed
by Pohling-Hellman (1978). This methodology is based on Number Theory
results. In this section we show the basic concepts of Number Theory in

order to understand our constructions!”.

Two integers a and b are Congruent Module another integer m if and

6The situation is completely different with the arbitrary permutations used by Barany
(1992).
7 A more complete exposition of them can be found in Vinogradov (1955) and Le Veque

(1977)
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only if 3 k integer such that a — b = km. Let us denote by a + mZ the set
of all integers congruent to a module m. When the integer m is clear from
the context, we write a + mZ = a. Given m, it can be proved that there
exist exactly m distinct sets of this kind given by 0,1,...,m — 1. We write
Zm=10,1,....,m —1}.

Algebraic operations with these sets are performed in a similar way to

common integers, i. e. @+ b = (a+b) ab = (ab). It can be proved that
(Zm,+,.) is a commutative ring. It is easy to see that a € 7, has an inverse
in Z,, if and only if a is prime to m (i.e. the maximum common divisor of
a and m is 1). If @ has inverse it is said that it is a unit of the ring Z,,.
The number of units of Z,, is then the number of integers lower than m and
prime to m. This number is denoted by ¢(m) where ¢ is known as Fuler
function . If @ is a unit, then a~' = a?™~1, So, a?(™ =1.

Let us consider the ring Z, with p a prime number. Then, every no null
element of 7, is a unit. The ring 7, is in fact a finite field of p elements

called Galois Field of order p and denoted by G F(p).

To define the set of basic messages (or ’letters’), both players choose
jointly a prime number p large enough in a sense that we will make precise
later. This set will be given by the units of GF(p) except 1:

M = Units GF(p) — {1} = {2,....,p — 1}

To define the ciphering and decodifying functions of the players, each one
of them, P, takes secretly and independently two integers e, d; such that

(en +@(p)Z)(dn + 9(p)Z) = (1 + ¢(p)Z)

where ¢(p) is the Euler function acting over p'. These functions are
constructed from these numbers in the following way, Vin € M, Ey(m) = m
and Dy (m) = m?. It can be proved that:

1. By y Dy, are inverse. (Since (en + ¢(p)Z)(dn + ¢(p)Z) = (1 + ¢(p)Z
we have that 3¢t € Z such that end;, = tp(p) + 1. Hence E,(Dy(m)) =
e+ = mm®)" and because m?®) = 1, we can say that F, (Dp(m)) =

m. Then the two functions are inverses).

18This function is given by ¢(m) = Hle P (p; — 1) where m = p™..pJ™ is the
prime factor decomposition of m.
9Gince p is already a prime integer, we have that ¢(p) = p — 1.
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2. The four permutations commute. (FEy(Dy (1)) = méin = mincn =
Dy (B (m)) and similarly for any other combination.)

3. m cannot be calculated by P, (h = 1,2) from Ej (m) and Dy (m)
(h # 1'). In order to break the cipher, P, needs to know the keys e
and dy of player P:. The knowledge of one of these integers allows to
ascertain the other, since they are inverses in Zyg). The information
that a player has is, in the best of the cases, a list of messages, i.e. 17,
and its codification m®’. Hence, to break the code used by Py is the
same than to calculate the logarithm in base m of M’ in the Galois
field GF(p), i.e. e = log,,(m'). The fact that P, cannot decipher
this key is due to the difficulties of calculating this logarithm?°.

4 Example.

Consider the two person game with complete information analyzed by Au-

mann (1987):

bl bQ
aq <(0,0) (7,2)>
Qo (2,7) (6,6)

where {a1,as} is the set of feasible strategies of P; and {by, by} the set of
those of . It is well known that the probability distribution g given by

(+1)

20This calculation takes exp((ln(p)ln(ln(p)))%) steps (See Adleman (1979)). If both
players agree on the use of a prime large enough (200 digits, for instance), it would take
1.2 x 10?3 steps to calculate it. Even if it is assumed that P, may use a computer, which
could make an operation every useg (i. e. 10! steps a day), he would need 10'? days
or, in other words, several billions of years to make the above calculation. Thus, it is not
possible to ascertain m from its codification. This kind of exponential ciphers, jointly with
the one proposed by Rivest-Shamir-Adleman (1978), are being applied in real situations
where the integrity of the exchanged information is very important (military cryptography,
sales through Internet, etc.)

W= O

W =W |~
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is associated to a canonical correlated equilibrium of the game with an
expected payoff of (5,5). Let us build up an unmediated communication
protocol which allows the players to obtain the same payoff (out of the convex
hull of the Nash equilibrium payoffs of the game). In order to establish this
result we need to use the messages and functions defined above.

Firstly, both players agree on the use of a prime number, say 43. Once this
number has been established they build up a common set of basic messages
(alphabet) M = {2,3,...,42} where @ denotes the corresponding residual
module 43.

To every pair of strategies (a;,b;) € A x B, r;; distinct two-letter words
belonging to M x M are associated. For instance:

(a1,b9) (2,3

<a27 bl) (Z_L ‘i))

(CLQ, 62) (6 7

To avoid that the knowledge of a letter gives a player more information

than the knowledge of the action associated to it, new words must be added.

These new words are just replications of the original ones following the next

tree®! (Notice that bold numbers are refered to the letters which permute in
the next branches):

~~

N
Ol Rl NI
~J1 Ou Wil
e

—~

S~—
S~—

az —

TN TN TN
Okl I
=JI Ou &l
g
TN TN TN
=l Oy DI
~JI Cu Ll
g

S~—r
S~—r

(2,3) (2,7) (2,3) (2,7)
by, —  (4,5) (4,5) (6,5) (6,5)
(6,7) (6,3) 4,7) (4,3)

2I'Every row of ‘branches’ of the tree is obtained by combining every permutation of the
letters associated to an action of the player with any ’branch’ obtained in the previous
step. In order to complete the tree, a row of ’branches’ must be added to every action of
both player which was associated to at least two different letters. Obviously, the order in
which the "branches’ are added has no effect on the final result.

14



Hence, we obtain a set of 2! 2! 3 = 12 two letter words denoted by V' and
given by:

(abb?) (?7%) (?7%) (?7?) (?7?)
<a27 bl) (Z_Lu ‘i)) ((_;, ‘i)) (Z_Lu ‘i)) ((_;, ‘i))
<a27 62) (67 7) (47 7) (67 3) (47 3)
Notice that there are 2! 2! = 4 words associated to any feasible pair of

actions of the original game. Hence, if a word is selected uniformly at random
on the set of 12 words we built up above, the probability of this selection to
be associated to any pair of strategies is, precisely, % as under the correlated
equilibrium distribution q.

The conversation that both players will engage in, consists of the exchange
of encrypted words from the above list. The ciphering and deciphering func-
tions will be build up as exponentiations on the subset of residuals M in
the way shown in section 3. Hence, let us assume that the first player codi-
fies every letter /m of the common alphabet by calculating Fy(m) = m” and

decodifies it by using D(m) = m!'". The same holds for player two, as-

suming that he is using the fuctions Ey(m) = m!! and Dy(m) = m?®. Let
us remark that these four functions commute among them. (For instance,

Ei(BEy(m)) = m®1 = mP 1l = m! = By(By(m)) ).

Once these elements have been established, both player talk through the
following steps:

Step 1 P, calculates and adds a control letter to all the 12 two-letter words.
For instance, F(2 3) = E,(6) = 6° = 36 and obtains the three letter
word (2, 3,36). Hence, he constructs and sends to P»:

(a1,by) (2,3,36) (2,3,36) (2,7,23) (2,7,93)
(as,b1) (3,5,%) (6,5,12) (1,5,26) (5,5,12)
(as,by) (6,7,82) (1,7.5) (6,3,10) (1,3,34)

Step 2 P, codifies these three letter words, using the exponent ey = 11.
Then (2%2,3%,367) = (27,30,6). Working in the same way with all

the words, he obtains:

15



(a1,bs) (27,30,6) (27,30,6) (27,37,25) (27,37,25)
(as,b1) (41,34, 10) (36,34,76) (41,34, 19) (36,34, 56)
(az,by) (36,37,42) (41,37,34) (36,30,29) (41,30,3)

At this point, the second player should change the order of the words
not to give extra information to the other player. We keep the same
order to make the example more clear. Next, the second player sends
to the first one this list of codified words.

Step 3 P, applies his cipherying function to the first two letters of every
word, obtaining (277,307 ,6) = (22,12,6). Thus, the set of messages

becomes:
(a1,b9) (22,12,6) (22,12,6) (22,7,25) (22,7,25)
(az,b1) (11,33,19) (6,33,26) (11, 3_3 19) (6,33,26)
(az,b2) (6,7,42) (11,7,34) (6,12,29) (11,12,3)

Py analyzes the integrity of these words, checking whether the product
of the two first letters is equal to the third 22 12 = 264 = 6. Once all
the words have been checked, the first player selects any three words of
the list such that in the first two positions there are six different letters.

This selection could be, for instance 22.

(22,12, 6)
(6,33,26)
(11,7,34)

This step finishes when P, sends these three words to Ps.

Step 4 The second player checks both that the two first letters of the three
words are distinct and that every pair is a member of an original one.
This last control is made by verifying that the product of the first
two letters of each word is equal to the third: 22 12 = 264 = 6;

22Really, P, is selecting one of the reordered copies of the three original words which
have been added before. In our example, P, has selected the codified ’branch’ of the
replication tree given by (2, 3), (6,5) and (4,7).
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633 =198 = 26 and 11 7 = 77 = 34. Once P, knows that the messages
are correct, he selects one of them at random. Let us suppose that

the chosen one is (11,7,34). Afterwards, the second player calculates
Do(11) = 11*® = 35 and sends P, the letter 7.

Step 5 P decodifies the received message D;(7) = 77 = 37.

Step 6 Both players exchange the letters corresponding to the selected word??.
So, P; receives the message 35 and P, the letter 37.

Step 7 Every player decodifies his message D;(35) = 35" =1 and Dy(37) =
37** = 7. Thus the first player knows that the strategy suggested to
him by the protocol is as and the second knows that he must play bs.
This element has been selected with probability %, the same probability
induced by the original distribution gq.

Let us see what would happen if the first player deviates at step 6 and
sends his opponent a message different from the suggested one, 37. Since P,
cannot discover that e; = 11, when he sends the altered message, he cannot
control the strategy that he is suggesting to the second one. In fact, he
cannot even be sure of sending a valid letter.

Let us remark that P, can realize that P, is cheating. In this case, out
of the equilibrium path, P, can approach the distribution ¢ by playing the
mixed strategy given by the marginal distribution (q(b1), q(b2)).

Specifically, P, sends the second player a letter at random from the set
M — {37} ={2,3, ..., 42} — {37}
and two cases may take place:

1. If the message is different of 30 or 34, P, realizes that P, is cheating.
. 1 e1- . . .- 38 c . .

This possibility will happen with probability 55 and it is possible to

made this number as close as one as we want, taking the prime p large

enough. Let us denote by p(a;), i = 1,2, the mixed strategy of P,

which is a best response to the strategy of P, given by following the

23This is the point of the protocol where players have an incentive to cheat.
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marginal distributions ¢(b;), 7 = 1,2. The biggest payoff that P; can
obtain, 74, is then?*:

ma = pla) (D q(by)ur(ar, b)) + plas) (D a(by)ua(az, b)) = 1_34 =0

j—1 =1

where 5 is the correlated equilibrium payoff, denoted by 7.. Hence
Ty < 7.

2. If the message is equal to 30 o 34 (this possibility will happen with
probability % in each case) the second player will not detect the devi-
ation and the protocol will generate an altered distribution ¢. Let us
calculate this distribution.

g(b1lar) = q(bi|ay) * prob(Py plays by|q suggests (a1,by))
+  q(bs]ay) * prob( Py plays bi|q suggests (aq,by))
= 0 prob(P, plays b |the selected letter is 30)
+ 1% prob(Py plays by|the selected letter is 34 or 37)

Since the altered protocol always sends a letter different from the se-
lected one and player 2 plays by if and only if the letter received by him
is 30, we have

prob(Py plays by|the selected letter is 30) =0

prob(Py plays by|the selected letter is 34 or 37) = 5

Then, g(bi|a;) = % Since P, has followed faithfully the protocol,
Q<a1) = q_<a2) = % Then q<a’17bl) = €7<blla1){7<a1) — %

Similarly, we are able to calculate all the distribution ¢, which is given

by:

2 Note that here, the best response to ¢(b;) is g(a;), since the marginal distributions
form the mixed strategy Nash equilibrium of the underlying game.
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(1)

Let us see that in the second situation the first player cannot obtain
an ex-ante expected payoff bigger than the correlated equilibrium pay-
off. Hence, if the first player deviates and alters the protocol, his best
responses are given by:

=S =
= [¥V N [E

a; =arg max;—12(q(b1|ar)uq(ar, b1) + G(be|ar)ui(as, be)) = as

az = arg  mazi—12(q(bi]as)ur(ar, br) + q(belas)ur(ai, b2)) = ar.

In this case the biggest expected pay-off that he can get by playing
a; when a; is suggested, denoted by 7,4, is 2679, lower than the profit
obtained by faithfully playing and reaching the correlated equilibrium
payoff of 5. Thus, 7,4 < 7.

Hence, the best payoff that P; can get ex-ante by deviating from the

protocol is lower or equal than %Wd + 4—207Tnd < %WC + 4—207TC = 7, = 5. Then,

player 1 has no incentives to deviate and the conversation process built up is
self enforcing (i.e. a player has not an incentive to deviate from the protocol

is the other one is following it faithfully ?*).

5 Structure of the communication protocol.

A protocol seeking to replace any correlation device should satisfy some prop-
erties. For instance, for each player Py, h = 1,2, and once the communication
is over, the information set of player h, 1,2, determines de corresponding
component on h’s strategy set uniquely; i.e. there is a map F}, (known to

P,) with Fi(I,) = a; and Fy(ly) = b; such that:
Prob(I (1) = ai, Fs(I2) = b;) = q(as,by)

Prob(Fy(1h) = a;, y(1o) = b;|11) = q(as, bjlas)

We will make this concep more precise in section 6.
267, is given by all the messages sent and received during the communication phase
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PTOb<F1<]1) = CLZ',F2<]2) = 63’12) = q(a,,bjlbj)
for all (a;,b;) € A x B.

The meaning of the last two conditions is that [ does not give more
information to P, than the knowledge of his suggested strategy.

Notice however, that players may be willing to cheat in order to get
strategic information from the communication scheme. Thus, for instance, a
player may send a different message than the one suggested by the protocol

27

in order to get some advantages®’. Also, when the communication is over,

they may disobey the actions recommended by the protocol.

Our protocol has the property that strategic deviations are detected with
probability as close as to one as we wish?®. But, more than that, we show
that our communication scheme is self-enforcing: i.e. even if a deviation by
a player were not detected by the second one, the first player would not have
an incentive to deviate if the other does not.

The common language space V.

The protocol is a communication scheme defined on a common language
space. This space is jointly constructed by the players from the set A x B
using the distribution ¢ and its rationality.

This construction is made in two steps: Firstly, both player select jointly
the set of messages (or alphabet) by choosing a big prime number p and
taking M = GF(p) — {1}. Any element of the set M x M will be called a
two letter word. Secondly, both players selects n words from M x M with
no letter in common 2°. Afterwards, they associate to each pair of strategies
(a;,b;) € Ax B, r;; words (az,ﬂlj) from the set previously choosen. Hence
if one of these n words is selected uniformly at random, the probability that

this word is associated to a pair of actions (a;, b;) is =L = g(a;, b;)*.

However, notice that the knowledge of his own letter by a player may give
him more information about the other player’s strategy than the knowledge

2TWe add some ’built-in checking’ to avoid some trivial (nonstrategic) mistakes.

28Under Barany’s protocol these strategies deviations are detected with probability one.

29The n selected words will be formed by 2n different letters of M.

3080, if an external mediator selects one of these words and says both players the let-
ter associated to their actions, every pair of strategies will be suggested with the same
probability than the induced by the distribution q.
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of the action he is suggested to play®!. This information can be used in a
strategic way. Hence, in order to reduce a player information, it is needed to
associate new words to every pair of actions. This process is done by bulding
a 'replication tree’ in the following way: let us consider the original set of
two letter words. They form the first ’branch’ of our replication tree. We
proceed from this 'branch’ by induction. For every action aq,..., a,, bq,...,b;

we add a new row of 'branches’ to our tree in the following way: for every
"branch’

(a1, %)

(%)
in the previous row we add 7;! new ’branches’ by permuting o, ..., ol
i

in all the feasible ways and keeping the other letters (denoted by #) in their
old order3?:

(0431(1)7 *) (O‘ffgu)a *) <O‘ff”_,(1)a *)

(Ogé_l (Ti_)7 *) (Oélifg(ri_y *) (OZ(Z‘)'TL!(TZ‘_)? *)

& (%, %) (%, %) (*, %)

(, %) (%) (. %)

for all o, (w=1,..,7;!) in the group of permutations of o, ..., o

At

Let us denote by V' the subset of M x M which is formed by the words

of all the "branches’ of the last row obtained after the above construction 2.

31Let us show this situation for the example of section 4. Assume that the set V" has not
been built up and that both players are just dealing with the original associations given
by (a1,b2) — (2,3), (ag,b1) — (4,5), (ag,b2) — (6,7). If a external mediator suggests P
to play ap, his probability about the action suggested to P, is prob(b;) = prob(by) = 1.
But if P receives the message 4 he knows that the chosen word is (4,5) and that player
2 is suggested to play b;.

32We show the construction for any action a; of player 1. The addition of new rows for
an action b; of player 2 is done in the same way.

331t is easy to check that this construction does not depend on the order in which these

actions are considered.
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This set of valid words, which may be much bigger than the original one,
satisfies the following properties:

1. Car(V)isamultiple of n (i.e. Car(V) =vnwherev =yl .rgtrlorgd).
2. The number of words associated to any pair of strategies (a;, b;) is vr;;.

3. The knowledge of any letter associated to a; does not give more infor-
mation than that of a;. 3%

Thus, the probability of choosing a pair of messages in V associated to
the strategies (a;, b;) is 7’_;1 and the knowledge of a component of the message
gives the same information about the other than the correlated equilibrium
distribution ¢(a;|b;) and q(b;]a;), respectively. Hence, the three properties of
the maps F}, and the information sets I, (h = 1,2), above established holds.

The communication scheme.

Each player select independently two functions Ej and D;,, permutations
of M, by using exponential cipher, in the way considered in section 3.

Before describing the specific steps of our protocol, notice that there will
not be a previous agreement about the pair of actions to play, since every
player may prefer a different choice. Thus, to choose a pair of messages at
random, our communication scheme is based on a codification of every word
by, say, player 1, to allow the second one to select a pair of strategies at
random without knowing its meaning. In the encryption process every letter
of a words is codified independently of the other. Also, to avoid a player to
change the order of the letters among different words, to make some strategies
more likely than others, we add to every word an extra letter which, once
encrypted, allows players to check if two codified letters are members of the
same original word. In particular, this third letter could be calculated as the

product of the two letters of every word, i. e. ’y,?l = aéﬂlj 35,

Our protocol has the following steps:

341t is important to remark that different words can appear a different number of times.
In this way, although a player does not know the real meaning of a word, he could obtain
some advantages by analyzing the frequencies of the different words in the list of messages.
35 P, has no chance of changing letters from an original word to another without being
detected by P, since he needs to find e what, as we saw above, it is not possible. The
checking that the second player has to make when he receives ((a}), (67)%, (v,7)°*%?) is
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Step 1 Player 1 adds to every word (az,ﬂlj) a third control letter £ (’y,?l)
and sends them to I%.

Step 2 For every word in the list, the second player calculates (Ey(ad),
Ey(8)), Ea(Er(73))) and sends them to P;.

Step 3 For every word (F»(a}), E» (ﬂl]), Ey (B, (’y,?l))), P calculates (E1(Ey((ad)),
By (EQ((ﬁl])), Ey (B, (’y,?l))) and checks that every (oz,i,ﬂlj) corresponds to
an original word. Afterwards, P; selects n different codified words sat-
isfying that 2n different letters appear in these choosen words (without
considering the control letters)*®. These n words are sent to P.

Step 4 P, checks that there are exactly 2n distinct codified letters in the
list of n words received from P;. Afterwards he calculates
Dy(Er(Es(e))) = Er(aj)
Dy(Ey(Ba(8]))) = Br(A])
Dy (Er(Ea(vip))) = Ei()

and he checks, using £ (’y,?l), that the two codified letters (F1(at), E1 (ﬂl]))

are members of the same original word of the set V 37, If it is detected

to calculate (72%)51520{2 = ('y%)el and to control if this element, which belongs to GF(p),
is the product of the two first letters of the word. It is important to remark that this
checking process is made by the second player without having any information about the
real meaning of the words ciphered by P;.

36 A more intuitive way to see what P; is doing at this step is the following: after building
up the replication tree some new ’branches’ of words have been added to the original list.
Each one of these "branches’ is a replication of the original list, where the way in which the
letters are combined has been altered. At this step of the protocol, P; selects one of these
"branches’ (without knowing which is the chosen one) and sends it to ;. Afterwards, P
can select uniformly at random a word of this block. The two-step selection is necessary to
restric P, extra information from analyzing the number of times that every word appears
in V. For instance, one can realize that in the set V of our example (section 4) the words
associated to (ag, by) appear once, but those associated to the other pairs of actions appear
twice. Since the codifying and decipherig fuctions are bijections, the same difference in
the number of words will be mantained after encryption.

37In order that the protocol works correctly, the knowledge of Ey ('y]?l) must allow P> to
be sure that, (F; (ot ), Fy (ﬁlj)) are the two letters which constitute an original word, without
giving him any information about the real meaning of the associated word (Oz}'{, ﬁlj ).

23



that P, has deviated, the protocol will start again. Otherwise, I se-
lects uniformly at random a pair (Fy (&), £1(3))) and sends Es(E1(3)))
to P1

Step 5 P calculates Dl(EQ(El(B;))) = EQ(BZJ)
Step 6 P, sends EQ(BZJ) to P, and P, sends F,(a%) to P.

Step 7 P, calculates Di(Ey(ak)) = ai and plays a;, and P, calculates
Dy(E5(5])) = B and plays b;.

If both players follow the above protocol, they obtain the same pay-off
than that of the correlated equilibrium under the distribution ¢. But we must
still solve a key question: Do players have an incentive to follow the protocol
if there is not any binding contract between them?. To give a positive answer
to this question is the main goal of the following sections.

Note that the above steps completely describe both players’ actions along
the equilibrium path of the communication phase. However a player, say P,
can deviate from the protocol path and, with some probability, the other
player P may realize of it. To describe, in this case, the strategies out
of the equilibrium path, we assume that P, will follow the mixed strategy
induced by the marginal distribution on his actions, i.e. ¢(b;), j = 1,...,t.
This would suffice to deter P from deviating. Also, with the complementary
probability, P can deviate and not to be detected by . Now, /% would
choose his actions according to the induced probability distribution which
would follow the ’altered’ message.

6 Properties of the communication protocol.

We analyze next whether players have an incentive to deviate from the pro-
tocol. This analysis is developed under the assumption that player 1 deviates
and player 2 faithfully follows the protocol. The same results would follow
when P, is the cheating player.

6.1 e-sure protocols.

A ’deviation from the rules’ by a player is a plan to correlate actions in a
way different from that prescribed by the protocol. Here, the plan consists
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of sending different messages from the ones specified by the rules.

Our next result shows that it is always possible to construct a communica-
tion scheme such that deviations from the rules are detected with probability
as close as 1 as we wish. First, we define:

Definition 6.1 A communicalion protocol is e-sure if any devialion from
the rules is detected with probabilily 1 — e.

As it was said above, to construct the set of messages both players have
to start by choosing jointly a prime number p. The next proposition shows
that this prime can be chosen in such a way that the protocol is e-sure, for
each positive e.

Proposition 6.1 The protocol is e-sure, i.e. ¥ £ > 0, 3 p prime such that
Py detects that Py has deviated with probability 1 — <.

Proof: Let E5(/3) be the message suggested by the protocol to player 1
at step 6. The deviation of P consists of sending to P, a message Fa(0")

different from Fy(3). P, will detect this deviation if and only if 5* is not
associated to any feasible action b;, j =1, ..., L.

Since 3* # 3, there are card(M) — 1 = p— 3 possible values® from which
[* can be selected uniformly at random. Also notice that there are exactly
card(M) —n = p — 2 — n messages associated to no action of P. So

Prob(P, detects) = Prob(* is associated to no action b;)
p—n—2

p—3
Given ¢, n is fixed, thus

-2
lim Prob(P, detects) = lim P2

P—00 pP—00 P — 3

and then the result of the proposition follows.

3 Notice that Card(M) = Card(Units of GF(p) —{1}) =p—2.
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We do not just consider e-sure protocols, but a more demanding protocols.
In particular, communication schemes where a player has no incentive to
deviate even if he is not detected by the other player, as long as this last one
follows the scheme (i.e. self-enforcing protocols). In order to show that our
protocol satisfies this property, we need to analyze the distribution associated
to a player’s deviation.

Notice that given a protocol that seeks to implement the correlated prob-
ability distribution ¢ on A x B, if player 1 plans to ’deviate from the rules’
according to a uniform transition probability over M — {3}, and assuming he
is not detected, then the induced probability distribution over action profiles
is given by g(as;,b;) = f(q(as, by), 8,8%), V(a;,b;) € Ax B, p* € M — {3},
€ M, where f is a function which depends on ¢ and the messages involved.
The next section characterizes and analyzes the main properties of the new
induced distribution q.

6.2 Self-enforcing protocols.

Let us remark that deviations at step 6 are uncontrolled, so that we can
think that their effect is to break the coordination induced by the correlated
equilibrium. This intuition is confirmed by the following propositions.

Proposition 6.2 Undetected deviations from the rules by a player do not
change the probability of the other one to play a given strateqy®®, i.e.:
Prob (P, plays b;| Py deviates from the rules and is not detected) =

q(b;)

Proof: As we have pointed out above, if P, deviates from the rules he
sends to P, a message Fy(3*) distinct from the suggested one Fy(3). The
deviation is not detected if and only if 3" is any of the n — 1 messages

associated to the actions by, ..., b; and different from g.

Py will play b; if the altered message 3* is one of the r ; letters associated
to this action. The probability of 5* to be a message associated to b; depends
on the actual value of the suggested letter 3. Hence,

39Gossner (1996) also shows that this property refers to any self-enforcing protocol,
although he calls these protocols ’sure protocols’.
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Prob (P, plays b; when Py deviates from the rules and he is not detected) =
ST Prob (3* is associated to b;|3 is associated to by)
Prob(( is associated to b,)

As 3 is selected uniformly at random from the set of n messages associated
to by, ..., by, we have Prob(§ is associated to b,) = T*. Moreover, since 3" is
also selected uniformly at random from the set of n — 1 element of feasible

messages but B, we can write:
Prob (8* is associated to b;|3 is associated to b,) = —L Yu # j

n—1
Prob (8* is associated to bj|3 is associated to by) = T—n%l

Hence,

Prob (P, plays bj when Py deviates from the rules and he is not detected)
¢ ¢

Ty, —1r; j J
_ Z T L_I_T.J &:LQ :/r-.u_l):&:q<bj)
n

uzlyu#n—ln n—1n n(n-1)

u=1
O

Let us assume that P, has not detected the deviation of P;. Let g(a;,b;)
be the new probability distribution on (a;,b;) generated by P;’s deviation.
g(a;, b;) satisfies:

1. q(b;) = q(b;) by proposition 6.2.

2. q(a;)

q(a;) since P, follows the protocol.

Notice that, given a distribution ¢ defined over A x B, with marginals
q(a;), q(b;), if q(a;,b;) — q(a;)q(b;) = 0, V(ai, b;) € A x B, ¢ does not have
any correlation power. Thus, if ¢ is associated to a correlated equilibrium
of a game and the condition above holds, the suggestions of the correlation
device can be understood as playing the uncorrelated mixed estrategies given
by the corresponding actions’ independent marginal distributions.

Let us define the correlation power of q, ¥(a;,b;) € A x B, as C;; =
q(ai, b;) — q(a;)q(b;). Obviously, correlation on A X B may induce the prob-
ability associated to the pair (a;,b;) to be higher or lower than the product
of the marginal distributions of a; and b;. Also let ’sign of C;;’ be the coor-
dination power of ¢, ¥(a;,b;) € A x B.
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Similary, let us denote by Cj; the correlated power of § at the pair of
actions (a;,b;), 1. e.: C;; = q(a;,b;) — G(a;)q(b;) and by ’sign of C;;’ the
associated coordination power of §.

Notice that the complezity of the rational distribution ¢ is given by the pa-

rameter n, since the higher is n the more complex must be the randomization
device used to generate this probability distribution on the event spaces.

Proposition 6.3 .

i) The new probability distribution over actions generated when Py deviates
and Py does not detect him, is given by*® q(a;,b;) = q(a;)q(b;) — =5 C;.

ii) The correlation power of the altered distribution q is given by C_'Z-j =
—%ICZ-J- and, obuviously, sign C;; = — sign Cj;.

Proof: Let us suppose that a; is the strategy suggested by ¢ to P;. Then,
the probability that /% plays any strategy b, is given by:

t

g(bjla;) = Zq(bulai)Prob(PQ plays b, | g suggests (a;,b;) )

u=1

The original messages (3 is associated to the suggested action b;. The
undetected deviation of P, means that this original message has been deleted
from the list of feasible messages in such a way that only n— 1 valid messages
remain, 7 ; of them associated to b; and r, associated to any b,, different from
b;. Hence, we have:

T
q(bjla;) = q(b; !aznj Ly Z (bulas) _1
u=1,u#j
1 t
= H(ZQ(bu!ai)T.j—Q(bﬂai))
u=1

1ONotice that if ¢ does not have any correlation power, i. e. C;; = q(ai,b;)—q(a;)q(b;) =
0, then ¢(a;,b;) = g(ai,b;). In other words, if players play a mixed strategy equilibrium,
a deviation from the rules has no effect on the probability distribution generated by this
deviation.
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1

= 1(7”.j — q(bj]a;))

= () + ——(a(b,) — a(t;]e)

Multiplying this expresion by ¢(a;) and using the definition of correlation
power we obtain that i) holds.

To prove ii), we can write i) as

q(ai,b;) — 4(a:)q(b;) = q(as, b;) — qlas)q(b;) = _ﬁ

and then, by applying the definition of coordination power for the involved
distributions, the result follows.
([l

Hence, a deviation by a player has the effect of both decreasing the cor-
relation power and breaking the coordination power of the probability dis-
tributions over actions. Moreover, this decrease on the correlation power is
related with the value of n > 2. When this parameter takes its lowest value,
n = 2, we have that C;; = —C;; and no correlation power is lost but the
coordination power is broken. When n encreases, i. e. when the original
distribution gets more complexity, the correlation power of § becomes lower.

At this point, notice that there is another possible deviation from the
protocol. This deviation consists of not following the strategy suggested
by the communication scheme. Thus, if a player deviates in step 6 and
generates, then, a new distribution on any pair of actions, he may consider
not following the suggested strategy under the new distribution*!. Hence,
following the action suggested by the altered protocol distribution § may not
be the best response for the first player. The next lemma, proved in the
Appendix, shows that P, cannot expect to encrease his payoff by deviating

from the protocol:

“Gince the initial distribution ¢ is associated to a correlated equilibrium of T', there is
no reason to play an action different from the suggested by ¢. But, if a player deviates
at step 6 and the distribution generated by him is not ¢, an incentive to deviate from the
suggestion may arise.
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Lemma 6.1

s t s t

Y alamaze cay | qbilayun(a,, b) <Y > glas, by)ui(as, by)

=1 j=1 i=1 j=1
Next, we prove that our protocol is self-enforcing.

Definition 6.2 A pre-play communication protocol admits a feasible devia-
tion if any player can obtain a profit by deviating, meanwhile the other player
follows the protocol.

Definition 6.3 A pre-play communication protocol is self-enforcing if it does
not admit any feasible deviation by any player.

Proposition 6.4 The protocol defined in section 5 is self-enforcing.

Proof: To establish this result we need to prove that the biggest ex-ante
payoff that P; can get by deviating is lower than the correlated equilibrium
payoff. This ’highest payoff from deviating’, 7, satisfies that: 7 < emy+ (1 —
£)Tna, Where Ty and 7,4 are the biggest payoffs that P, can obtain when Ps
detects and does not detect, respectivily, his deviation.

Let us denote by 7. the correlated equilibrium payoff. Since Lemma 6.1
holds, we have that 7,4 < 7.. Hence, to prove this proposition, we only need
to show that 7y < 7.

Assume that p(a;), i = 1, ..., s is the best response (mixed strategy) of P
to the second player’s strategy given by his marginal distribution on actions.

We have that:

Ty = Zp (a;) Z (b;)uq(ai, b;)

7j=1
= Zpal ZZ q(a;,b Ulawb)
Jj=11¢=1
= Zp(ai)(Zq(ai,b )u1 a;,b Z Z az Ul aub ))
i1 j—1 =144 j=1
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Since q is a correlated equilibrium distribution,

t t
ZQ(aiubj)ul(di,bj)) < Zq<ai/,bj)u1<di/,bj>)
j=1 j=1
Hence,
t s
7Td<zpaz quazu Uy a’z; Zpaz e =T
j=114=1

and the proposition holds.

Proof of proposition 2.1 (Main result).

A straight consequence of the above proposition is that the main result
holds for every correlated equilibrium with a () - evaluated associated prob-
ability distribution. To extend this result to R - evaluated distributions,
although under the assumption that the original game has rational parame-
ters, we can apply the same construction than Forges (1990): any arbitrary
R-evaluated distribution is a convex combination of a finite number of -
evaluated distribution (the vertices of the convex polyhedron of correlated
equilibrium distributions). Hence, the payoff associated to the real distribu-
tion can be achieved by two phases of plain conversation. In the first step a
vertex is selected depending on the convex coordenates of the R- evaluated
distribution and in the secon step our protocol provides the payoff associ-
ated to the (Q-evaluated distribution corresponding to the vertex previously

selected (See Forges (1990) for details) 2.

42The jointly controlled lottery of this proof can also be generated by using our com-
munication protocol. Hence, P, and P, are able to choose a number in {0,1} with the
same probability by using the communication protocol built up in this paper to replicate

the distribution
0
1

which can be understood as a correlated equilibrium of a 2 x 2 trivial game with null
payofls. Repeating this process we can obtain the binary codification of a concrete re-
alization of the random variable v, which is uniformly distributed in [0,1). This is an

O rl= o
o= O =
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7 Economic application: simoultaneous en-
try game.

Consider the following situation, widely analyzed in the literature (for
instance Dixit and Shapiro (1985), Farrell (1987)): two identical firms pro-
duce a good and they are perfectly accommodated in a market wide enough
to grow. These firms analyze the possibility of producing a second good
whose market is a natural monopoly. Both firms must simultaneously decide
whether to enter or not this second market. Since this new market is a nat-
ural monopoly, the worst posible situation is that both firms enter. If only
one of the firms enters the second market, their profits will strongly depend
on the relationship between the new and the old goods.

In order to formalize this situation, we denote the action of entering the
second market as In and the action of remaining out as Out. If both firms
stand out, they get a payoff of N (N > 0). If one of them enters and the
other does not, the first one receives M and the second B. If they do not
coordinate and both of them enter, every ones looses L. Let us assume that
all these payoffs are rational numbers. Payoffs are displayed in the following
matrix where firm 1 chooses the row and firm 2 chooses the column:

In Out

In (—L,—L) (M,B)
Out < (B, M) (N,N)>

Firms play ”coordinated actions” if just one enters. If both of them
remain out or enter simultaneously, they act in an uncoordinated way. In
the coordinated solution the payoff of the firm which enters is, of course,
bigger than the profit of the other one, i.e. —L < B < M.

Since the parameter B determines the payoff of the firm that stands out
in coordinate actions, we have that its sign models the relationship between
the old product and the new one. Thus, if B = 0 the firm that stays out is
not affected by the other’s decision (independent goods); if B > 0 it prefers
the other to enter (complementary goods), and if B < 0 the firm that enters
decreases the profits of the one which stays out (substitute goods).

alternative construction to the one of Aumman, Maschler and Stearns (1968), used in the
proof of Forges (1990).
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Let us consider first the perfect information game associated to the case
of complementary goods (Farrell (1987)): —L <0 =N < B < M. Then, the
payoff matrix is a ’battle of sexes’ and the game has three Nash equilibria:
two of them in pure strategies (In,Out), (Out,In) and the other in mixed
strategies (p In 4+ (1 — p) Out, p In + (1 — p) Out), where p is given by

p= %. This last equilibrium is known as the "Dixit-Shapiro equilibrium’
of the game.

Since both player are identical and have the same negotiation power, it
seems reasonable to think that they will play a symmetric equilibrium: the
Dixit-Shapiro one (Dixit and Shapiro (1985)). In this equilibrium both firms
coordinate with probability p(1 — p). The expected payoff obtained by each

firm in this case is upg = % and a coordination failure will take place
with probability fps = p*> + (1 —p)? = %. In this context it seems

logical that firms have an strong incentive to communicate before playing
the game in order to eliminate the possibility of coordination failures.

We extend the basic game by adding the pre-play communication scheme
developed in this paper to show that both firm can always coordinate them-
selves in a symmetric way 3. To this end, we focus in the unique symmetric
completely coordinated solution of the game 4, given by its associated prob-
ability distribution over every pair of strategies

43Farrel (1987) also builds up a communication protocol with 7" rounds. In each round,
every firm can send one message in the set {In, Out}. The extended game has, of course,
many equilibria but there is only one with the following properties:

1. Tt is symmetric to both firms.

2. If at any step a firm says In and the other says Out, firms send the same messages
in all remaining steps and finally they play the corresponding actions.

3. If the communication phase ends and both firms have said either In or Out at every
step, the Dixit-Shapiro equilibrium is played.

Farrell proves that the expected payoff is always bigger than upg and encreases with
T. Also, the probability of a coordination failure is always lower than fpgs and decreases
with 7. However, even in the limit case of an infinite communication phase the expected
payofl is not greater than B and the probability of failure does not converge to zero.

“4This is done without loss of generality. This outcome is clearly focal in this symmetric
model. However, we could assume asymmetric firms and consider correlated equilibria in
which (In, Out) is played with probability v and (Out, In) with probality (1 — ) (with
v € (0,1) and depending on the ‘negotiation power’ of each firm.
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In Out

In 0 3
Out % 0

Since this distribution is a convex combination of two Nash equilibria it
is trivially associated to a correlated equilibrium in the sense of Aumann
(1987). Moreover, with this solution we have that the expected payoff of
each firm is u = %M + %B and that the probability of coordination failure is
zero, i.e. [ =0.

Once the complete coordination is expressed as a correlated equilibrium of
the original game, we can apply Proposition 2.1 and we have that the perfect
coordination payoff for both firms can be achieved as a Nash equilibrium
payoff of the game extended by a costless pre-play communication phase, as
we have already shown.

Also notice that deviations from the protocol are not profitable for players.
By Proposition 6.4, any undetected deviation by a player would induce a new
distribution ¢ on the set of actions of the firms given by:

In Out
In < 5 0 >

Out 0 %
As we have remarked above, since n = 2, § has the same correlation power
but the opposite coordination power than the original distribution q. Hence,
the deviating firm will always disobey the suggestion of the altered protocol in
order to maintain coordination and its expected payoff will be the same than

it will have obtained by following the protocol. Thus, there is no incentive
for a firm to deviate and the communication protocol is self-enforcing.

Let us realize that, in the above case, coordination failures can be com-
pletely avoided by using a jointly controlled lottery. This is not true for
all the correlated equilibria of the general simultaneous entry game. For in-
stance, consider the case where there exists substitubility between the old
and the new product. Then M > N > L > 0 > B > —L and the equilibria
remain the same. A firm prefers to enter but that both stay out rather than
to be the only one which stays out. It is easy two check that the following
probability distribution ¢
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In 0
Out L

3

wi—wl— QO
N S._

is a correlated equilibrium distribution of the simultaneous entry game.
Clearly, the correlated equilibrium payoff associated with this distribution is
not achievable by using any jointly controlled lottery. Hence, more complex
communication schemes are nedeed in this case. Since our main result holds,
we know that this payofs can be reached as a Nash equilibrium payoff by
extending the original game with an ex-ante communication phase.

Our communication scheme can also be applied to achieve coordination in
the choice of compatibility standards and all the economic situations where
payofls are like these of the battle of the sexes (see Farrell (1987) and Farrell
and Saloner (1988)).

8 Conclusions and further extensions.
Our results are usefully summarized in the following statements:

i) Any outcome of any mediated communication two-person normal form
game (with rational payoffs) of complete information is also an out-
come of an unmediated communication two-person normal form game
of complete information.

ii) And such outcomes are the Nash equilibriun outcomes of a normal form
two-person game of complete information extended by a pre-play cost-
less communication scheme involving a universal mechanism of unmedi-
ated ’plain conversation’.

The natural extensions of these results are mainly two:

Firstly, the extension to m players. This extension of our result may
be easily obtained if we assume, as in Barany (1992) and Forges’ (1990)
papers, that players cannot form coalitions. The pattern of the information
in our protocol will form a loop. In other words, the information starting
from a player will follow a one arrow direction to another player and, it
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will come back to the first one in the opposite direction °. Obviously, the
more appealing extension is for the three player case (with a finite set of
messages), since for four or more player satisfactory results are provided by

Barany (1992).

Secondly, the extension to general two-person games with incomplete in-
formation. In this class of games players have private information and hence
the communication protocol has to achieve two effects at the same time:
information transmission and coordination of the players.

Satisfactory results are avaliable for first, all games of incomplete infor-
mation with at least four players (Forges (1990)), and second, for games of
information transmission with independent senders (Forges (1988)). Again,
for three person games of incomplete information the above result extends
once the requeriment of finite message sets is relaxed. Hence, the only open
question here concerns the finiteness of the sets of messages.

For two player games of incomplete information no results are avaliable for
the general case under unmediated talk. However, some answers have been
given for specific games. Thus, for two person Sealed Bid Double Auctions
games, Matthews and Postlewaite (1989) proved that the set of Bayesian-
Nash equilibrium outcomes of the unmediated communication-bidding game
defined by adding one round of simultaneous message exchange contains the
equilibrium outcomes of all other communication-bidding games. But, their
result relies on simultaneous rather than sequential message exchange and

45The sketch of the information flow in the three player case would be the following:

1. The three player agree on the use of an alphabet and assign to each trio of actions a
set of three letter words (o, 5;,7x) in the same way as in the two player case.

2. Each player selects independtly exponential encription and deciphering functions £,
Dy, (h=1,2,3).

3. The first player codiphies each word (o, (;,7k) by applying his function F; and
sends all the codified words (E1 (o), E1(5;), Er (7))

4. The second player applies Fy to the last two letters of every word and sends to the
third player (L1 (), E2(E1(5))), B2 (L1 (Vx)))

5. The third player selects one of these words (say (Fi(«), Fo(E((5)), Fe(F1(7))))
without knowing its real meaning. Afterward, he sends (Eo(F1(3)), E5(F2(F1(7)))) to
the first player. The first one calculates (Fa(83), E3(F2(v))) and sends F3(Fa(7y)) to the
second player. The second one calculates E3(7y).

6. The first player sends F(3) to the second one. The second player sends Fs(vy) to
the third one. The third player sends F(«) to the first one.

7. Every player deciphers his message and plays the corresponding action.
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communication in their equilibria plays only a coordination role*¢. Also for
mediated talk results are provided by Lehrer and Sorin (1997). For the
convex hull of the Nash equilibrium payoffs, results are provided by Aumann

and Hart (1992).

The main difficulty with designing unmediated communication protocols
for two player general games of incomplete information is to combine together
signaling and decision making. Examples in Forges (1990) show that this is
not an easy task. Our future work goes through first investigating this kind
of examples.

“Farrell and Gibbons (1989) were the first to consider communication in a double
auction. Although their game is a special case of that of Matthews and Postlewaite,
their equilibrium is a true communication equilibrium in the sense that it both transmits
information and coordinates decisions.
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Appendix: Proof of Lemma 6.1.

The biggest pay-off that P, can get ex-ante with his deviation is

s t

> qla)maza,ca Y qlbjla)u(ar, by) =
=1 =1
s t s t
= Z q(a;) Z q(bsla:)ui(as, by) = Z Z q(a;, b)ui(as, by)
i=1 j=1 i=1 j=1

where G; = arg  mazg, ca ZJ 1 4(bjla;)ur(ay,,b;). Using proposistion 6.3
and the properties that characterizes q as a correlated equilibrium distribu-
tion, we have that:

ZZ g(ai, by)uy(a;, b;)

=1 j=1
1 s t s t
= 3 (> q(a) > qb)ua(aiby) = > > glas, by)ui(as,b;))
=1 J=1 i=1 j=1
1 s t s
= 1(nzq(ai)2(q(ai,bj) + Y qlar, by)yu(as, by)
=1 =1 k=1,k+1
s t
—> ) qlas, b)ua(as, by))
=1 j=1
1 s t s
s 1(”ZQ(%‘)Z(Q(az‘abj)ul(diabj) + > qlar,by)ui(ax, b))
=1 =1 k=1,k+1
s t
—> ) qlas, b)ua(as, by))
=1 j=1

ertlng U'l(di; bj) as Uq (CLZ', bj) - ul(a,-, bj) + U'l(di; bj), we obtain that:
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i—1 j—1
] t
1 .
< n—1 (nzq<a’l> Z<q<a’iubj)<u1<a’iubj) - U'l(a’i?bj) + U'l(a’i?bj))
=1 j=1
+ Z q(ar, bj)ui(ax, b ZZ q(as, b)u1(as, b;))
k=1,k#i =1 j—1
1 t ]
= (n Z qax, bj)ui(ax, b; )(ZQ(%))
j=1 k=1 i=1
—an (a:) Z (@i, b;)(ua(as, bj) — ua(as, by))
j=1
] t
_quazu U’l alub))
=1 j=1

Since Y7 | g(a;) = 1, we can write:

S t S t
DD e byyua(as by) < > Y alas, by)ua(as by)
=1 j=1 =1 j=1
1< : )
+t— 1(2(1 —ng(a;)) Y qlai, b;)(w(a;, b;) — w(@s,b;)))
i=1 Jj=1

Hence, we need only to prove that the terms

t

(1 —ng(a:) > qlas, b;) (ur(as, by) — ua(as, by))

=1

are non-positive. But this conclusion is straight by considering these two
cases:

i) If g(a;) # 0 we have that ng(a;) > 1 since n is the minimum common mul-
tiple of the denominators of ¢(a;, ;). Moreover Z] 19, b)) (ur(aq, by)—
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u1(a;,b5)) > 0 given that ¢ is a distribution associated to a correlated
equilibrium, and then (1—ng(a;)) 23:1 q(ai, b;)(u1(a;, bj)— ui(a;, b)) <
0

ii) If ¢(a;) = 0 we have g¢(a;,b;)

= 1,...,t and then (1 — ng(a;))
>y qlas, by) (ua(ai, by)— ua(as,
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