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CONDITIONAL MEANS OF TIME SERIES PROCESSES
AND TIME SERIES PROCESSES FOR
CONDITIONAL MEANS

Gabriele Fiorentini & Enrique Sentana

ABSTRACT

We study the processes for the conditional mean and variance given a specification
of the process for the observed time series. We derive general results for the conditional
mean of univariate and vector linear processes, and then apply it to various models of
interest. We also consider the joint process for a subvector and its expected value conditional
on the whole information set. In this respect, we derive necessary and sufficient conditions
for one of the variables in a bivariate VAR(1) to have a white noise univariate representation
while its conditional mean follows an AR(1) with a high autocorrelation coefficient. We also
compare the persistence of shocks to the conditional mean relative to the observed variable
using measures of total and iterim persistence of shocks for stationary processes based on the
impulse response function. We apply our results to post-war US monthly real stock market
returns and dividend yields. Our findings seem to confirm that stock returns are very close
to white noise, while expected returns are well represented by an AR(1) process with a first-
order autocorrelation of .9755. We also find that small unexpected variations in expected
returns have a large negative immediate impact on observed returns, which is thereafter
compensated by a slowly diminishing positive effect on expected returns.

KEYWORDS: Time Series Processes; Conditional Moments; Expected Returns; Persistence.







Introduction

The first and second conditional moments of economic and financial time
series (given past behaviour) are often identified with important economic
concepts. For instance, consider the stochastic process for stock market excess
returns, ry, whose first two conditional moments given the information set I;_,
are:

pe = E(ve | Ie-1)
o2 =V(r;| Ii_1)

In this context, p; is usually associated with the risk premium of the stock
market as a whole, o2 with its volatility, and p;/07 with the market price of
risk.

In this paper we study the time series properties of the processes for the
unobserved conditional mean and variance, y;, 02, given a specification of the
process for the observed time series, r;. Apart from providing useful insights
into the statistical features of time series models, the properties of a process
and its conditional mean often have relevant economic implications. For ex-
ample, the fact that stock market returns have negligible autocorrelations was
traditionally regarded as evidence in favour of the present value model with
constant expected returns. More recently, though, Shiller (1984), Summers
(1986), Poterba and Summers (1988) and Fama and French (1988) showed that
near white noise behaviour for observed returns is compatible with a smoothly
time-varying expected return whose first-order autocorrelation is high (see also
Campbell (1991)). Obviously, from the point of view of explaining movements
in asset prices, there is a substantial difference between constant and time-
varying expected returns.

Although the information set [;_; generally includes variables other than
past values of 1y, for simplicity we start with univariate analysis. In this re-
spect, we derive a general result for the conditional mean of univariate linear
processes satisfying standard regularity conditions. Then, we apply this result
to various models of interest used in the analysis of economic and financial
time series, such as stationary ARMA, ARIMA, multiplicative seasonal ARIMA,
and ARFIMA models. In order to apply our general result to the conditional




variance, we use the fact that o2 is the conditional mean of the squared innova-
tion, and that conditional heteroskedasticity models often have a straightfor-
ward interpretation as linear processes for the squared innovations. We present
examples for GARCH, GARCH-M and QARCH models.

We also look at the persistence of shocks in the conditional mean process as
compared to the persistence of shocks in the process for the observed variable.
However, most persistence measures put forward in the literature imply that
shocks to stationary variables have zero persistence, despite the fact that the
response of a variable to a shock varies substantially across different covariance
stationary processes. For that reason, we use a measure of persistence of shocks
for stationary processes based on the impulse response function, which captures
the importance of the deviations of a series from its unperturbed path following
a single shock.

The univariate framework, though, is often too restrictive for the analysis
of such issues, as there is only one shock that drives the processes for the ob-
served variable and its conditional mean. In other words, the joint process for
r, and its conditional mean is reduced-rank with a singular covariance matrix
for the innovations. This has been long realized, and two main alternative
approaches have been proposed. The first one specifies directly a stochastic
process for the conditional moment with “its own” innovation. In this way, the
stochastic volatility literature often assumes that the (log) conditional variance
follows a univariate AR(p) process. Similarly, Campbell (1990) assumes that
the expected stock return follows a univariate AR(p) process, and then derives
the implied process for observed returns. Here, we follow the opposite route,
which is more in line with the tradition in Rational Expectations economet-
rics. That is, we start from an observed multivariate process for the variable
of interest and other variables that Granger-cause it, and then derive the im-
plicit process for its expected value conditional on past information. In this
multivariate framework, we also compare the persistence of shocks to a series
and its conditional mean.

As an empirical illustration we look at post-war US monthly real stock
market returns. Since several studies have found some predictability in re-
turns using lagged dividend yields, we estimate a bivariate model for these

two variables. Then, we obtain the implied joint process for actual and ex-




pected returns, as well as their univariate representations.

The rest of the paper is organized as follows. In Section 2 we present the
results related to univariate analysis. A measure of persistence for univariate
stationary processes is introduced in Section 3. The next two sections are
multivariate extensions of the previous ones. In Section 6 we derive conditions
under which white-noise behaviour for a variable is compatible with a persis-
tent stochastic process for its conditional mean. The results of the empirical
application are discussed in Section 7. Finally, our conclusions are presented

in Section 8.

2 The Conditional Mean of a Univariate Pro-

CceSsSs

In this section we derive the time series processes for the conditional mean
of some commonly used univariate time series processes. We begin by stating
the general result for linear processes, and then we analyze several cases of
interest such as ARMA and ARIMA processes, univariate GARCH and GARCH
in mean processes.

Let L denote the lag (or backshift) operator, Lz, = 2,1, and let a(L) and
b(L) denote (non-normalized) polynomials in L. A linear stochastic process of

order k and h can be written as!

[1—a(L)]e: = [1 = b(L)]e: (1)

or

(1—aL—...—apI¥)zy = (1= b L — ... — b, L")es

where ¢, is the innovation in the process at time ¢, and the roots of a(L) =1
and b(L) = 1 lie on or outside the unite circle. This includes integrated and
invertible processes (whether strictly or not) but rules out explosive as well as
non-invertible processes. However, if some of the roots of b(L) = 1 lie inside
the unit circle the process admits the invertible representation [1 — a(L)]z; =
[1—¥(L)]e,, where €, = [1L — ¥/ (L)]7'[1 — b(L)]e;.

1The notation usually adopted for linear process is a{L)x; = b(L)e;. Our choice is based
on convenience, as it makes the algebra and exposition much simpler.
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2 of x4, ie. its minimum

Let py = Ey_1(x:) denote the conditional mean
mean square error one-period ahead forecast.

Proposition 1: A linear process of order k and h for xz;, [1 — a(L)]z: =

[1—b(L))e;s, implies that p, follows another linear process given by [1—a(L)}p =
(a(L) — b(L)Jer

If o(L) = 1 and a(L) — (L) = 0 do not share roots in common, the con-
ditional mean follows a linear process of order k and m — 1 (m = max(k, h)).
However, k and m— 1 should be interpreted as maximum orders because cancel-
lation of common factors often occurs, as will be illustrated in some examples
below. Nevertheless, the common factors will never involve a reduction in the
order of integration since x; and its conditional mean are always cointegrated.
Notice also that no assumption has been made regarding k and h. Therefore,
the result holds for processes of infinite order. Finally, note that the innovation
in the process for p; is proportional to the innovation in the lagged value of
x¢. In the rest of this section we shall apply the above result to several models

of practical interest.

2.1 ARMA-type Processes

Autoregressive Integrated Moving Average (ARIMA) models are the best

known linear processes. An ARIMA(p,d,q) process can be represented as
[1—¢(D)](1 - L)z, = [1 - 0(L)]e

or

[1 - &(L)]ze = [1 - 0(L)]e:
where 1 — ®(L) = [1 — ¢(L)](1 — L)? and the roots of #(L) = 1 lie outside the

unit circle. From Proposition 1, it is easy to see that the conditional mean of
an ARIMA model follows a process that also has the autocorrelation function
(ACF) of an ARIMA process. Specifically,

Result 1: An ARIMA (p,d,q) process for z; implies that (1 — L)%u, displays the
Acr of an ARMA (p,m-1) process, with m=maz(p+d,q), the i™ Ar coefficient
given by ¢;, and the i Ma coefficient given by (®; — 6;)/(®1 — 01) if D1 # 01.

?In this paper the terms conditional mean and linear projection are treated as equivalent
unless otherwise specified.




As a simple example, take the ARMA(1,1) model
Ty = Ppxy_q + € — Oer_q
In this case, the process for the conditional mean is the following AR(1)

Pevr = P + (¢ — O)es

If we let ¢ — 0 go to zero, we can make the ARMA(1,1) process as close as
desired to white noise, and yet keep the first autocorrelation of the conditional
mean equal to ¢. However, the variance of the mean goes to zero with ¢ — 0,
so that it actually converges to a constant in the limit.

As a second example, consider the AR(2) process
[1- ¢(L)]xt =(1—-¢ L~ ¢2L2)37t = €

In this model, the conditional mean follows an ARMA(2,1) process, unless
$1 = +/3/(1 +q§—2), in which case it reduces to an AR(1).

With some minor modifications, Result 1 is readily applicable to Multi-
plicative seasonal ARIMA models. The purely seasonal ARIMAg(P,D,Q) model
takes the form

[1—@y(L)|m, = [1 — ¢s(L)(1 = L*) Py = [1 = 05(L)]ex

where ¢s(L) and 5(L) are polynomials in L®, and typically the value of s is 4
or 12 for quarterly or monthly data. The equation ®4(L) = 1 has D X s roots
on the unit circle. Multiplicative models combine features of purely seasonal
and ordinary ARIMA models. The general ARIMA(p,d,q)x s(P,D,Q,) model
takes the form

[1 - @(D)][1 = @o(L)]me = [(1 = O(L)I[L — O5(L)]ee

Result 1 can be modified accordingly:

Result 2: A multiplicative ARIMA (p,d,q)xs(P,D,Q) process for x; implies
that the stationary transformation of the conditional mean, (1— L)*(1—L*)P p,
displays the Acr of an ARMA (p+P,m-1) process, with m=maz(p+d+Ps+Ds,

q+Qs).




In this case, the process for the conditional mean has an expression which is
of the ARIMA type but, in general, it will not display a multiplicative moving

average part, unless the model is purely seasonal. As an example, consider the

quarterly airline model
(1-L)(1 =LYz, = (1 — 6,L)(1 — 04,L%e,
This yields as conditional mean
(1-L)1 = LYpe1 = (L = 01)ee + (1 — Os)er3 + (0104 — 1)es_a

Another class of linear processes which has been increasing popular recently
are Autoregressive Fractionally Integrated Moving Average (ARFIMA) mod-
els. They were introduced to represent stochastic process which do not display
the typical exponential decay in the correlogram associated with ARMA mod-
els. Following Granger and Joyeux (1980) and Hosking (1981), the simple
ARFIMA(0,7,0) takes the form

(1 — L)f"a}t = €

where 7y is a real number, and

(1-L)" = g:o ( Z ) (L) = 1-—7L—-;-7(1—-7)L2—%7(1~7)(2—7)L3—

On the basis of Proposition 1, it is straightforward to show that the conditional
mean also follows a fractionally integrated process of order 7, but with an

infinite order moving average part. Specifically,

(1= L)'pe = ¢(L)es = [yL + %7(1 — L+ —é—v(l —NEC-ML+.. Je

Again, the observed process and its conditional mean are fractionally cointe-

grated, so that no reduction in the order occurs.

2.2 ARCH-type Processes

Proposition 1 can readily be applied to autoregressive conditional het-

eroskedastic processes. Let €; denote the innovation in a stochastic process.
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Then ¢ is said to follow a (semi-strong) GARCH(p,q) process if E;_1(¢;) = 0

and E;_(€?) = o7 with
[1 - B(L)]o} = ao + a(L)e;

A GARCH(p,q) process can be represented as an ARMA (m,p) for the squared

error process (with m=max[p,q]), that is
[1— (L) = B(D)]ef = ao + [1 = B(L)]vr

where v, = €2 — 02. Given that o7 is the conditional mean of €7, a straightfor-
ward application of Result 1 leads to an ARMA(m,m-1) representation for o2,
But since [a(L) + 8(L)] — B(L) = (L), Result 1 simplifies as follows:?
Result 3: A fourth-moment stationary GARCH(p,q) process for €, implies that
o2 displays the Acr of an ARMA (m,q-1) process, with m=maz(p,q), the i Ar
coefficient given by a; + B;, and the i Ma coefficient given by oy /aq if aq # 0.
If the GARCH process is not fourth-moment stationary, o? will behave as an
ARMA process with infinite variance innovations.

In most empirical applications, the simple GARCH(1,1) specification is adopted

2 _ 2 2
oy = ap +ou€_q + S0y,

and Result 3 gives
07 = ag+ (01 + B1)o7 4 + arvs

that is, an AR(1) process for the conditional variance with autoregressive pa-
rameter equal to a; + (1 and variance of innovations proportional to al.
Also, the following result will prove useful:
Result 4: A GARCH(p,q) process for ¢, implies that the Acr of o} can only
take non-negative values.
Our results can be extended to GARCH in mean (GARCH-M) processes. A
variable z; is said to follow a GARCH-M model of orders p and q, if

xy =602 + ¢ (2)

3Result 3 can also be found in Fiorentini and Maravall (1996)
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where o7 is the conditional variance of €; which, in turn, follows a GARCH(p,q).
Hong (1989) investigates the ACF of z; for the GARCH-M(1,1) case. Results 3
and 4 allow us to generalize his findings. First, notice that the conditional mean
of x; is proportional to its conditional variance. Hence, according to Result
3, p follows an ARMA(m,q-1) process since the constant é§ only affects the
variance of the innovation in the ARMA process for the conditional mean, but
not its autocorrelation structure. Second, provided that F(€}) = 0, equation
(2) states that z; is the sum of two components uncorrelated at all leads
and lags: a white-noise component (¢;) and a constant times the conditional
variance. Therefore, since m>q, we have that:
Result 5: A GARCH-M(p,q) process for z; with E(€}) = 0 implies that z;
displays the Acr of an ARMA (m,m) process, with m=maz(p,q), and the i Ar
coefficient given by o; + 0G;.
To derive the Ma coefficients, one computes the variance and the first m auto-
covariances of the moving average part of the model, and then solves a standard
system of nonlinear equations. The GARCH-M model, however, is an example
in which the difference between conditional means and linear projections is
important.
Also, Results 4 and 5 imply that:

Corollary 1: If z; follows a GARCH-M(p,q) process, its Acr can only take
non-negative values. In particular, for k # 0, Cov(zy, ze—x) = 6°Cov(a},0l_)

This last result may explain the poor empirical performance of GARCH-M
models. It tells us that regardless of the parameter values, and in particular
regardless of the sign of §, the autocorrelations of z; implied by the model are
all positive.

Proposition 1 can also be applied to other ARCH models in the literature,
such as the Generalized Quadratic ARCH (GQARCH) model of Sentana (1995).
The conditional variance of a GQARCH(1,1) model is given by:

2 2 2
oy = og + ¢1€t—1 + a6, + ﬁﬂft_l

It is straightforward to see that the process for the conditional variance is

an AR(1) given by

(1—(a+ ﬁl)L)U752+1 = oo + (1v¢ + 1€

12




while for the squared innovations we have
(1 - (Cll + ﬁl)L)Eg = O + (1 - ﬂlL)Ut -+ 'l,blLEt = (1 - ﬂfL)at

i.e. an ARMA(l,1). Exact expressions for the parameters of these processes
can be obtained by solving a nonlinear system of two covariance equations.
Notice that when 17 = 0 the result is exactly equal to the GARCH case.

3 Persistence of Shocks in Covariance Station-
ary Time Series

As we mentioned in the introduction, the comparison between the persis-
tence of shocks in a variable and its conditional mean often bears relevant
economic implications. However, the persistence of economic shocks is usu-
ally measured by looking at the long-run effect of an innovation on the level
of a series (e.g. Campbell and Mankiw, 1987). As a consequence, shocks to
stationary processes are usually assigned zero persistence. At the same time,
however, stationary processes are often referred to as showing “high” or “low”
persistence to shocks. For instance, a stationary AR(1) process is labelled
highly persistent when the value of the autoregressive parameter is close to
1, since such a process will take a long time to revert to its mean following a
shock. But, how persistent is an ARMA(L,1) whose autoregressive and moving
average coefficients are both close to 17 In what follows, we introduce a mea-
sure of persistence of shocks that can be applied to any covariance stationary
process.

Let 2; = ¥(L)e; denote the Wold representation of the unperturbed process,
where ¥(L) is square-summable. Let’s now define the perturbed process z =
U(L)et, where €} = ¢, (Vs #t), and €} = ¢, + 1 X 0. We want a measure of
how much z} deviates from z;. Obviously, since the process is stationary, the
net effect on x},,, of a shock to ¢ is zero in the limit. However, the route taken
by i, to go back to its original path z.; may differ substantially across
different models. For instance, if z; is white noise (i.e. x; = €;), the original
unperturbed level of the series is restored after one period. In contrast, if
z; follows an AR(1) process (z; = ¢zi-1 + €) with ¢ = .95, z7,, will stay
significantly “far away” from z;; for a long period of time. In other words,

13




the deviation from the original path in response to a shock will be substantial.
On the contrary, when ¢ = .1 the shock will effectively exhaust its impact very
briefly and the deviation of z},, from zy; will be inappreciable. In the case
of an ARMA(1,1) process (z; = ¢@—1 + € — O6;1) with ¢ = .95 and 6 = .9,
the shock provokes little variation on x},, but the series will take a long time
to go back to its original level.

Since z},, — Te4r = YrOe, any “reasonable” measure of the persistence of
shocks must be based on the impulse response function (IRF). The mean or
median lags are potential candidates. However, they are only valid for non-
negative impulse response functions, when the IRF can be interpreted as a
probability distribution for time. For instance, the mean and median lag give
sensible answers for the model z; = .45x;_1 -+ €, but not for ©; = —.45x¢ 1+ €
or r; = A5z, 1 + € — .8es_y or Ty = —.45x;_ 1 + €4+ .B€ry, even though their
impulse response functions are all identical in magnitude (wee Figure 1).

For that reason, we propose the use of

oo

Poo(xt | Et) = Z’l’b?

=0

as a measure of the persistence of shocks. In principle, 3272, | 1; | could play
a similar role except that not all covariance stationary processes have Wold
representations with absolute-summable coefficients. Besides the algebra of
our measure is simpler, and its interpretation straightforward since
V(z:)
V(e
i.e. the ratio of the variance of the process to the variance of the shocks.

Diebold and Rudebusch (1989) have forcefully argued that sometimes it is

more interesting to look at the effect of a shock on a variable k periods after

Poo(xt | Et) =

its occurrence. For this purpose, we suggest to use
k
Py(x: | &) = Z%z
=0

as a measure of the interim persistence of shocks. Again, the interpretation of

the interim measure is also immediate, since

V(@eqr — 53t+k|t~1)
Vie)

Py(my | &) =
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i.e. the ratio of the variance of the (k + 1)-period-ahead forecast error to the
variance of the shock. Obviously, for covariance stationary processes, Ztixjt—1
converges to B(Tsyx), and Py(z: | €) to Poo(wt | ¢;). But unlike Py (x| €), the
k-period measure Py (z; | €:) can be used and interpreted for non-stationary
processes as well.

Let’s consider some examples to appreciate how such measures work in prac-

tice. In ARMA(1,1) models, &y = ¢2;1 + € — 06,1, We obtain

Pu(z: | &) = 1+ (= 02ELs Poolmi | &) =1+ (¢~ 0)* iy

In particular, for AR(1) models (6 = 0), Pwo(z: | &) = (TJET) is a monotonic
transformation of the absolute value of ¢. Therefore, our measure would say
that the process is more persistent when ¢ = .95 than when ¢ = .1, which is in
agreement with widely held views. Notice that our measure of persistence for
white noise (i.e. ¢ = 0) is 1, and this represents its lower bound. There is no
upper bound, of course, since it will be infinite for a non-stationary Ima(1,1)
process. However, if the moving average parameter is close to one, say 6 = .98,
the persistence of a shock after 400 periods (a century of quarterly data ) is
only Pyo(z: | €) = 1.16, well below the persistence of a stationary AR(1) with
autoregressive parameter equal to .5.

Similarly, for a purely fractionally integrated process (1 — L)7z; = €;

G\ a-
Py(me | €) = Yo (r(1;+;;¥‘(ry)) Poo(s | &) = [11:(}—’23])7

where T'() is the gamma function. Note that although a fractionally integrated
process has a much longer memory than an AR(1) process, the persistence of
shocks is not necessarily larger. For instance, if 7y is 0.1, Py (¢ | €) = 1.02,
which is smaller than the persistence of an AR(1) with ¢ = 0.5 (P (z: | &) =
1.333).

We are now in a position to compare the persistence of shocks in the condi-

tional mean vis a vis the persistence of shocks in the observed variable. Let

Ty = € + 1€, + Yok, + Uy + ...

be the moving average representation of the process for ;. Since its conditional

mean can be expressed as
Pyt = Y16+ Pa€y + Psr, +
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it follows that
Poo(pter1 | €) = Poo(zt | €) — 1

That is, the persistence of the only shock that drives the joint process on the
observed variable is 1 plus the persistence of the same shock on the conditional
mean. Therefore, the lower bound on the persistence of shocks to the mean
process is zero, corresponding to a model with constant mean.

The ARMA(1,1) model provides some intuition for the above result. As we
saw in section 2.1, if ¢ — 0 is very small, it is possible to find examples in which
the process for the observed series is very close to white noise, while the process
for the conditional mean is an AR(1) with a very high autoregressive parame-
ter. However, the effect of a shock on the conditional mean is also very small,
and the deviation of the conditional mean from its original path is negligible.
In the limit, the observed series is white noise only if the conditional mean is
constant. This fact is behind the traditional misconception that white noise
behaviour for stock returns requires constant expected returns. As we shall
see in section 6.2, this is no longer necessarily so in a multivariate framework.

As our last example, consider a GARCH(1,1) process 02 = ag + cu€r_4 +
Bi02 ., which can also be written as 02 = ap + (u + f1)o7; + qv:. Given
what we have just seen, the persistence of the conditional variance is

9
551

ST (1 52

Thus, in a GARCH(1,1) process, the persistence of shocks to the conditional

Poo(0}yy | v1) = Pool(eg | ) — 1

variance depends not only on the value of oy + (1, but also on the value of
a1 (see also Engle and Mustafa, 1992). In particular, as it happens with the
conditional mean in ARMA(1,1) models, the conditional variance process will

display little persistence to shocks when oy is small.

4 The Conditional Mean of a Vector Process

The results of the previous sections can be readily generalized to multivari-
ate processes. Let x; denote a vector process of order n. In this section we
study the marginal processes for x; and its conditional mean p;. Furthermore,

in section 5 we extend our measure of persistence to multivariate processes.
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Finally, in section 6 we shall also consider the joint process for a subvector x;;
and its expected value conditional on the whole information set, g * .

Let’s consider a multivariate linear vector process of order k and h
[I — A(L)]x¢ = [I — B(L)]e:

where ¢; is a n X 1 white noise process, with 0 mean and covariance matrix
%, I is the identity matrix of order n, A(L) is a n X n matrix whose typical
element is a polynomial in L of order k, and B(L) is analogously defined. More

explicitly,
Xe = Aixe1+ oo+ AXeer + e+ Biee—1+ ...+ Brerp

where A; and B; denote n X n matrices of coefficients.

Define p; = E;_1(x;) as the n X 1 conditional mean vector. The following
result generalizes proposition 1:
Proposition 2: A vector linear process of order k and h for x;, [1— A(L)]x, =
[1 — B(L)le:, implies that pg follows another vector linear process given by
[1 — A(L)]pe = [A(L) — B(L)]es; the elements of A(L) — B(L) are in general
polynomials of degree m — 1 with m=maz(k, h).
As examples, we shall consider standard VARMA and vector GARCH processes.

4.1 VARMA Processes
A VARMA(p,q) process is expressed as
= 2(L)x = [I = O(L)]e:

or
Xe=DXe 1+ .. FPpxe e+ O+ FOperyg o,

Direct application of Proposition 2 leads to the following result:

40ur results also apply to the analysis of the marginal processes for all possible partitions
of x; into subvectors Xjs,...,X;; of dimension nj,..., n;, and their means conditional on
the marginalized information sets. The reason is that if the n x 1 vector x; follows a linear
process, the marginal process for any n; x 1 subvector x;; will also be a linear process. Thus,
if n; is bigger than 1 the results of this section apply, while if n; = 1 we can use the results
of Section 2 on univariate process.
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Result 6: A VARMA (p,q) process for x, implies that p; displays the Acr of
a VARMA (p,m-1) process, with m=maz(p,q), the i Ar matriz of coefficients
given by ®;, and the 1™ Ma matriz of coefficients given by (D1 —©01)7' x (®; —
©;), provided | &1 — ©1 |# 0.

As an example consider a bivariate VARMA(1,1). According to the above
result, the process for the conditional mean is the following VAR(1):

e | _ [ du 92 e\ L $11— 011 12 — o €1t
H2441 P P Mot Go1 — a1 Paa — bog €9t
Notice that since the matrix of autoregressive coefficients is shared by the

observed time series and their conditional means, they will have the same

(co-)integration properties.

4.2 Vector GARCH Processes

Let ¢; denote a k x 1 vector of innovations. Then ¢ is said to follow a multi-
variate (semi-strong) GARCH(p,q) process if E;_1(&) = 0 and E;_1(g€;) = X,
with

[1 — B(L)]vechS:, = ap + a(L)vech(esey)
A multivariate GARCH(p,q) process can be represented as the following
VARMA(m,p) (with m=max[p,q]) on vech(e€;),

[1 — (L) - B(L)vech(eer) = o+ [1 — B(L)]ve

where v; = vech(e:e, — 2¢).

Then, proposition 2 simplifies to

Result 7: A multivariate GARCH (p,q) process for €, implies that vech(X;)
displays the Acr of an VARMA (m,q-1) process, with m=maz(p,q), the it Ar
matriz of coefficients given by o; + B;, and the i Ma matriz of coefficients

given by ay 'y provided | a1 |# 0.

5 Persistence of Shocks in Multivariate mod-
els

The same notion of persistence of shocks employed in univariate analysis

can be extended to multivariate models. That is, the persistence of a given
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shock on a variable can be measured by the variation of the series with respect

to the original unperturbed process provoked by that shock.

For simplicity, let’s consider a covariance stationary bivariate model®

where A and B are 2 X 2 matrices of polynomials in L, and ¢ is 2 X 1 white

noise process with zero mean and covariance matrix X.. Let
X = \II(L)Et

denote its Wold representation, and define a matrix 3* such that Y =
Y. Then, the infinite moving average representation of x; in terms of the

standardized orthogonal innovations ¢ = X* e, is
= U (L)e;

where U} = U,3* and the covariance matrix of €} is the identity matrix.

We can then define the persistence of a shock to €}, on the 4t variable as

P th I Ez t Z 17D]1 k

where 7 = 1,2 and ¢ = 1, 2.

However, it is well known that the decomposition of the covariance matrix of
the one-period ahead prediction errors in the Wold representation is not unique
and, thus, that the orthogonal shocks are not identified. More specifically, let
Q) be an orthonormal basis of R? (see appendix B). Then, any orthonormal

transformation of ¥* will provide another infinite MA representation with or-

thogonal shocks. In particular,
x; = U (L)€

where U = U;5*Q 6 . The persistence of the "new” i** shock on z;; will be

(e )

Po(mis | €)=Y wia

k=0

5The generalization to processes of more variables is straightforward
81n fact, there are many more MA representations of a covariance stationary process in
terms of ”non-fundamental” orthogonal shocks
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which in general is different from Py (z;; | €};). Therefore, any attempt to
define a single measure of persistence for a given variable irrespectively of the
shock is largely futile. For that reason, our measure of persistence is conditional
on a given specification of the shocks.

Ideally, such a specification should be largely guided by economic theory
considerations. Nevertheless, when there is no a priori identification of the or-
thogonal shocks €, it is nowadays customary to look at the different Cholesky
decompositions of X. In particular, when the model is bivariate, researchers
analyze two ”leading” cases based on the Cholesky decomposition of X, and
the Cholesky decomposition of the covariance matrix of the re-ordered system,
in the hope of finding the results robust to the specification of the shocks. This
is what Koop, Pesaran and Potter (1996) call generalized variance decomposi-
tions. However, an example in appendix C shows that the different Cholesky

decompositions are not necessarily representative.

6 Time Series Processes for a Variable and its
Conditional Mean in a Multivariate Model

In Section 2, we saw that in a univariate model, the joint process for an
observed variable and its conditional mean is singular, since there is only one
shock driving both series. In this section we shall obtain the joint process for
a subvector of x; and its conditional mean in a multivariate setting.

For this purpose, let (x;,p;.4) be a 2n x 1 vector’” stochastic process.
We want to obtain from it the marginal process for the 2n; x 1 subvector
(x1,t, Pt +1)- Importantly, the mean p1,¢41 1s conditional on the full informa-
tion set I;.

Consider a VARMA(p,q) process

Xt = Alxtﬂl T ApXtmp + € + Blet—l + ...+ Bth_q
On the basis of Result 6, we can write

Xt 0 1 Xt-1 L 0 O Xt—g
= + +
()= G ) G )50 0 ()

"Notice that the temporal phase-shift between the two vectors is only apparent as both
% and figrq belong to the information set I,
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I U 0
( ) ) €t +]Z::2 ( ¢ ) €1—j+1 (3)

where I is an n X n identity matrix, m = max(p,q) and C; = A; + B; (with
A; =0if ¢ > pand B; = 0if i > ¢). This gives us the joint process for
(X¢, pheqq) directly.

Let’s partition x; and g4 into two subvectors (Xx;: , Xa¢) and (1641 ,
Pot41) respectively. Marginalizing with respect to x; ¢ and 49 441 results in the
joint process for this set of variables and their expected values. However, given
that the conditional means p; + are based on the information contained on past
values of both Xy and Xy, the innovations to the joint process (Xi, /41 41)
are not linearly dependent in general, since they are a full rank linear trans-
formation of the innovations in all the observed variables.

As a simple example, let’s consider a bivariate VAR(1) model for some vari-

able, r; say, and some predictor variable, 8, say, which helps explain p,® .

()=o) ()

In this case, representation (3) is simply

Tt 0O 1 0 0O Te_1 1 0

Prge1 | _ 0 ann 0 a Pt + a1 a2 ( Uy )
6 0 0 0 1 61 0 1 vy
146,641 0 an 0 ayp Ihs.t asy Qoo

which, for this particular model, coincides with the (re-arranged) Akaike (1974)
state space representation.

Marginalizing with respect to r; and its conditional mean yields

Tt N 0 1 -1 0 0 Tt_9

prgrr |\ O tr(A) ot * 0 —|A4] Hort—1 "
Uy 0 0 U1
Wy + —]Al 0 Wy_1q

8The change of notation is made for consistency with the empirical section.
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where tr(A) and | A| denote the trace and the determinant of the matrix A, and
Wi = 11U + a127;. Thus, we obtain a (reduced rank) VARMA(2,1) model with
a full rank covariance matrix for the innovations u; and w;, whose covariance
is
E(ugwy) = a110, + 01204,
and their correlation
41102 + 41204y

Puw = P P
O'U\/G,HO'U + A190, + 20/110;120'1“,

Therefore, its Wold decomposition will be given by

U 0 1 U1 = —IAlgi2 g1 | [ wy
(wt ) + ( —|A] tr(A) ) ( W1 ) +,z::2( —1Algj-1  9; ) (wt_j )

where g; = tr(A)g;—1 — |A| gj—2 with go = 1,¢1 = tr(A).

Note that as expected, the effect of u,_; and w;_; on r; for j > 0is exactly the
same as their effect on p, ;. As a consequence, whatever the orthogonalization
of the shocks, the persistence of a given shock on the observed process is at least
as large as its persistence on the conditional mean. Unlike in the univariate
case, though, it is possible for both effects to be equal in size if a shock does
not have any contemporaneous impact on 7y .

In this general case the marginal processes for 7, and its conditional mean

are
(1 —tr(A) L+ |A| L) prsy1 = aryug — | Al w—y + a19v, = (1 — wL)n;
and
(1 —tr(A)L + |A| L})r; = s — agus_1 + arpv 1 = (1 — OL)&;

where the values of 7, 8, 0, and 0, can be easily obtained by solving a simple
quadratic equation.

Our next exercise is to investigate in a multivariate setup the response to
shocks of r; and its conditional mean. In particular, we analyze shocks that
affect the observed variables 7, and §; directly, as they may be simpler to
interpret in practice. In this respect, it is convenient to re-write the model in

terms of u; and v, as
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r 0 1 T 0 0 _
t _ t—1 n Tt—2 4
,Ufr,tJrl 0 tT(A) Hrt 0 - IAI Hrt—1
1 0 U n 0 0 U-1 | _
air a1z Ut - 1A| 0 Vg1
1 0 _
Uy n a1 aig U1 1
a1 Q12 Uy tr(A)an — |A] tr(A)ass V1
i a1195-1 — |A! gj—2 a1295-1 Ut—j5
=2 aing; — | Al g;-1 a129; Vg4
To keep the algebra as simple as possible, we only consider in detail those

special cases that lead to an AR(1) process for p,;. The rest of the section is

devoted to a detailed analysis of such cases.

6.1 Case A: a;p=0

When a1, = 0 the joint process for 7; and its conditional mean is a reduced-

rank VAR(1) with a singular covariance matrix for the innovations. That is

Tt 0 1 Tt-1 1
= —|- ut
Hort+1 0 an Hort a1y
Therefore, the marginal processes are
(1 - anL)Mr,tﬂ = a11Uy
and

(1—aul)rs =

The reason is obvious. When a3 = 0, é; does not Granger-cause 7y, s0
that we are in effect back to the univariate case. As we saw in Section 2, it is
impossible to achieve a white noise representation for a series with time-varying

conditional mean in the context of linear models (see Granger, 1983).
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6.2 Case B: r; white-noise

Given that the marginal process for r; is ARMA(2,1), 7+ cannot be exactly
white-noise unless one of the roots of (1 — tr(A)L + |A| L?) = 0 is zero. But
this requires |A| = 0, so that the VAR(1) for the observed variables 7, and &,
has to be of reduced rank.

In this case we can distinguish several different possibilities, namely

Bl) ;3 =0and a2 =0

B2) a;; =0 and ag; =0

B3) ags =0 and a;5 =10

B4) ags =0 and a9y =0

B5) 411022 = 012021

First notice that Bl is nested into case A. In particular, in case Bl r; is white
noise and the conditional mean is constant. Similarly, case B3 is in effect the

same as case A.

Consider case B4. The joint process is now

T4 _ 0 1 i1 4 1 0 U
Hrt+1 0 an Hryi ai Q12 Ut
while the marginal processes are

(1 — a1 L)pr 1 = a19v; + a111

and
(1 — a11 L)re = up + a1a Loy

However, when asy = ag; = 0 the variable §; in the original VAR(1) is white
noise. This makes this case empirically uninteresting and we will not analyze
it further.

6.2.1 Case B2
When a1 = 0 and ag; = 0 the joint process is

(e =00 ) ) (o))

\ Hrerr )\ 0 an )\ pre ) a1z J \ vt )
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while the marginal processes are
(1 — a9 L)ptrp1 = a19v;

and
(1 — ageL)re = (1 — age L)us + arp vy = (1—0L)n:

Therefore, the process for r; is an ARMA(1,1), which reduces to white noise
if cancellation occurs? . This case was first analyzed by Campbell (1991). Note
that here the conditional mean is exactly proportional to the observed process
8;, so that w; = aypv;. This simplifies the analysis considerably.

The covariance equation system gives

14602 (14 ady)0? + a2502 — 202201200

—0 _a220-12,, + 120w
(4)

Let v = 0,/0, and p = 0yy/(0u0y), and, without loss of generality, take
a12 = 1 as scaling normalization.

Equation (4) can then be written as

—0 _ —axpY+p (5)

1462 (1+ad)y+1/7— 2azp
In principle a9y can take any value below 1, but for r; to be white noise,
it must be the case that & = age. Such a restriction has implications for
all the other parameters, and in particular for the covariance matrix of the
innovations. Imposing this restriction in (5) we get the following relationship

between v and p.

—Qa99 1
v = = (6)
1—afyp

It is more interesting, though, to look at the implications of 6 = ay, for
the relationship between the R? of the first equation, i.e. the proportion of
variance of 7; explained by its conditional mean (var(p,.)/var(rs)), and the

correlation between the innovations. Since R? is related to «y through

1
1+ (1 - a%z)’}’Z

R? (7)

9Note that if r; is white noise, so is any temporal aggregate such as r¢ +7¢—3.
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we can obtain the mapping between R? and p compatible with white noise
behaviour for r; by combining equations (7) and (6). Such a mapping is pre-
sented in the first plot of Figure 2 for values agy ranging from .98 to -.98. As
shown by Campbell (1991), exact white noise behaviour for 7; can be obtained
with asy positive as long as shocks to 7; and shocks to its ”expected value”
8, are negatively correlated. Notice that the closer asg is to 1, the larger the
correlation must be in absolute value.

To gain some intuition on this result, it is convenient to look at the impulse

response functions of the variables with respect to the different shocks.

2
co| ™| = 0% = o’ T
Ut py 1

We only consider two kinds of shocks: those that affect r; directly through
ug, and those that affect §; directly through wv;. To study the response to a

shock in u; we use the Cholesky decomposition of 3 in the original system, i.e.

()
p VI=p? p VI-p?
where k = —ag/(1 — a3,).

The corresponding impulse response functions are

IrFo(r;) = 1; IRF;(ry) = (p/7)asy ", for j > 0.

IRF;(re1) = (p/7)a%, § =0, ..., 00.

These impulse response function are displayed in the lower plots of Figure
2, for age = 0.7 and p = —0.9, which correspond to v = O'u/O’U = 1.52 and
R? — 0.46. Note that since r; is white noise, the initial positive effect of a

Let’s write

shock to u; is slowly compensated by the negative impact on 0y

We can also compute the persistence of a shock to u; on 7 and its conditional

mean.

Poo(re | ) =1+1/7° ( v ) Poo(pirpr | ue) = 1/7° ( A 5 )

2
1— a3 1 —ay

Perhaps more interesting in the study of the effects of a shock to the con-

mn

ditional mean, v;,. To do so, we use the Cholesky decomposition of ¥ in the

26




re-ordered system

. (m——zf m) _ (xc(m/p) k)
0 1 0 1

Now we get

IRFo(ry) = k; IRF;(r;) = a}, ", for j > 0.

IRF;(prt1) = aly, §=0,...,00.

Note that for agy close to 1, k is be very large and negative. Therefore, a
positive shock to v; has a very negative immediate impact on 74, which is then
slowly reversed by the positive and slowly decaying effect on its conditional
mean. Such a pattern is a direct consequence of the restrictions that guarantee
a white noise marginal process for 7.

Again, it is easy to compute the persistence of a shock to v; on r; and its

conditional mean.

1 1
P = kQ : Poo = .
oo (e | V1) T o, (Hrs1 | v2) -,
6.2.2 Case B5
Case B5 nests all the previous ones. Apart from |A| = 0, we require

[tr(A)| < 1 for the stability of the VAR. The joint process is now

Tt . 0 1 T+—1 + 1 0 Ut
Hor 1 0 ay +ag Pt a1 A12 U
and the marginal processes

(1 — [a11 + a92) L) fhrey1 = G110 + Q120 = &4

and
(1 — [au + GQQ]L)’I"t = (1 — agzL)’U;t -+ a12LUt = (1 — HL)’)’]t

The covariance equation system becomes

"y o0 ’
0’220—11, + 0’120- v (8)

1+02  (1+ad)o2 4+ ayo? — 20901204
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which if we set the scale parameter a5 to 1, and impose aj; + ag = 0 to

achieve white noise behaviour for r; yields

—(a11 + as2) —Q97Y +p

1+ (a1 + ag2)? (14 a%)y +1/7— 2a2p

where v and p are defined as above. The relationship between R? and + is now
given by
2 _ 1 + 7%}
1+72(1 ~ a3y — 2a11092)

For particular values of a;; and ags we can get the mapping between R? and

p consistent with white noise behaviour for 7. Figure 3 shows such a mapping
for four values of 0. For instance, in the first plot § = 0.9, and each curve
corresponds to a value of aj; and age = 6 — a1;. Compared to case B2, now we
can get univariate white noise behaviour for r, and AR(1) behaviour for p,¢
with zero or even positive correlation between the innovations to 7, and é;.
We derive the impulse response function for p = 0.0, which is compatible
with white noise behaviour for 7, when 6 > 0 if a;; < 0. Here the covariance

matrix of the innovations is diagonal, so we only get one Cholesky decomposi-

2*:(7 0)
0 1

The impulse response functions with respect to u; are

IRFy(r;) = 1; IRF;(ry) = anitr’ ™' (A), for j > 0.

IRF,; (trgr1) = anitr’(A), 5 =0,...,00.

Again, the initial positive impact of u; on 7 is slowly compensated by its

tion, namely

negative impact on u:. Notice, however, that since the shock originates in 74,

Pyo(ry | ug) = 14 Po(ptry | u) as in the univariate case. In this particular

example
a? a?
=14 —3 P.(u, —_-n
Feolrs ) =1+ 7517 wolHres | W) = T3 577,

Similarly, the impulse response functions with respect to v; are
IRFo(rs) = 0; IRF;(ry) = tr(A)71, for j > 0.
IRFj(N/T,t—Fl) = t’f'(A)j, ] = 0, .., 00,
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Therefore, here we have a situation in which the persistence of the shock will

be the same on 7; and its conditional mean because p = 0. More specifically

1 1
Po(re | v) = T2 (A) Poo(frpn | ve) = 1— tr2(A)

7 Empirical Application to US Stock Market
Returns

As we mentioned in the introduction, the fact that stock market returns
have almost negligible autocorrelations was traditionally regarded as evidence
in favour of the present value model with constant expected returns. More
recently, though, several authors showed that near white noise behaviour for
observed returns is compatible with a smoothly time-varying expected return
whose first-order autocorrelation is high (see Campbell (1991) and the refer-
ences therein). Obviously, from the point of view of explaining movements in
asset prices, there is a substantial difference between constant and time-varying
expected returns.

In order to throw some light on this issue, we apply the results of the previous
section to post-war US monthly stock market returns. Since several studies
have found some predictability in returns using lagged dividend yields, we

estimate the following bivariate VAR(1)

Tt _ 1 4 a1y a2 Tt—1 I Uy
o Co Q91 Q22 01 Vg

where r; is the (continuously compounded) real stock market return, and 6 is
the corresponding dividend-yield (see chapter 7 of Campbell, Lo and MacKin-
lay (1996) for details). The sample covers 516 monthly observations from
January 1952 to December 1994.

Parameter estimates and heteroskedasticity-robust standard errors are pre-
sented in the first column of Table 1. As expected, the predictability of r; is
very small (R? = .0226). In contrast, dividend yields are highly predictable,
especially on the basis of its own lagged values (R? = 0.9961).

These estimates imply that tr(A) is 1.0695 and |A] = 0.0952, so that the
roots of the characteristic equation for the second order autoregressive poly-
nomial (1 — tr(A)L + |A| L?) are (.9714,.0980). We also have that the moving
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average parameter for observed returns is .9916, while the standard deviation
of € is .042. As a result, the implied theoretical first order autocorrelation
equals 0.0837, which is very close to the sample value of the 0.0859.

As we saw in Section 6, it is impossible for the univariate representation of 7,
to be exactly white-noise in a VAR(1) unless the companion matrix is reduced
rank. For that reason, we also estimate by maximum likelihood a restricted
VAR(1) model in which as1 = ai1ag/a12, or equivalently, |A| = 0. The results
are presented in the second column of Table 1. Notice that the reduced rank
restriction can only be rejected at the 5.92% level, despite the large number
of observations.

Using the results in Section 6, it is then straightforward to obtain the joint
process for actual and expected stock returns implied by the restricted pa-
rameter estimates, as well as their univariate representations. First of all,
note that the correlation between innovations to returns and dividend yields
(Puy) is .0713. In contrast, the correlation between the bivariate innovations
to observed and expected returns, puu, is -.9466. Therefore, it is not surpris-
ing that the implicit univariate representation of r; obtained on the basis of
the restricted parameter estimates is essentially white noise, with a negligible
theoretical first autocorrelation (-.011). On the other hand, we find that the
implicit univariate representation of expected returns is given by an AR(1)
with coefficient .9755. However, the standard deviation of the univariate in-
novations to expected returns is 0.0010, which is 42 times smaller than the
corresponding standard deviation for observed returns. Notice though, that
the standard deviation of expected returns is only nine times smaller than the
standard deviation of actual returns, because their autocorrelation coefficients
are widely different.

The univariate representations, though, only give a partial picture, which
is clearly insufficient for gauging the effect on r; and its conditional mean of
shocks to the bivariate process. In particular, we are interested in analyzing
those shocks that affect r; directly through u;, and those that affect it indirectly
through the innovation in fi, ¢, wy.

The impulse response functions are presented in Figure 4. Note that as
in Section 6.2.1, the initial positive effect on returns of a shock to u; is

later reversed by the very slowly decaying negative effect on expected re-
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turns. Similarly, a shock to expected returns has a large negative immedi-
ate impact on returns, and then it is compensated by the slowly diminish-
ing positive effect on expected returns. However, the effects of shocks on
expected returns are very small compared to the effect on actual returns.
This is confirmed by our persistence measure. For the estimated parame-
ter values, Py (r: | us) = 1.0105, while P (prt | us) = 0.0105. Similarly,
P (rs | wy) = 1600.00, while Poo(prs | we) = 20.64. These results are in line
with the argument in Campbell (1991) that a small unexpected variation in ex-
pected returns can have dramatic consequences on observed returns when the
covariance between the innovations to actual and expected returns is large in
absolute value but negative. Campbell (1991) provides an economic intuition

for such a high negative correlation.

& Conclusions

In this paper we study the time series properties of the processes for the
(unobserved) conditional mean and variance, p; o7, given a specification of the
process for the observed time series. We first derive a general result for the
conditional mean of univariate linear processes, and then apply it to various
models of interest used in the analysis of economic and financial time series,
such as stationary ARMA, ARIMA, multiplicative seasonal ARIMA and ARFIMA
models, GARCH, GARCH-M and QARCH models.

We also look at the persistence of shocks to the conditional mean process,
and compare it to the persistence of shocks to the observed variable. To do
so, we use a measure of persistence of shocks for stationary processes which
captures the importance of the deviations of a series from its unperturbed
path following a single shock. Our measure is based on the impulse response
function, and can be interpreted as the ratio of the variance of the series to the
variance of the shock. We also propose a way of gauging the interim persistence
of shocks that can be applied to non-stationary series as well.

The univariate framework, however, is often too restrictive, as there is only
one shock that drives the processes for the observed variable and its conditional
mean. For that reason we generalize our results to a multivariate setting. We

start from an observed multivariate process for x;, and then derive the implicit
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process for the conditional means. In this multivariate framework, we also look
at the persistence of shocks. Finally, we consider the joint process for a subvec-
tor x;; and its expected value conditional on the whole information set. In this
respect, we derive necessary and sufficient conditions for one of the variables
in a bivariate VAR(1) to have a white noise univariate representation while its
conditional mean follows an AR(1) with a high autocorrelation coefficient.
We apply our results to US monthly real stock market returns and dividend
yields over the period 1952-1994 to throw some light on the issue of whether
white noise behaviour for returns is compatible with smooth, highly correlated
time-varying expected returns. Our findings seem to confirm that stock returns
are very close to white noise, while expected returns are well represented by
an AR(1) process with a first-order autocorrelation of .9755. Furthermore,
the standard deviation of the univariate innovations in the expected return
series is over 42 times smaller than the corresponding standard deviation for
the observed variables. Our results also indicate that innovations to observed
and expected returns are negatively correlated, with a correlation coefficient of
-.9466. As a result, a shock to expected returns has a large negative immediate
impact on returns, which is thereafter compensated by a slowly diminishing
positive effect on expected returns. However, the effects of shocks on expected
returns are very small compared to their effect on actual returns. In this
respect, our results confirm that a small unanticipated variation in expected

returns can have dramatic consequences on observed returns.
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Table 1: VAR(1) Estimation Results
US real stock returns and dividend yields
1952:1-1994:12

Par Unrestricted Restricted
(White std. errors) (JA| #0) (|A] =0)
cy -.0188 -.0169
(.0086) (.0086)
all .0708 -.0231
(.0438) (.0086)
aly .6455 .6074
(.2281) (.2285)
Cy 2.12e-4 2.14e-4
(1.09e-4) (1.09¢-4)
ay -.0379 -.0379
(5.58e-4)
a99 .9986 9985
(.0029) (.0029)
Ty .0419 0421
Ty 5.34e-4 5.34e-4
Puv 0717 0.0719
Wald test
Ho:|A] =0 x? =3.558
p-value .0592
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Appendices

A Proofs of Results

A.1 Proposition 1

Let’s write py = a(L)z; — b(L)e,. Multiplying both sides by 1 — a(L) yields
[1—a(L)lp = a(L)[1 — a(L))2, — b(L)[1 — a(L)]ee = (a(L)[1 — b(L)] = b(L)[1 ~
a(L)])€;,which, after simplification, becomes [1 — a(L)]p; = [a(L) — b(L)]e; O

A.2 Proposition 2

In this case pu; = A(L)x; — B(L)e;.Premultiplying both sides by [I — A(L)]
yields [I — A(D)pe = [I — A(L)A(L)x¢ — [I — A(L)]B(L)€:. Then, since
[[ — A(L)JA(L) = A(L)[I — A(L)), it follows that [ — A(L)]ue = A(L)I —
B(L)e, [ — A(L)B(L)e = [A(L) - B(D)Je o

A.3 Result 4

First notice that any covariance stationary GARCH(p,q) can be written in
an ARCH(o0) form as
o =} + M (D)e}

where

af =

i (L) = (L)1 = B(L)]

with -
af >0Vi, > of <1
i=1
This implies that we can write a stationary AR(co) for €7,

1-— a*(L)]e? = ag + V¢

Since the infinite moving average representation of €} is

¢ = oy +P(L)ve
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with 99 = 1 and 9; = 3:1 ol ;s it is easy to verify that +; > 0 for
§=0,1,...,00, so that all the autocovariances of €2 will be non-negative.
Then, using the fact that o2 is a linear combination of the €7 with positive

coefficients, we have that,

o ol o)
2 2 2 2 )
Cov(o;0; 1) = 21 Zl aja;Cov(ee; pi(-j)) -
=1 3=
which is non-negative for every k. a

B Rotation Matrices: Some Examples

Consider the 2 x 2 orthonormal matrix
Q(w) _ ( c?sw sin w )
—sinw cosw
First, it can be proved by straightforward multiplication that

Q'(w) _ ( cosw —sinw ) :Q*l(w)

sinw cosw

as required. Second, note that

Q—w) = ( cos(—w) —sin(—w) ) _ ( cosw —sinw ) — ()

sin(—w)  cos(—w) sihw  cosw
so that Q(—w) produces the inverse effect that Q(w). Also, note that
Qw4 7) = c?s(w +7) sin(w + ) _ (- c?sw —sinw | _ —0(w)
—sin(w + ) cos(w + ) sinw — cosw

so that, if we do not care about the sign of the rotation, we can concentrate on
the interval 0 < w < 7. Analogously, it can be easily verified that Q(w +27) =
Qw) and Qw — 1) = —OQ(~w) = —Q'(w). Therefore, Yw) and Q(w — )
cancel each other (up to sign).

Finally note that all these properties come from

/ . \ . \
Qwn)wn) = ( coswi sinwi ) o ( coswy sinwsy ) _

—sinw; Ccoswy —sinwsg COSWo
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coswr +wy) sinwitw) \ gL
—sin(w; +wy) cos(wy + ws) 1 ’

together with

Q(O):(é (1)) and Q(ﬂ):(_(l) _(1))

Some examples of Q(w) are

o ) o

Q(r/2) = ( ~(1) (1) )

C Cholesky Decompositions and Orthonormal
Rotations

and

Let’s now see what effect a rotation has on the orthogonalizations of a

oy O
5 11 012
012 022
Let’s start from the first Cholesky decomposition of X given by

E:( Nz 0 )(m m/\/ﬁ)_zﬂ

covariance matrix X, where

T12/\/011 /022 — Eff 0 092 — ;if
In this case we are assigning relatively more variance to the first shock
than to the second one. In contrast, in the other Cholesky decomposition,
¥ = ¥y¥}, the opposite happens.
Let’s find Q(w) such that ¥ = . Q(w)¥ (w)X} = ZyX},. Since we require
Y1.Qw) to be upper triangular

2
g .
012/4/011 coOsw — {022 — g—msmw =0,
11
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which gives

ow/yon | _ [ 015
2

w = arctan
/022 — %‘:‘ | 3]

where p is the correlation coefficient. In this context, rotations in the range

J = arcsin p

(0, arcsin p) transfer variance from the first shock to the second. However, the
Cholesky decompositions are by no means the limits of the variance that can
be assigned to each shock, unless p = £1. In general, the variance attributed
to the second shock can be made even greater for some w € (p, 7).

As an extreme example, consider the case in which p = 0 so that the two
Cholesky decompositions coincide. By letting w = 7/2, we can assign all the
variance of the first (second) variable to the second (first) shock. This may
lead to significant differences in interpretation of apparently straightforward

processes such as

L1t _ a; 0 T1-1 I Uyt
Lot 0 ay Tot-1 Ug ¢

with 019 = 0.
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Figure 2: Case B2

R-square --- Rho relation for different values of a22
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Figure 3: Case B5
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