FROM WALRASIAN OLIGOPOLIES TO NATURAL
MONOPOLY:AN EVOLUTIONARY MODEL OF MARKET
STRUCTURE!

Carlos Alés-Ferrer, Ana B. Ania and Fernando Vega-Redondo?

WP-AD 97-24

Correspondence to: F. Vega-Redondo, University of Alicante; Faculty of Eco-
nomics; 03071 Alicante (Spain). Ph. 34-965-903614/Fax 34-965-903685/F.mail:
vega @ merlin.fae.ua.es

Editor: Instituto Valenciano de Investigaciones Econémicas
First Edition: December 1997

ISBN: 84-482-1643-1

Depésito Legal: V-4632-1997

IVIE working-papers offer in advance the results of economic research under
way in order to encourage a discussion process before sending them to scientific
journals for their final publication.

L'We thank Luis Corchén and Eric Van Damme for helpful comments. Financial support
from the Instituto Valenciano de Investigaciones Econémicas and from the Ministry of Edu-
cation project No. PB94-1504 is gratefully acknowledged.

2. Alés-Ferrer and Ana B. Ania: University of Alicante; F. Vega-Redondo: University of
Alicante and Instituto Valenciano de Investigaciones Econdmicas.



FROM WALRASIAN OLIGOPOLIES TO NATURAL
MONOPOLY:AN EVOLUTIONARY MODEL OF MARKET
STRUCTURE

Carlos Alés-Ferrer, Ana B. Ania and Fernando Vega-Redondo

WP-AD 97-24

ABSTRACT

We study a market for a homogeneous good in which firms adjust their
production decisions on the basis of imitation, learning from own experience,
and local experimentation. For any fixed set of firms (more than one), long
run behavior settles on a symmetric marginal-cost pricing equilibrium. When
market entry and exit are allowed, we find a sharp effect of technology on long-
run market structure. Specifically, we show that, under decreasing returns and
some fixed cost, the market grows to “full capacity” at Walrasian equilibrium; on
the other hand, if returns are increasing, the unique long run outcome involves
a profit-maximizing monopolist.

KEYWORDS: Imitation; Evolution; Mutation.



1 Introduction

The traditional Theory of Industrial Organization has adopted the full ratio-
nality of firms as one of its basic premises. This has been widely criticized
because it involves an excessive degree of rationality, extensive knowledge, and
high computation capabilities. In contrast, evolutionary models view firms as
agents whose rationality is bounded, due to some limited reasoning capacity or
imperfect knowledge of the environment.

Alchian [1] was the first to point out that imitation of success should be
regarded as a major determinant of behavior in economic environments. For,
among other reasons, it requires minimal knowledge on market conditions and
imposes very little computational burden on firms. As a measure of success, he
also argued, profits should be the key variable used by firms within a market
environment.

A model with these characteristics has been recently proposed by one of us
(Vega-Redondo [12]), thereafter labelled VR.! This paper considers a market for
a homogeneous good with n firms having access to the same technology. Every
period, firms may imitate those outputs which led to the highest profits in the
preceding period. Furthermore, they occasionally experiment (or “mutate”)
with some independent and small probability. Under the assumption that a
symmetric Walrasian equilibrium exists in this market, VR shows that such an
equilibrium is the unique stochastically stable state of the process (i.e. the only
one visited a significant fraction of time in the long run). Thus, even in a market
with a potentially small number of firms, the simple and intuitive behavioral rule
“Imitation of success” is seen to lead (when slightly perturbed) to a competitive
outcome. This stands in sharp contrast with the conclusions obtained within
the standard Cournot model under the assumption of full rationality on the part
of firms.?

The present paper extends the analysis carried by VR in two important
respects. First, we explore the implications of the evolutionary approach de-
scribed?® to contexts where a Walrasian equilibrium does not exist; specifically,
we characterize the long-run behavior arising in those situations where firms
enjoy increasing returns throughout. Second, we introduce the possibility of
population turnover (i.e. market entry and exit) and explore the implications
of the underlying technological conditions on the long-run market structure.

Our results can be briefly summarized as follows. First, we find that, as long
as there is more than one firm in the industry, the combination of imitation and

I This work borrows from recent evolutionary literature (see Kandori, Mailath and Rob [5]
or Young [13]) some of its essential features, both conceptual and technical.

2Similar considerations are discussed in Rhode and Stegeman [9] or Schaffer [11] within a
restricted scenario with two firms and specific conditions on costs and demand. As explained
in VR, the essential mechanism here involves certain considerations of “spite” arising in finite
population evolutionary models.

3There are, however, two variations on the received evolutionary approach (in particular,
that of VR) which are of some independent interest. First, we allow for arbitrarily long memory
on the part of firms in adjusting their output. Second, we restrict experimentation to be local,
i.e. to involve only “slight” deviations from the original output.



experimentation leads firms to a symmetric state where everyone produces at
a marginal cost which equals the market-clearing price. This, of course, repro-
duces the result of VR when a symmetric Walrasian equilibrium exists, since the
equality of price and marginal cost is verified at such an equilibrium. However,
when increasing returns prevail throughout (i.e. marginal cost is monotonically
decreasing), this represents a substantial extension with new, rather surprising,
implications. For example, it implies that incumbent firms will be forced into
negative profits (i.e. losses) when increasing returns prevail.4

The second contribution of the present paper is to characterize the long-run
market structure, as a function of the underlying technological conditions. We
explore two general scenarios:

(i) decreasing returns, i.e. increasing marginal costs and a certain fixed cost;

(ii) increasing returns, i.e. decreasing marginal costs.

We find a sharp (“knife-edge”) effect of technology on market structure. In
scenario (i), the process uniquely settles on the symmetric Walrasian equilib-
rium with very low or zero profits (i.e. the Walrasian outcome at full market
capacity). In contrast, scenario (ii) is seen to induce a unique long-run outcome
with a single monopolist in the market producing the output that maximizes
profit.

These conclusions contrast with some of the “folk” ideas derived from the
received Theory of Industrial Organization. There, one typically finds a gradual
relationship between the degree of decreasing returns prevailing in the industry
and the competitiveness of the induced outcome (i.e. its proximity to a Wal-
rasian equilibrium). Consider for example, the well-known work of Novshek [7].
He shows that as the efficient scale of production falls relative to the size of the
market (e.g. marginal costs become steeper), the number of active firms grow
and the outcome approaches a Walrasian equilibrium. Conversely, when the
efficient scale rises, fewer firms stay active in the market and, therefore, the less
competitive gradually becomes the corresponding Cournot outcome.®

In a sense, our analysis reflects a view on market behavior which is reminis-
cent of that espoused by the pre-strategic Theory of Industrial Organization. If
production returns are decreasing (and, therefore, price-taking behavior is well
defined), a Walrasian outcome is obtained. In the opposite case where returns
are increasing (no matter how mildly so), a “natural” and fully exploitative
monopoly results which is immune to entry, actual or potential.®

The rest of the paper is organized as follows: Section 2 presents the model.

4The Marginal Cost Pricing Equilibrium has been proposed in General Equilibrium Theory
as a normative rule to use by firms under non-convexities in production. Its essential interest
relies on the fact that one can show to be a necessary (although not sufficient) condition for
efficiency -see e.g. Quinzii [8]. Here, however, marginal cost pricing is obtained as a positive
solution, so that our conclusions may be interpreted as providing some foundations for it.

5Novshek’s framework contemplates U-shaped average costs and is therefore incompatible
with increasing marginal costs throughout, as considered in Subsection 4.1 below. However,
this possibility could be readily introduced in his setup, leading to considerations analogous
to those described above.

6This contrasts, for example, with the modern Theory of Contestable Markets (see, e.g.
Baumol, Panzar & Willig [2]).



Section 3 carries out the analysis with a fixed number of firms. Section 4 aug-
ments the model to accommodate entry and exit and undertakes the corre-
sponding analysis. Section 5 includes a general overview and discussion of the
different results, suggesting as well some possible extensions. A summary of
graph-theoretic techniques used in the analysis are summarized in Appendix 1.
Finally, the formal proofs of the results are included in Appendix 2

2 The Basic Model

2.1 A Market for a Homogeneous Good

Consider the market for a homogeneous product with n > 2 firms, j € N =
{1,...,n}. The demand side of the market will be modelled by an inverse demand
function

PZR+—>R+

which is assumed differentiable with P/(-) < 0 and P(z) — 0 as © — co. All
firms use the same technology to produce the good, as given by the cost function

CZR+—>R+

which is taken to be twice differentiable and non-decreasing. Costs and demand
are assumed to verify the following assumption.

A.l1 2P'(nx) < C"(z)V x.

This assumption’ requires that marginal costs do not decrease too rapidly
relative to the demand function. It allows for increasing returns to scale (i.e.
decreasing marginal cost) provided they are not too acute and, moreover, it is
obviously satisfied under decreasing returns to scale (i.e., if C"'(x) > 0 for all
x). Standard Cournot oligopoly models (see for example [4]) typically require
for equilibrium existence that P’ (3" _, zx) — C” () < 0V zy,...,2,, which
trivially implies Assumption 1.

2.2 Firms’ Dynamic Behavior

We postulate an evolutionary dynamics in discrete time ¢ = 0,1,2,... where,
each period, firms produce some output level according to the given technology.
For the sake of simplicity, we will assume that the output levels are chosen from
a finite grid T'(§) = {0, 6,26, ...,v8} for some given § > 0, arbitrarily small, and
some v € N| arbitrarily large. This is a technical assumption motivated by our
desire to remain within a simple framework with a finite number of possible
states. One can think of § as some indivisibility level or minimum production

7Note that it depends on the number of firms.



scale, and K = vé as the maximum relevant output which firms may ever
consider .’

Next, we introduce firms’ adjustment process, which reflects both consider-
ations of imitation and occasional experimentation. Each of them is presented
in turn.

Imitation Dynamics

Let x;(t) be the output level chosen by firm j at time ¢. Its profits at ¢ are
given by

IL;(¢) = P (Z xk@)) z;(t) — Clz; (7).

It will be postulated that when any firm is in the position to revise its output, it
simply mimics one of those outputs which, given the information it has available,
have produced the highest profit. More precisely, this imitation dynamics can
be decomposed as follows:

e Information: At the end of each t, every firm is assumed to have informa-
tion on the results (outputs and profits) of the last k periods (including
the one just completed). However, we allow for the possibility that there
might exist informational asymmetries, the most recent outputs and prof-
its associated to any given firm being observed by the other firms only
with a delay of s periods, 0 < s < k. If s = 0, there is complete infor-
mation, but if s > 0 then the most recent results of a firm are its private
information.

Under this formulation, the profits known by firm j at the end of period
{ are those in the set

L) = Q@) U R;(?)

where
QW) =1Lt —r)/r=s,..,.k—1,i=1,..,n} (1)
are the profits publicly known at the end of ¢, and
R;(t)={1L;(t—7r)/r=0,..,s—1} (2)

are the (own) profits that remain private information for firm j.

e Revision opportunities: At the end of every period ¢, some non-empty
subset of firms is given the option to revise their respective outputs for
the next period (t+ 1). For simplicity, every such subset is selected with
positive probability.®

8No specific properties have been postulated on the inverse demand function that would
bound the size of the market. However, this could be done naturally by assuming that the
market-clearing price becomes negligible beyond some bounded interval and that no firm will
ever consider producing a larger output.

9We do not allow the empty subset to be selected in order to have always “meaningful”
time periods: a period such that no firm is even given the opportunity to change its output
will just be ignored.



o Adjustment: If a firm is able to revise its output, it will simply mimic one
of the outputs yielding highest profits among those it knows, i.e. one of
the outputs in the set

Bj(t) = {.’I,'l(t—T)/Hl(t—T) S MCL.’L’IJ(t)}

If this set is not a singleton, each of its elements are assumed chosen
according to a firm-independent probability distribution with full support.

Experimentation

Each firm is assumed to occasionally experiment (tremble, mutate). Specif-
ically, once the imitation-based adjustment has been completed, every firm is
supposed subject to an independent probability ¢ > 0 of changing its output
“slightly”, i.e. it increases or decreases output by an amount §, both alternatives
having positive probability in the interior of T'(§).!°

3 Analysis

‘We will denote
Q=T(6)" x k xT(8§)",

the state space of the dynamics.
At each t, the state of the system will be given by'!

w(t) = (wi(t),...,wr(t)) = [(x1(t =k + 1), .zt —k+ 1)), ..., (@1(F), ..., zn (2))]

States where each firm chooses the same output level during the % represented
periods, l.e. wy(t) = ... = wy(t), will be called repeated. States where all firms
choose the same output level during the k represented periods will be called
monomorphic. The monomorphic state associated to the output y is denoted
by @(y) = [(¥, ), 5 (v, 9)] -

The dynamics described defines a Markov Process with a finite state space,
i.e. a Markov chain. It will be shown that, for suitably small values of §, the
process has a unique recurrent communication class which is aperiodic. There-
fore, there exists a unique invariant distribution, associated to this recurrent
class, which fully summarizes the long-run behavior of the process. To reflect
its dependence on the experimentation rate and the density of the output grid,
this invariant distribution is denoted by g, .

0 This is a key difference with VR, where firms are allowed to mutate to any output in the
grid. Here, however, we want to think of mutation as gradual experimentation. This idea
could have also been formalized, for example, by postulating a probability ! > 0 for changing
output by I > 1 steps of size §. In this way, the process would have been ergodic trivially and
our results would also hold. The chosen approach has the advantage of reflecting an analogous
idea of gradualness in a more clear-cut way.

HEvery state must include the description of the current and k — 1 preceding time periods
because the output adjustment for £ + 1 requires information from ¢ — k& + 1 to t.



Intuitively, we want to think of the experimentation probability ¢ as small.
Moreover, we would like to make sure that the technical convenience afforded
by a finite grid does not have any distorting effect on the analysis. With these
two considerations in mind, the analysis proceeds as follows.

First, we fix a small enough é and focus our analysis on the limit invariant
distribution g5 = lim._.o g, 5, which is seen to be well defined. Those states in
the support of u} are called stochastically stable states. When the experimenta-
tion rate becomes small, it is only these states which are observed a significant
fraction of time (a.s.) along any sample path of the process.

Secondly, we by-pass any artificial considerations which could be associated
to the discreteness of the grid by focusing on the limit invariant distribution
' = lims_,o ptf, i.e. we consider an arbitrarily fine grid.

As established by Theorem 1 below, the whole mass of 1* is concentrated on
the monomorphic state where firms are at a Marginal Cost Pricing Equilibrium.
Next, we state formally this key equilibrium concept.

Definition 1 A (symmetric) Marginal Cost Pricing Equilibrium (MCPE) is a
pair’ (y*7p*) such that p* = P(ny*) — Cl(y*)

If C"(x) > O for all z (i.e. costs are convex), then y* € arg max, [p*z—C(x)]
and (y*,p*) can be thought of as a Walrasian Equilibrium. On the other hand,
if C"'(x) < 0 for every z (i.e. under increasing returns), Walrasian equilibria do
not exist, but a MCPE still exists under quite general conditions. Rather than
making them explicit, we simply adopt the following assumption:

A.2 There exists a MCPE (y*,p*) with y* € (0,K).

Note that, under A.1, P(nz) — C'(z) is a strictly monotonous function.
Therefore, in view of A.2, we may conclude that, under our maintained assump-
tion, the MCPE is unique.

Our first result reads as follows.

Theorem 1 Assume A.1, A.2. Then, pi* is well defined and p*(w(y*)) = 1.

Proof. See Appendix 2

Theorem 1 establishes that, in the long run, the market will spend “most” of
its time in the monomorphic situation where all firms produce the same output
level of the homogeneous good; moreover, this output is the one for which the
market-clearing price equals marginal cost. In particular, with convex costs, this
effectively reproduces the result of VR since, in a somewhat different context,'?
it also selects the Walrasian Equilibrium. Nevertheless, it is striking to note
that this conclusion (i.e. marginal-cost pricing) also holds under increasing
returns to scale, a situation where it typically provides losses. It is precisely
this observation that leads us to enrich our dynamical process with endogenous

12Recall Footnote 3.



entry and exit of firms. As formulated next, in this augmented process firms will
be allowed to exit from the market when losses are realized and, reciprocally,
new firms will be allowed to enter when the market signals to outsiders that
positive profits may be achieved in it.

4 Entry and Exit

Both the ideas of a firm sustaining losses without exiting the market, and a
(non-regulated) market that shows positive profits without experiencing any
entry of new firms seem unsatisfactory. To address these concerns, we propose
the following enrichment of the original framework.

Fix an arbitrarily large maximum number of firms F.'> The new state space
for the reformulated dynamics is

Q= (UL_ T (6)" U{o}) x £ x (UL_ T (6)" U {0o})

where 6y is the trivial configuration where there are no firms in the market.
On this space we consider the following extension of the formerly postulated
dynamics.

First, at each ¢, those firms present in the market undertake processes of
imitation and experimentation, as described in Subsection 2.2. Then, the set of
firms participating in the market is modified through exit and entry as follows.

On the one hand, some incumbent firms are assumed to receive the option
of revising their participation in the market. Formally, we postulate that every
one of them has an independent probability ¢ > 0 of enjoying such revision
opportunity. In that event, we simply assume that a firm decides to exit if, and
only if, it is currently incurring losses.

Entry, on the other hand, is also formalized stochastically. Specifically, we
suppose that, at the end of each ¢, there is some maximum number of potential
firms ready to enter the market.!* If profits are observed in Q(¢) — recall (1),
with the obvious re-interpretation — each potential entrant is subject to an
independent probability 1 > 0 of effectively entering the market in £+ 1. In that
event, it is assumed to imitate one of the outputs in that set yielding maximum
profits at ¢ (i.e. displays a behavior equivalent to that of incumbents). If the
process is at state @ (6y) — i.e. Q(t) = 0 — we simply assume that such “market
void” is filled by new firms, again entering with independent probability 7. Since
they have no market information to rely upon in shaping their starting decision,
it is natural to assume that they choose some output from I' (§) according to a
given probability distribution.

Since exit and entry introduce two additional sources of noise into the process
(respectively associated to the probabilities o and 7 above) their relative mag-
nitude has to be specified. Intuitively, it seems reasonable to postulate that exit

13This restriction is made to remain within a finite-state formulation. It could be endo-
geneized, for example, by introducing natural conditions on demand (cf. Footnote 8).

14 Again, this potential number of firms is bounded appropriately (as a function of the
current state) so that the total number of firms in the market may never exceed F (recall
Footnote 13).



decisions taken by incumbents should not be more flexible (i.e. more likely)
than those of (local) experimentation. As ¢ is made small, this amounts to
postulating that ¢ (as a positive function of ¢) should be an infinitesimal of no
smaller order. That is: -

lim — > 0. (3)

On the other hand, it is natural to assume that entry possibilities (which concern
market outsiders) arrive less swiftly than exit opportunities for incumbents.

Conceiving 7 again as a function of ¢, this is reflected by the condition:®

1) _
e—0 0(6) 0. (4)

Of course, (3) and (4) imply that 7 is an infinitesimal of larger order than e.
We shall also contemplate the following technical requirement:

.ot
HqEN/g%n(g)—O (5)
which indicates that the infinitesimal 7 is of an order no lower than £7 for some
finite q. Heuristically, what this means is that entry of a new firm is not less
likely than a certain (arbitrarily large) number of simultaneous mutations.

As for the original context, the presently augmented process is seen to be
ergodic for any £ > 0 and small enough 6 > 0. Specifically, it induces a unique
invariant distribution fi, s which summarizes its long-run evolution. For consid-
erations already explained, the analysis will be concerned with limit invariant
distribution

3k

I

iy g pes
which captures long-run performance for an infinitesimal experimentation rate
and an arbitrarily fine grid.

As advanced, the conclusions of the present augmented model are sharply
affected by the qualitative nature of the underlying technology, i.e. whether it
exhibits increasing or decreasing returns. Each of these two alternative scenarios
is addressed in turn.

4.1 Increasing Returns

For the sake of simplicity, we assume that there is a unique output which max-
imizes monopoly profits (i.e. the profits obtained by a single incumbent).

15This requirement is essentially a simplifying condition, which could be largely dispensed
with in our analysis. For example, our analysis for the decreasing-returns scenario would
be completely unaffected if all probabilites ¢, 0, and n were infinitesimals of the same order.
Instead, this would affect slightly the analysis for the alternative scenario with increasing re-
turns in that, even though the monopoly state would still be stochastically stable, other states
involving a “few” firms would also be so. (For example, if two firms both producing any ouput
between the monopoly and the marginal-cost pricing outputs incur losses, all stochastically
stable states involve at most two firms.)

10



T.1 The monopoly profits function P(x)-2z— C(z) has a unique local maximum
j on [0, K], with P(§) -5 — C(g) > 0.

This is merely a technical assumption which does not aflect the essence of
our analysis.'® It is implied, for example, by the standard condition of strict
concavity on the profit functions, often found in the Theory of Industrial Orga-
nization.

Let @ = (4, ..., §) be the repeated state where a monopoly chooses its profit-
maximizing output. Under increasing returns, our conclusions are contained in
the following result.

Theorem 2 Suppose A.1 holds for all n = 2,3, ..., F. Moreover, assume A.2,
T.1, k> 2 and C"(x) < 0 for allz. Then, u** is well defined and p** (@) = 1.

Proof. See Appendix 2.

The intuition underlying Theorem 2 is quite apparent from the analysis al-
ready conducted in Section 3 for a fixed population of firms. First, recall that
when more than one firm exists in the market, the postulated learning dynam-
ics leads them to playing a symmetric MCPE. Under increasing returns, this
situation can be just temporary since both make losses. Eventually, some of the
incumbents must exit. Since no potential entrant finds entry worthwhile either,
this imposes a downward drift on the process until a situation of monopoly is
reached. Under these circumstances, the single incumbent eventually learns to
play the profit maximizing output. Even though this will recurrently attract
other firms into the market, competition among them will make a monopoly sit-
uation return relatively fast, thus producing the stated long-run outcome, i.e.,
most of the time along the process, the market will witness a single firm obtain-
ing monopoly profits. This is to be contrasted with the conclusions obtained
under decreasing returns, which are presented in the next subsection.

4.2 Convex Costs

Under decreasing returns, the process will be seen to display an ever-present
tendency towards the increase of the firm population size. To have a bound
on the number of firms which the market can accommodate, it is standard to
contemplate the existence of some fixed costs, no matter how small.

In line with previous notation, let y*(n) stand for the output produced at
the MCPE with n firms. Further denote by w(z;n) the monomorphic state
with n firms and output level z. In the present scenario (C''(-) > 0), it can be

L6 pyrsuing the line of proof presented in Appendix 2, it is easy to see that, if the monopoly
benefits had several local maxima, one of them will still be selected by a monopoly as the
unique long-run outcome of the process. In particular, it would correspond to that one whose
basin of attraction contains the output produced in the MCPE with two firms.

17The inequalitiy k& > 2 is required in order to have a meaningful dynamics when there is
only one firm in the market.

11



shown that there exists some n* € N such that, provided C(0) is sufliciently
small (albeit positive),

Pny*(n))y*(n) —Cy*(n)) =20 n<n*.

Thus, n* represents the maximum number of firms which can co-exist without
losses at a symmetric MCPE (here, a Walrasian equilibrium). Denote by w** =
w(y*(n*);n*) the associated monomorphic state and assume, for simplicity,'
that the profits achieved by firms at it are strictly positive. So, we assume:

T.2 C(0) >0and P(n*y*(n*))y*(n*) — C(y*(n*)) >0

The next result establishes that the state w** is also the unique long-run
state of the process.

Theorem 3 Assume A.2,'% T.2, n* > 2, and C"'(x) > 0 for all x. Then, u**
is well defined and p**(w**) = 1.

Proof. See Appendix 2.

The intuition here is polar to the one applicable under increasing returns.
On the one hand, for any fixed population of firms, their learning directs them to
the Walrasian equilibrium. Under decreasing returns and T.2, whether profits or
losses are achieved at this equilibrium depends on the number of firms present
in the market. If it is above n*, population dynamics imposes a downwards
adjustment on the existing firms; otherwise, the pressure is upwards and the
number of firms increases. Even though the ergodicity of the process guarantees
that all configurations are indeed visited with positive frequency (a.s.), those
asymmetries among them induce that, for small ¢, the process will spend “most
of its time” at state w**.

183 This requirement is essentially a convenient (and generic) condition, which could be largely
dispensed with in the analysis. Pursuing the line of the proof presented in Appendix 2, it can
be shown that, if the Walrasian equilibrium for n* firms gives exactly zero profits, then the
process still selects it unless there exists a sequence of output levels giving strictly negative
profits in the corresponding monomorphic states and converging to y(n*). But, if such a
sequence exists, the process will select the Walrasian equilibrium for n* — 1 firms.

19Note that A.l is immediately fulfilled with convex costs.

12



5 Summary

Our analysis may be summarized as follows.

First, we have found that if the population of firms participating in a market
remains fixed (i.e. we do not allow for firm turnover), inter-firm learning dy-
namics based on imitation and occasional experimentation leads to the following
long-run prediction: the market will be largely concentrated in the symmetric
Marginal-Cost Pricing Equilibrium. If production returns are decreasing, this
outcome represents a Walrasian Equilibrium. However, this is not the case when
returns are increasing and the corresponding equilibrium profits are bound to be
negative. In a sense, our analysis may be seen as providing a certain learning-
based foundation for the usually normative motivation underlying marginal cost
pricing.

In a second step in the analysis, we have endogeneized the number of firms,
allowing for entry and exit to occur in the market in response to the existence
of profits or losses. Under certain natural conditions on the relative flexibility
of the different decisions, we have found that there is a sharp impact of the
technological conditions on the long-run market structure. Specifically, a sce-
nario with decreasing returns displays a drive towards an increasing number of
firms and lower profits (obtained at corresponding Walrasian equilibria), while
the alternative assumption of increasing returns induces an opposite tendency
towards monopoly and high profits. We think that this clear-cut, purely quali-
tative results may provide some insight into traditional, largely informal, views
of how production returns affect market structure.

13



Appendix 1: Summary of Techniques

In this section, we will present a summary of the techniques developed by
Freidlin and Wentzell [3], as adapted to our first scenario with a fixed number of
firms (cf. the proof of Theorem 1). In view of (3)-(5, it should be apparent how
to extend them to the framework augmented with entry and exit, as required
in the proofs of Theorems 2 and 3.

Given w = (w1, ...,wx) € Q an w-tree H is a collection of ordered pairs (or
“arrows”) (w’,w’) such that
i) every w' € Q\ {w} is the first element of one and only one pair
ii) V' € Q\ {w}, there exists a path {(w',w') (w',w?),..., (W', w)}

The set of all w-trees is denoted by H,,

Given 6 > 0, denote by T, the transition matrix of the postulated process
with experimentation probability e. (7p will stand for the experimentation-free
dynamics.) Given any w € €2, define:

r(w) = Z H Te(w',w")

HeH, (w',w')eH

Then, provided the process is ergodic (a property which shall be verified in
each of our different contexts), the analysis of Freidlin and Wentzell [3] implies
that the (unique) invariant distribution of the process, p € A(£), is given by:

L
M) = =

As each r(w) is a polynomial in ¢, it is clear that the limit invariant dis-
tribution g = lim. . g, s is well defined. To compute the different r(w), it
is customary in the evolutionary literature (see Kandori, Mailath and Rob [5]
or Young [13]) to introduce a “cost function” on possible transitions as follows.
First, define d(w,w’) as the number of coordinates which differ between wy, and
wi if T (w,w') > 0. Otherwise, simply make d(w,w’) = +00. Then, consider®’

¢ OxOQ—-N
c(w,w) = min {d(w', W) To(w,w") > 0}
w"eQ
Here, c¢(w,w’) may be interpreted as the minimal number of experimentations
needed to take place after a single operation of the experimentation-free dynam-
ics from state w in order for the process to reach state w’. The function ¢(-)
may be extended by addition to paths and trees.?! Then, it is easy to see that
the order in ¢ of the polynomial r(w) is given by the minimum number of ex-
perimentations required along some w-tree, i.e. mingey,, ¢(H). In conclusion,

20We adhere to the convention that 0 € N.

211p the framework with a variable population size, transitions involving entry or exit have
to incur costs that, in terms of the “units” reflected by the experimentation-based transitions
contemplated here, are consistent with conditions (3)-(5).
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therefore, the stochastically stable states may be singled out as those whose
minimum cost trees are themselves minimum across all possible states in €.

Appendix 2: Proofs
Consider the following equivalent re-statement of Theorem 1

Theorem 1 Assume A.1 and A.2. For every A\ > 0 there exists & > 0 such that
if 6 <6,
Supp ps C{w(y) 1y € [(y" = A y" +A)NTH)]}

Proof. Denote by A the collection of recurrent communication classes of
the stochastic process 1y . That is, A includes all those subsets of €1 which
are minimally closed under finite chains of iterations of Tp (see, for example,
Karlin and Taylor [6]). It is clear that only states belonging to one of these
classes can qualify as stochastically stable. Consequently, the characterization
of A provided by the following Lemma represents a useful first step in the
argument.

Lemma 1 Given 6, the only recurrent communication classes of Ty are the
singletons {ww(y)}, y € T'(8), consisting of monomorphic states.

Proof of Lemma 1: Obviously, every monomorphic state defines, as a single-
ton, a corresponding recurrent communication class of Ty. To see that no other
state can be in a recurrent communication class, it is enough to construct a path
which leads from it to some monomorphic state with positive probability.

Denote by II(t) = max;—1 . 1L (t), ie., the maximum realized payoff at
period t. Moreover, denote by II* (£) = max,=o, 1 f[(t —r), le., the maxi-
mum realized payoff realized within the periods recorded by state w ().

Then, it is claimed that, along any sample path of the process, there is some
t such that II* (t) = II(t) = II; (¢) for some i = 1,2,..,n. Suppose otherwise,
i.e. IL(t) < II* (¢) for all . Then, it follows that II* (t + k) < II* (t) for all £.
Consequently, the sequence {II* (t + Ik)},°, is strictly decreasing, which yields
a contradiction because the total number of realizable payofls is finite.

Thus, consider some ¢ such that IT* (t) = 1I; (¢) and assume w.l.o.g. that
i =1. Denote & = z; (t). Suppose now that for the & periods following ¢, only
firm 1 has revision opportunity. This event has positive probability, after which
w (t+ k) will be a repeated state. Further assume that in the next period all
firms obtain a revision opportunity and choose exactly the same output level Z.
Again, this event has positive probability. Then, regardless of further revision
opportunities, there is also positive probability that w (¢ + 2k) = w (&)., which
completes the proof of the Lemma.

For simplicity in the argument, assume that y* is an output in I'(§) for all §.
(This implies no loss of generality since, otherwise, one of the “closest” outputs
in the grid may take its place in the analysis, converging to y* as § went to
zero.) The remaining part of the proof can be decomposed into the following
steps.
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e Define @ : [0, K] x [0, K] — R by

z,y) =[P ((n-Dy+2)z-C)] - [P((n-Ly+2)y-Cly)l =
=P((n—1y+2z)(x-y)+(Cly) - C))

i.e. the differential profits of a mutant (relative to non-mutants) when
deviating from a symmetric situation (y, ...,¥) to a new output level x.2?

Note that, obviously, ®(y,y) = 0 Vy, and that ® is a continuously differ-
entiable function with successive partial derivatives:

g—i(x,y) =P(n—1y+z)+P ((n—1y+z)(x—y)—C'z)
%(%y) = 2P (n—1)y+a)+ P (n—1)y+2z) (x —y) — C"(x)

Consider the function @, : [0, K] — R, given by &, (z) = ®(z,y). If an
output ¥ is a local maximum of its own @, then no close experimentation
will destabilize it by achieving better profits. We call such an output
experimentation resistant. But from the First Order Condition,

od
@, (y) = 5-(v:y) = P(ny) - C'(y) = 0= P (ny) = C'(y),

that is, for an interior output, the equality of price and marginal cost is
a necessary condition for such experimentation resistance. The Second
Order Condition is automatically satisfied by A.1:

" _ 62(1) _ ! oiki

@y (y) = 55 W,y) = 2P (ny) = C"(y) <0

This means that the only experimentation-resistant (interior) output is
y*. Moreover, define

o

Fy) = @4(y) = 2= (v:9) = P (ny) = C'(y)

as the slope at y of the differential profit ®,. Then, f(y*) = 0 and,
provided that n > 2,

f'(y) =nP'(ny) — C"(y) = (n—2)P'(ny) + 2P" (ny) — C"'(y)
= (n—2)P'(ny) + @, (y)

22Note that if ® (2, y) > 0, the monomorphic state w (y) may be destabilized by one single
mutation to . For, after one such mutation, there is positive probability that every firm stays
with its output for k periods (specifically, if only the mutant receives a revision opportunity
during that time span). Then, in the next period, all firms would imitate the mutant if they
are able to revise their output.
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which is again negative by A.1. Heuristically, this means that close exper-
imentations in the direction of y* are always beneficial. Formally,

oD .
S Wy >0y <y

oD
e = 0 = y*
WY =0sy=y

oD .
WY <0ey>y

Claim 1: 3a>0/V6>0AVz e (y* —a,y*+a)NT(§),
Ar>1 /T (w(x),w (y*)) > 0.

Proof of Claim 1: Let « be such that for every z € (y* —o,y* + ),
z # y*, ®(z,y*) < 0. We know that there exists such an «, because
®(y*,y*) =0 and y* is experimentation resistant.

Let = y* 416 € (y* — a,y* + &) for some | € N (the proof is analogous
for x = y* — 16). We will describe a chain of transitions with positive
probability between w () and w (y*).

Let us start this chain with @ (z), and suppose that, during { consecutive
periods, only one firm is allowed to revise its output, say firm 1, and
the rest of the firms mutate downwards. Suppose then that, for & more
periods, only firm 1 is allowed to revise but there is no experimentation.
Then, since firm 1 has only been able to imitate observed outputs, the
state prevailing at the end of this chain will be

[(x17y*7 7y*) PR (xk7y*7 7y*)]
with 2y, ...,z € [y*,2] NT'(§). Moreover, since ®(z;,y*) < 0, y* yields
higher profits in each of the configurations (z;,y*,...,y*), i =1,..., k.

Therefore in at most s more periods with no experimentation we have
that the set By (t + 1+ s) = {y*}. Then, there is positive probability that
firm 1 receives a revision opportunity, hence choosing y*. Now, if no firm
mutates in the next &k periods, the process reaches the monomorphic state

w (y*).
Claim 2: VA >0,36§>0/V6 <4,

{ c(w(z),w(x+6)=1 Vael0,y* —ANNT(S)
c(w(z),w(x—08))=1 Vaely*+\K]INT(H)

Proof of Claim 2: Let

D(y) = { {v' €. K1/ ®y",y)>0vy" € (y,y)} il y<y'
{v' eloy) /2" y) >0Vy" € (y,y)} if y>y*
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and _
sy ={ [SwDW) -y | il y<y
| Inf D(y)—y| if y>y*

The claim follows if we prove that

YA>0,36>0/68(y)>6Vye0, K]\ — Ay " +A).

To establish this, denote

Ny =[0,y" = Al, Ny =" + A\, K]

By symmetry, it is enough to show the claim for N, .

>From the analysis of ® conducted above we know that, Vy € Ny, ®(y,y) =
0 and g—f(y,y) > 0, so D(y) # and §(y) is well defined and positive. Note
also that, by construction, if Sup D(y) < K, then ®(Sup D(y),y) = 0
and 42 (Sup D(y),y) <O0.

Suppose now, for the sake of contradiction, that the claim is false. Then,
vr e N\{0} 3y, € Ny /8(y,) < L. Obviously, {6(y,)} — 0. So, for r big
enough, Sup D(y,) < K.

As N, is compact, {y,} has a convergent subsequence. Re-indexing, we
can just assume, without loss of generality, that {y.} — ¥ € N, . As
[0, K] is also compact, {Sup D(y,)} has a convergent subsequence and,

re-indexing again, we can assume w.l.o.g. that {Sup D(y,)} — 7 € [0, K].
But, since {5(yr)} — 0, it must be that §j =7

Given that 2 E is continuous, lim,_, o E(Sup D(y.),y,) = g—f(ﬂ,@). TFur-
thermore, (Sup D(y,),y») < 0 for r big enough, which implies that
lim, o0 22 o (Sup D(y.),yr) < 0. But (b(y 7) > 0, a contradiction that
proves the claim.

e Claim 3: V>0, VA>0,36§>0/V6 <8,

R e U Al
c(w(z),w(x+8)) >2Vz ey +& K —ENT(6)

Proof of Claim 8: This claim follows from the fact

_ = [ ®x—6,2) <OVz e[,y —¢
VE>0,1>0,36>0/V6<, { P(r+6,7) <OVa €y + &K — &

and this can be proved by an argument analogous to the proof of Claim
2.23

23The role of £ is just to avoid boundary problems.
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e Now consider any A > 0 such that A < «, where « is as in Claim . Thus,
Claim 1 applies to (y* — A, y* + ). Now select some § > 0 such that (a)
§ < 4, (b) Claim 2 applies for A, and (c) Claim 3 applies for . Then,
take any grid I'(6) with § < 6.

By Claim 2, any monomorphic state w (z) with z ¢ (y* — A\, y* + ) can
be connected with positive probability to the monomorphic states w ()
with 2’ € (y* — A\,y* + A). But, by Claim 1, the latter can be connected
with positive probability to w (y*). This means that, ultimately, all states
can be connected to w (y*). Therefore, the stochastic process T has
a unique recurrent communication class, namely the one which contains
w (y*). Obviously all monomorphic states have period one, so this class
is aperiodic. Then there exists a unique invariant distribution, which can
be characterized using the techniques summarized in Appendix 1.

e By Claim 2, the monomorphic states w(x) with ¢ (y* — A\, y* + A) can
be connected at cost one per state to the next monomorphic state in the di-
rection of @ (y*), until states w (z') with 2" € (y* — A, y* + \) are reached.
Since it takes at least one experimentation to destabilize a monomorphic
state, this connections cannot be obtained at a lesser cost.

Let 41 and y2 the minimum and maximum output in (y* — A, y* + A) N
I'(6), respectively. By Claim 3, ®(y; — §,y1) < 0 and ®(y2 +6,y2) <0, so
it takes at least two experimentations to destabilize @ (y1) down or @ (y2)
up (but only one to destabilize @ (y1 — §) up or w (y2 + &) down)

Let A = {@(yy1),...,w(y2)}, and let H be a minimal cost tree restricted to
the set A. Construct now a complete tree in {1, say H, by connecting all
the monomorphic states in Q\H to H as explained above, i.e., at cost one
per state. Then, connect all non-monomorphic states to the monomorphic
ones at cost zero, something which can done by virtue of Lemma 1. This
will include the arrows (w (y; — 8) ,w (y1)) and (@ (y2) , @ (y2 + §)).

Again by Lemma 1, the cost of the tree H just constructed only needs to be
compared with alternative w-trees for monomorphic w. Consider some such
w(§) & A (le. |§—y*| > A). First, note that, in the search of a minimum-
cost w(f)-tree, former considerations allow us to restrict to trees were
monomorphic states are directly connected (all other states can be joined
to these states at zero cost, in view of Lemma 1.) In any such w(§)-tree,
every monomorphic state w () must be connected either to @ (z + §) or
to @ (x — §), so that there is only one direction of movement towards the
vertex of the tree, w(f§). Taking this into account, it is clear that any
w(f)-tree must have, instead of one of the arrows (w (y; — ), w (y1))or
(w (y2) ,@ (y2 + 6)), the reverse one, effectively increasing the total cost
by at least 1 with respect to H. This proves that the Stochastically Stable
States for § will be in A, thus completing the proof of the Theorem. N
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Proof of Theorem 2. First, note that in analogy with Lemma 1, only
monomorphic states (now with a variable number of firms present) can be sto-
chastically stable. As explained, this allows us to restrict to w-trees involving
only monomorphic states.

Now let Mon(n,6) = {w(x;n) / x € I'(6)}, where recall that each w(z;n)
stands for the monomorphic state with n firms present all producing output x.
Furthermore, given two output levels z1,xg € T'(6), 1 < x2, denote

Branch(zy,z9,m,6) =

(w(z1;n), w(zy + 6;n)), (w(xy + §;n), w(x1 + 26;n)), ...

- { oy (w(xg — 26;m), w(x2 — §;n)) , (w(xe — & n), w(x2;M)) }
as the collection of arrows joining the x; to xo through all intermediate ones.
Symmetrically, we define Branch(za,21,n,6) as the set of converse arrows con-
necting x2 to 7.

>From the proof of Theorem 1, it is clear that the minimal cost trees re-
stricted to Mon(n, §) are of a very specific form, as summarized by the following
claim:

e Claim 4: Given A > 0, 36 > 0/ the minimal cost trees in Mon(n,d) are
of the form

E(é7 n,8) = Branch(0,yq,n,6) U ZU Branch(K,y2,n,0),

where y; < ¥y are appropriately chosen outputs (depending on A, 7, and
) and Z is some minimal cost tree in the set

A(n,6) ={w(y;n) [y € (y"(n) = \,y*(n) +A)NT(8)} = (6)
={w(y;n) /11 <y <y2, y €T(6)}.

Moreover, all arrows in E(é N, 5)\2 have cost exactly equal to 1 while
the reverse of any such arrow (except possibly for arrows corresponding
to states arbitrarily close to 0 and K )24 would have a cost of at least 2.

Under increasing returns to scale, the states w(y*(n);n) yield losses for all
n > 2. By continuity, therefore, we can choose A above small enough so that for
alln > 2 and every y € (y*(n) — A\, y*(n) + ), the monomorphic states @w(y; n)
also induce losses.

On the other hand, the state @ yields (positive) profits. Thus, again by
continuity, 3 B > 0 such that Yy € (§— B,5+ B), w(y;1) induces profits.
Furthermore, given this B, suppose § above is chosen small enough so that
£ > ¢ +1, where ¢ is as in (5).

24 As in the proof of Theorem 1, these states will not interfere with the essential part of the
argument since they can be restricted to lie arbitrarily close to the extremes of the interval —
recall Claim 3.
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The proof is now straightforward. First, we construct an w-tree which we
will show has minimal cost. To do so, consider, V n > 2, minimal cost trees
E(Z,n, ) restricted to Mon(n,8). For n = 1, it is obvious from Assumption
T.1 that the minimal cost tree restricted to Mon(1,§) is

E(1,6) = Branch(0,7,1,6) U Branch(K, 7, 1,0)
Note that the requirement % > g + 1 means that, if

then Branch(y;,7,1,6) and Branch(yy,7,1,6) each have at least ¢+ 1 arrows.
Thus, reversing all the arrows in one of such a branch will increase the cost by
at least ¢ + 1 which, by (4)-(5), is greater than the cost associated to single
entry or exit of firms. N

Second, we join all the trees F(Z,n,§) thus constructed and the tree F(1,0)
as follows: R
(a) Vn > 2, join the vertex of F(Z,n,8) to a state with n — 1 firms through a
single exit event, whose probability ¢ is of order no larger than ¢ by (3). This is
possible because the vertex of each F (2 ,m,8) yields losses, as observed above.
(b) Connect the state @ () involving no firms to a state with one firm through
a single entry event, whose probability 7 is of order smaller than ¢ by (3) and
(4).

In this manner, we have constructed a full &-tree, say H , which involves (i)
a minimal cost at each “level” Mon(n,§); (ii) one exit per level; and (iii) one
entry from w (6y). We now claim that, given any other monomorphic state @,
it is mot possible to construct an w-tree with the same or smaller cost than H.
Consider any other state @.

e If & involves 72 > 2 firms, then any @-tree will include at least one entry of a
firm from a state in Mon(1, §) instead of an exit from a state in Mon(2, §).
But, as exit is an event whose probability is an infinitesimal of lower order
than entry (see 4), this results in a cost strictly greater than the cost of
H. (Recall that the cost realized within each level Mon(n,8) has to be no
smaller than in H by construction, and that all “levels” Mon(n,§) with

n > 7 require at least one single entry or exit to be joined to a full tree.)

e If & involves nn = 1 firms, then any w-tree will have a cost greater than H
by Assumption T.1.

e If& = w (), then any &-tree will include an exit from a state in Mon(1,9)
instead of an entry from w (), which indeed saves some cost as compared
to that of H (recall (4)). However, since exit is only possible from a state
with losses, such W-tree may be completed in only two ways:

One possibility is to rely on a sub-tree within Mon(1,8) whose vertex state
displays losses and thus may be connected to @ (6p). This will involve
reversing all the arrows in either Branch(yi,¥y,1,6) or Branch(ys,y,1,6)

21



which, as observed above, is more costly that one single entry or exit.
Therefore, it results in a cost greater than the cost of H.

The second possibility involves connecting a state in Mon(1,8) to an-
other state in some Mon(n,d), n > 1, also connecting a state in some
Mon(n',8), n' > 1, to either w (fy) or another state in some Mon(n",§)
with 1 < n" < n'. In view of (4)-(5), such operations will amount to a
cost strictly greater than that of H.

This proves that @ is the only stochastically stable state, thus completing
the proof of the Theorem. W

Proof of Theorem 3. As for the proof of the former results (recall
Lemma 1), we may restrict our application of the graph-theoretic techniques
to monomorphic states, which are the only candidates to being stochastically
stable. Furthermore, relying on the notation introduced in the proof of Theorem
2, we also note that Claim 4 above applies without modification to the present
context.

By Assumption T.2., the states w(y*(n);n) all give losses for n > n*, and
profits for n < n*. Then, by continuity, 3 By > 0 / ¥V n > n*, Vy €
(y*(n) — B1,y*(n) + B1), w(y;n) yields losses. Also by continuity, 3 Bz >
0/Vn<n* Yy (n)— Ba,y*(n) + Bz), w(y;n) induces profits.

Choose now 0 < A < B = min {By, Bz} and find § > 0 such that Claim 4 in
the proof of Theorem 2 holds V n > 2 and % > ¢+ 3, where ¢ is as in (5).

The minimal cost trees F (2 ,M,8) can be decomposed as follows:

o~

E(Z,n,6) = Branch(0,y},n,6) U Branch(yy,y1,n,8) U ZU
UBranch(ys,yz, n,6) U Branch(K,y),n, §)

with 2, y1,¥y2 as in Claim 4 and

(y*(n) — B,y*(n) + B)NT(8) = {y1,y; + 6, ...,y — 6, y5}.

Note that, given n > 2, the requirement % > ¢ + 3 means that there

are at least ¢ + 1 arrows in Branch(y;,y1,n,6) and Branch(yb,ys,n,8). Thus,
reversing all of the arrows in one of these branches will increase the cost by at
least ¢+ 1 which, by (4)-(5), is greater than the cost associated to a single entry
or exit by firms. N

Let & denote the vertex of some minimal-cost tree E(Z,n*, §), as introduced
above. The remainder of the proof now relies on the construction of an w-tree
with minimal cost, which is compared with any other alternative tree. This
construction involves the following steps. N

First, V n > 2, n # n*, identify minimal cost trees F/(Z,n,§) restricted to
Mon(n, 6), as indicated above.

Second, choose some minimal cost tree in Mon(1,§), say F(1,9), with its
vertex state displaying (positive) profits.
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Third, join all the above trees E(é7 n,6) and E(1,6) as follows:

(a) ¥ n > n*, connect the vertex of E(é7 n,6) to a state with n—1 firms through
a single exit event, whose probability ¢ is of order no larger than ¢ by (3).This
is possible because the vertex state in such ¥ (2 ,m,8) yields losses, as observed
above. N

(b) V n < n*, connect the vertex of E(Z,n,§) to a state with n+1 firms through
a single entry event, whose probability 7 is of order smaller than ¢ by (3) and
(4). This is possible because the vertex state in such E(é7 n,6) induces profits,
as observed above as well.

(c) Connect the state w (fy) to a state with one firm with a single entry event
(with probability 7).

Through (a)-(c) we construct a full w**-tree, say I, that involves: (i) a
minimal cost at each “level” Mon(n,§); (ii) One exit per level above n*. (iii)
one entry per level for n < n*. (iv) one entry from @ (6o) .

We now claim that, given any other state @, it is not possible to construct
an O-tree with the same or smaller cost than . Consider any other state @.

o If & involves 77 > n* firms, then any @-tree will include at least one entry
of a firm from a state in Mon(n*,§) instead of an exit from a state in
Mon(n* +1,6). As exit is measured by an infinitesimal of lower order
than entry (see 4), this induces a cost strictly greater than that of H.
(Recall that the cost realized within each level Mon(n,§) has to be no
smaller than that in I by construction, and that all levels M on(n,§)
with » > 7 require at least one single entry or exit to be joined to a full
tree.)

e If & has 7 < n* firms, then any &-tree will involve an exit from a state
in Mon(n*,6) instead of an entry from a state in Mon(n* — 1,6), which
saves some cost as compared with I (recall (4)). However, as exit occurs
only from states displaying losses, such @w-tree can be constructed in only
two ways:

One possibility is to rely on a sub-tree within Mon(n*,§) whose vertex
state displays losses and thus may be connected to some state in Mon(n*—
1,6). This will involve reversing all the arrows in either Branch(y;, y1,n, )
or Branch(ys,y4,n,8) which, as observed above, is more costly that one
single entry or exit. Therefore, it results in a cost greater than that of H.

The second possibility involves connecting a state in Mon(n*,8) to an-
other state in some Mon(n,6), n > n*, also connecting a state in some
Mon(n',8), n' < n, to another state in some Mon(n",8) with n" < n*.
In view of (3)-(4), such operations will amount to a cost strictly greater
than that of H.

e If & has n* firms and is a vertex of a cost-minimal tree, it must belong by
construction to the set A(n*,§), as defined in (6). Then, @ may equiva-
lently fulfill the role of @ in the final part of the proof (see below), thus
leading as well to the desired conclusion. Otherwise, i.e. if is not a vertex
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state for some tree Mon(n*,§), it immediately follows that any &-tree
must involve a cost larger than H.

e Finally, if @ = @ (6y), then to construct an &-tree it would be necessary
either to include an exit from a state in some Mon(n,8), n < n*, or
consider an entry from a state in some Mon(n,§), n > n* and an exit
from a state in some Mon(n',6), n’ > n. In either case, the resulting cost
must be larger than that of H, in view of (3)-(4).

>From the above discussion it follows that every stochastically stable state
must belong to the set A(n*, ), as defined in (6) for any given A. By choosing
A — 0 and, correspondingly, § — 0, we have A(n*,§) — {w**}, which completes
the proof. W
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