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MIGRATION AND THE EVOLUTION OF CONVENTIONS

Venkataraman Bhaskar & Fernando Vega — Redondo

ABSTRACT

This paper analyzes an evolutionary model where agents are locally
matched to play a coordination game and can adjust both their strategy and
location. Their decisions are subject to friction, so that an agent who mi-
grates to a different location may be unable to adjust her strategy optimally
to the new environment. A condition on off-equilibrium payoffs introduced
by Aumann (1993) plays a major role in our characterization (for general
coordination games) of the long-run outcomes. For the particular 2 x 2 case,
this condition (which is unrelated to risk dominance) implies that the possi-
bility of medium term simultaneous co-ezistence of conventions at different
locations depends on whether the game is of “pure” coordination (where
co-existence is always possible) or of the stag-hunt type (where it is not).
When we introduce noise (i.e. mutations) into the model, this distinction
continuous to play a crucial role in the selection of the long-run equilibria:
for large friction, both equilibria are stochastically stable in the former case,
whereas only the efficient one is so in the latter.
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1 Introduction

The ubiquity of multiple equilibria is perhaps one of most important insights
offered by game theory to economics. Simple 2 X 2 games can have multi-
ple Pareto-ranked equilibria, and this suggests that differences in economic
performance between societies may be related to different conventions, i.e.
the playing of different equilibria. Several questions arise: How are conven-
tions established? How do they change? Can different conventions co-exist?
Under what conditions can one expect efficient conventions to prevail?

The recent evolutionary literature on equilibrium selection in games has
shed important light on these issues. Most of this literature (e.g. see Foster
and Young [6], Kandori, Mailath & Rob [9], or Young [13]) has focused on
models where agents in a single homogeneous society interact over time.
This literature shows that a single convention must prevail. Furthermore, in
2 X 2 games, the stochastically stable convention is the risk-dominant one,
so that efficiency is not ensured.

These conclusions continue to hold if interaction is local rather than
global, as Ellison [3] shows. Ellison studies a model in which players are
fized at different locations, and the pattern of interaction is pre-specified
by an overlapping neighborhood structure. By indirectly linking the ac-
tions of different players, this neighborhood structure ensures that, as in
the case of global interaction, only a single convention can prevail. The key
difference arising in this case concerns the rate of convergence towards the
risk-dominant convention: in contrast with the context with global interac-
tion, this convergence rate turns out to be much faster (and independent of
population size). While allowing for local interaction is clearly of substan-
tial interest, it is also important to take into account that agents typically
have discretion with regard to location choice, and hence some freedom in
choosing their neighbors. In other words, rather than fixing exogenously the
pattern of interaction, we need to understand how interaction patterns and
strategic behavior co-evolve.

Three recent papers by Oechssler [11], Ely [5], and Mailath, Samuelson &
Shaked [10] explore models with endogenous location interactions. Oechssler
studies an evolutionary model where agents are initially distributed over a
given set of independent “cities” and, over time, may freely adjust both
their strategic and locational decisions. Assuming that all conventions are
represented at the start of the process (i.e. are adopted by some city),




he shows that the efficient one will eventually prevail throughout. The
intuitive reason why this will occur is simple: any agent, when given the
opportunity to adjust, will immediately shift to a city where the efficient
convention is played (if not already there). So doing (and changing her
strategy accordingly), she is sure to meet only agents who play the efficient
strategy, thus achieving the maximum available payoff.

The paper by Ely considers a model somewhat similar to Oechssler’s in
the context of 2 x 2 coordination games. He does away with the assump-
tion that both conventions are initially present, focusing upon stochastically
stable states when players decisions are subject to small mutations. As in
Oechssler’s scenario, conventions cannot co-exist, since players playing the
inefficient equilibrium will migrate to a location playing the efficient conven-
tion when the opportunity arises. For this reason, destabilizing the inefficient
convention is easy — it is sufficient that a single player move to an empty
location and start playing the efficient convention, in order for migrants for-
merly playing the inefficient convention to switch away from the latter to the
former. On the other hand, destabilizing the efficient convention requires a
large number of mutations, since this requires that a substantial number of
players switch to the inefficient strategy at a single location, thus making
it optimal for the others to switch their strategy as well. Hence only the
efficient convention is stochastically stable.

The paper by Mailath et al. contemplates a quite different context with
two continuum populations. They assume that the players of each popula-
tion are fixed at some respective finite set of locations (or activities). This
affects whom they meet as the result of two types of considerations. On
the one hand, each player of population ¢ = 1,2, makes a decision as to
what location of population j to visit. Reciprocally, she may also receive
some visits by individuals of population j who decide to visit her location.
They establish that if agents have some control over their interaction pat-
tern (in particular, if they are able to avoid any undesired matching), then
every configuration which is locally stable in terms of a suitably monotonic
evolutionary system must be efficient.!

The present paper shares some similarities with those summarized above,
but also displays some key differences. The interaction framework is the sim-
ple one of Oechssler [11] or Ely [5], with players distributed among a certain
number of locations (“cities”). By choosing to locate in one of them, an

! Another interesting result of Mailath et. al. is their demonstration that an equilibrium
with fized interactions is formally equivalent to a correlated equilibrium of the underlying
game.




agent selects the corresponding matching pattern induced by its population
profile. A key difference resides in the fact that, in our model, players’
adjustment is subject to friction. In a given period, a player may or may
not be able to migrate, but if she does migrate to another location, she is
never fully sure that she will be able to adjust their strategy in the optimal
direction in the new environment. Although there are several possible rea-
sons for allowing uncertainty about future strategy adjustment, one of the
most natural interpretations is that migrants are never sure that they will be
able to adapt to a foreign “culture”. This uncertainty has the consequence
that the model no longer produces the unqualified efficiency conclusion of
Oechssler [11] or Ely [5]. In particular, and depending on the particular
payoff structure, one may have convention co-existence in the medium term
(i.e. in the absence of mutations), and even in the long run efficiency may
not be ensured.

The condition on off-equilibrium payoffs which plays a critical role in our
model is orthogonal to considerations of risk dominance, but is related to
a distinction enunciated by Aumann [1] in a completely different context.
Aumann discussed the effectiveness of pre-play communication between ra-
tional players who are playing a 2 X 2 coordination game, and argued that
communication leads to efficiency if the game is one of pure coordination (i.e.
one where the off-equilibrium payoffs are uniformly lower than the payoffs in
either equilibrium), but not if the game is of the stag-hunt kind. Our results
for 2 x 2 coordination games hinge upon the same distinction, but are, in
a sense, the opposite of Aumann’s. We find that convention co-existence is
possible in the medium term if the game is one of pure coordination and
friction is significant, but is not possible in a stag-hunt game.

Once we allow for mutations (i.e. in the ultra-long run),?
co-existence of convention is not possible. However, in a pure coordination
game, both equilibria are stochastically stable (thus, in a sense, co-existence
is displayed over time, with both conventions being played at comparable
time frequencies). In contrast, the efficient equilibrium turns out to be the
unique stochastically stable convention in the stag-hunt game. In our formal
analysis, these conclusions will be generalized in a natural way to the full
class of coordination games with arbitrarily many strategies.

Finally, we explore the robustness of our conclusions by considering a
“slight” modification of the model where a small fraction of players is unable
to migrate in some (possibly very few) locations. Our previous conclusion

stmultaneous

%See Binmore et al. (1995) for a discussion of the different time horizons (medium,
long, and ultra-long runs) that are typically considered in evolutionary models.




for stag-hunt games is maintained, i.e. efficiency prevails in the long run,
irrespectively of risk considerations. For pure coordination 2 x 2-games, on
the other hand, the formerly exposed weakness of the efficient convention
becomes drastically reinforced. For, in this latter case, it turns out that only
the risk dominant convention (possibly inefficient) is stochastically stable
when friction is significant. This again stresses the limitations of migration
as a mechanism for achieving efficient outcomes when the underlying game
is of pure coordination.

The rest of the paper is organized as follows. The following section
presents the basic model, where all agents are potentially mobile across lo-
cations. Section 3 presents and discusses our results for this context. Section
4 turns to the case where some locations have a few immobile players. The
final section concludes with a summary. For the sake of smooth discussion,
all formal proofs are relegated to an Appendix.

2 The Basic Model

Consider a population of n (> 3) individuals who are matched in pairs to
play a finite bilateral symmetric game with strategy set S = {s1,s2,..., 50}
and payoff function 7 : § X § - R, where 7(sy,s,) is interpreted as the
payoff earned by a player adopting s, when matched with an opponent who
plays s,.

Matching between players takes place at specific locations. Let £ =
{l1,4, ...,01} stand for the set of possible locations (I > 2). A sufficient
description of the current state of the system specifies how many agents are
playing each of the ) actions at everyone of the I locations. Thus, we can
think of a typical state as an I x Q matrix w whose entries w;; € N U{0}

satisfy Z
Wig = N.
i=1,.,I
q=1,..,Q

The set of all possible states will be denoted by 2.

For each of the encounters taking place at any given location, matching
will be assumed randomly uniform across all possible realizations. In other
words, we shall assume that the ex-ante probability that a given player meets
any other one in her own location is identical across all other players, and
independent of any other encounters. Further assuming that the number of
encounters in a certain location is proportional to the number of individuals




in this location,? the expected payoff of playing strategy s, at location ; is
captured by (i.e. is proportional to) the following expression:

77(5(1’ Sl]) ’ (wiq -1+ Zr#:q 7T(Sq, 8r) * Wir
n; — 1

7"‘\—(sq, wi) =

]

where w; = (wig)g=1,..,@ stands for the ith row of the matrix w, and n;
> g1, ,q Wiq denotes the total number of players located at 4;.

It remains to specify the payoff of a player who happens to be alone at a
certain location and, therefore, cannot be matched against anyone else. We
shall normalize the payoff of such “sad loner” to zero, further assuming that
playing the game always entails positive payoffs (i.e. 7(sq,s,) > 0 for all
g,7 = 1,2, ...,Q). This is a convenient assumption that will simplify matters
thereafter by ensuring that, in any limit state, all players will be part of
some “city.” It could be generalized at the cost of some formal complexity
without affecting the essential nature of our analysis.

We now turn to the dynamics of the model. Time is measured discretely
and indexed by ¢t = 0,1, 2, ... At each ¢, players may adjust both their strat-
egy and location in the following two-stage fashion. First, every player is
subject to an independent draw of a dichotomous random variable which de-
termines whether or not she can change her location (i.e. “migrate”). Once
this first stage is over and the agent has irreversibly decided (when given
the option) whether and where she migrates to, she is assumed subject to
an additional independent draw of another dichotomous random variable.
This second draw determines whether she will be able to adjust her strategy
within the location determined in the first stage. For simplicity, we assume
that all individuals face and identical and stationary probability A € (0,1)
of being able to change location every period. Analogously, at every ¢, all
players are assumed to face an identical and stationary probability 8 € (0,1)
of being able to change their strategy.

The novel and key feature of our adjustment scenario is that action and
location revision possibilities are not deterministically coupled. This implies
that, in general, agents might not be able to evaluate “safely” the merits
of a locational decision, since the realization of its potential benefits could
require some subsequent adjustment of their action. We think of this as some
stylized form of friction, which admits a number of different interpretations.
For example, a natural one is based on the idea that attempting to adopt
a new action generally requires undergoing a learning process, the outcome

3Note that this formulation implies that the expected number of encounters enjoyed
by any player is constant across all locations where there are any partners.




of which cannot be guaranteed ex ante. If it were unsuccessful, the agent
would have to stay with her previous action, then possibly “regretting”
having migrated.

Given the adjustment scenario described, we now consider how players
will react to it. We shall assume that when agents are able to revise their
former decisions, they select their new location/action pairs so as to increase
their expected payoff. In carrying out the required payoff comparisons,
players are taken to hold the expectation that the configuration of the system
remains fixed (except, of course, the part of it which concerns herself). Thus,
in other words, we postulate that agents hold “static expectations” on the
evolution of the process, in line with what is the customary approach in
much of received evolutionary theory.

Proceeding now formally, we start by considering the second stage of the
adjustment process, with a given individual at location #; receiving a strategy
revision opportunity at some ¢. Let s, be this player’s current strategy and
denote by @; her expectations on the strategy configuration prevailing at #;.
Since these expectations are assumed formed in a static fashion, we write

@ =wi(t — 1)+ beg, (1)

where § = 1 if the player concerned has migrated in period £, § = 0 otherwise,
and e, stands for the @-dimensional vector (0,...,0,1,0,...,0) whose g-th
component is 1. Consider now the set {s, : 7(s,,®; + e, — €g) > 7(sq,:)},
where recall that 7(sg, w;) stands for the expected payoff of strategy s, facing
configuration w;. Every strategy in this set (consisting of those strategies
whose payoff is expected to be no smaller than that of s,) is assumed chosen
by the player in question with positive probability.

Next, we address the first-stage migration decision for an agent who is
currently playing action sq at location ¢; and is contemplating migrating to
£;. Tt is assumed that if this agent is given the opportunity to migrate, she
will choose location £; with positive probability if, given static expectations,
her expected payoff from migration is greater than the expected payoff re-
sulting at her current location. In order to compute these expected payoffs,
we suppose that the agent has already decided at this point upon the par-
ticular action that she will choose in each of these alternative locations if
she is able to adjust her strategy. This clear-cut formulation is adopted
here for the sake of simplicity, but could be substantially generalized at
some formal complexity. For example, we could admit that the agent has
non-degenerate expectations about her future choice, provided that there is
sufficient stochastic variability in how these expectations are formed.
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Formally, consider the individual who is currently adopting strategy s,
at location ¢; , and who anticipates changing her action to sy in the event
that she does not migrate. Then, her expected payoff from not migrating is

(1 =0)a(sq,wi(t — 1)) + 07t (sg, wi(t — 1) + ey — €4). (2)

Since sy must be a weakly better response than her current strategy s, this
implies that the minimum expected payoff from not migrating is #(sq, w;(t —
1)), i.e. the payoff obtained when the player simply stays with s; as the
(weakly) “better response”. On the other hand, if the player migrates to
location £; and anticipates adopting strategy s, in response to a revision
opportunity, her expected payoff is

(1 —0)it(sqywji(t — 1) +eq) + Ot (sr,w;(t — 1) +e). (3)

The maximum of this latter expression is achieved when s, is a best response
to the strategy configuration w;(t — 1) predicted at location ¢;. Therefore,
the player will migrate to £; with positive probability (in general, less than
one since there may be other locations which are also better than ¢;) if, and
only if, the maximal expected payoff from migration to ¢; (achieved when
sy in (3) coincides with a best response) is greater than the minimum payoff
from not moving (achieved by making sy equal to sq4 in (2)).
Given sg4, define

7 (5qy Wit — 1)) = (L= 0) R{sq, 5t — 1) +q) +0 max sy, wj(t—1) +ey).

for every w;(t — 1), j # i. Combining all of the above considerations, the set
of locations ¢; to which the agent in question (originally in location ¢;) can
migrate may be identified as follows:

{4 € L:7"(sg,w5(t — 1)) 2 7 (sq, wit — 1))} .

The process described defines a finite Markov chain on the state space
. In the following section we analyze this process and characterize its limit
states. Subsequently, we also analyze a perturbation of this Markov chain
in which individuals occasionally experiment (or mutate).

3 Analysis

Our analysis will be concerned with strict coordination games, i.e. games
where the set of (strict) pure strategy equilibria consists of all diagonal
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elements of S X §. The results may be substantially extended to more
general contexts.* However, for the sake of focus, it has seemed best to
restrict our discussion to the standard context of coordination games, where
our main points stand out in a simpler and clearer fashion.

The analysis is decomposed in two parts. Firstly, we characterize the
limit (or minimally absorbing) sets of the unperturbed dynamics. Secondly,
we address the issue of stochastic stability, i.e. we identify those limit sets
which are selected in the long run when the original dynamics is perturbed
by some small mutational noise.

3.1 Limit Sets of the unperturbed dynamics

Let T € R x R denote the transition matrix of the unperturbed dynam-
ics, as described in the previous section. We start by defining the concept
of an absorbing set. Given w € Q, let I'(w) denote the set of states that are
accessible from w (i.e. if ' € I'(w), T%(w,w’) > 0 for some u € N).> Extend
now these notions to sets, so that I'(A) is the set of states accessible from
some w € A. Then, a set A is called absorbing if T'(A) C A. Furthermore, a
set A is said to be a limit set of the Markov chain if it is a minimal absorbing
set.

First, we abstract from considerations of migration and show that play
at any location must settle down to a convention. To do this, assume for the
moment that there is only a single location, so that the vector w consists
only of the actions played at location 1, i.e. w = wy.

Proposition 1 Let there be only a single location. If A is a limit set of the
unperturbed dynamics, then A = {w} and wiq = n for some q € {1,2,...Q},
t.e. all players play the same strategy.

Proof. See the Appendix.

Proposition 1 shows that in the absence of migration, the process of
strategy adjustment converges to a convention, with all players playing the
same strategy. This proposition may be of some independent interest, since

“For example, we have studied games with general symmetric curbsets (i.e., which are
not necessarily singletons, as for strict coordination games). If the above formulation is
generalized by allowing players to rely on sufficiently long past history in forming their
expectations, the essential gist of our results extends to this context.

*The notation used here is standard. T(w,w") stands for the transition probability
from w to w' (or the (w,w')-entry of the matrix T). On the other hand, 7™ stands for
the transition matrix resulting from u iterations of the process.
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the result holds for a wider class of games than the result proved by Kandori
and Rob [8], who prove a similar result for the subclass of pure coordination
games where the payoffs to off-diagonal elements of S x S are all zero. 8
As we shall see below, not only is it the case that play at any location
converges to a convention, i.e. at most one strategy is played in each location.
Furthermore, any strategy is played in at most one location. To characterize
the set of strategies which may be played, we define the following binary
relation on S. Given 6 ( the strategy-revision probability), define a binary
relationship R(#) on S as follows. For any pair of strategies s, s’ € S,

sR(0)s & n(s,8)>0n(s,s)+(1-0) n(s,s) .

Observe that R(6) is necessarily irreflexive, and is not transitive. However,
if s and s’ are distinct, then we have either sR(6)s' or s'R(6)s. To see this,
note that n(s, s) > n(s’, ') implies s R(#) ¢, since all elements of S are strict
Nash equilibria.

In terms of the relation R(#), we define the following collection of subsets
of §:

®O)={DCS:Vs,ss €eD:s#5s, sRO)s N s R(O)s}. (4)

Of course, ®(0) includes all the singleton subsets of S. The interesting fact
is that, in general, it will also contain subsets with more than one strategy.
A subset of S with more than one element belongs to ®(8) if, and only if, all
of the strategies included in it are maximal with respect to R(#) restricted
to this set.

Later on, we shall also be interested in another construction derived from
the relation R(9):

@) ={seS:sR(H) ¢, Vs 8,5 +#s},

which defines the set of maximal elements of R(f) in S.
To illustrate these concepts, we turn to a simple 2 x 2-game, whose
general payoff structure is represented in the following table:

2
1 H L
H a,a bc
L c,b dd
Table 1

5These authors study a somewhat different dynamics, i.e. a best-response dynamics,
rather than the better-response dynamics that we consider here.
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Suppose that we are in the presence of a coordination game, so that a > ¢
and d > b, further assuming w.l.o.g. that a > d, i.e. H is the efficient
strategy. Consider now the following two alternative scenarios. First, if
¢ > d, we call it a Stag-Hunt Game. On the other hand, if ¢ < d we call it a
Pure Coordination Game. The essential difference between both cases does
not dwell at all in the standard considerations of risk-dominance which are
so prevalent in the literature of equilibrium selection. (In fact, one could
say that they are “orthogonal” to them, since risk dominance depends upon
the relative sizes of the differences a — ¢ and d — b, while our categorization
depends only on the sign of d — c.)

The distinction between stag-hunt and pure-coordination games was first
elucidated by Aumann [1] in his discussion of the stability of the inefficient
equilibrium (L, L) when players are able to communicate prior to the play of
the game. Aumann argued that in a pure coordination game, the inefficient
equilibrium is easily de-stabilized, since an announcement by one player, say
player 1, that he intends to play H should be believed by player 2. This is
because if player 1 were in fact intending to play L, then he would like player
2 to also play L, and hence has no interest in persuading player 2 to play H.
On the other hand, in a stag-hunt game, if player 1 plans to play strategy H ,
he cannot credibly communicate this intention to the other player. For, even
if he were planning to play L, he would be interested in convincing player
2 that he will play H. Thus, since the partner should understand this,
whatever signal or communication he receives from the player in question
carries no informative content whatsoever and she might as well fully ignore
it. Hence pre-play communication does not ensure efficiency in a stag-hunt
game, where both (H, H) and (L, L) are stable. To summarize, Aumann'’s
argument implies that one should observe only H being played in a society
where players can communicate if the game is a pure coordination game,
but may observe both (H, H) and (L, L) if the game is a stag-hunt game.

Let us now relate this discussion to the above defined constructs, ®(6)
and p(6). In a stag-hunt game ®(0) = {{H},{L}} for every value of 0. In
contrast, in a pure coordination game, there is a small enough value of 8
(specifically, it is enough that § < 2=¢) for which ®(6) = {{H}, {L}, {H, L}},
i.e. not only the two singletons but also the set that includes both strategies
is included in ®(6). As we shall see shortly, this implies that two conventions
may co-exist if the game is of pure coordination, but cannot co-exist if it is
a stag-hunt game. In other words, our evolutionary analysis will turn out
to depend upon exactly the same condition on payoffs as Aumann’s, but
with diametrically opposite results — co-existence is possible in our model
precisely when it is impossible in Aumann’s case, and vice-versa.
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This disjunction also applies in the long run, when we allow for muta-
tions, as shown in section 3. In the long run, the simultaneous co-existence
of two conventions is not possible; however inter-temporal co-existence may
well be possible, depending upon payoffs. The relevant construct here
is ¢(6). For a stag-hunt game, p(f) = {H} for all values of 6, whereas
©(0) = {H, L} in the case of pure coordination for values of 6 < 4=£. Again,
as discussed below, this will manifest itself in the different performance of
the model concerning its stochastically stable outcomes. In the case of a
stag-hunt game, the unique stochastically stable outcome is one where ev-
ery player plays H. In contrast, both monomorphic states (everyone playing
H or everyone playing L) will turn out to be stochastically stable in a pure
coordination game, provided 8 is small enough.

‘We our now in a position to characterize the limit sets of the unperturbed
dynamics. Such characterization is contained in the following result.

Theorem 1 Any given A C Q is a limit set of the unperturbed dynamics if,
and only if, it is a singleton of the form A = {w}, and the state w satisfies:
a) For each location £;, i = 1,2,..,1, there exists at most one strategy s,
such that wiq > 0.

b) For each strategy sq, ¢ = 1,2, ...,Q, there is at most one location £; such
that wiq > 0.

c) Foralli=1,2,.,1,n; =3, wiq > 2.

d) The set of strategies played at w, {sq € S :wiyy > 0,7 =1,...,1,}, is an
element of ®(0).

Proof. See the Appendix.

This theorem fully characterizes the set of states (and corresponding
strategies) played at any limit set of the unperturbed dynamics. We inter-
pret this result as indicating what type of outcomes we could expect from
the model in the medium run, i.e. within a time frame in which the mu-
tations contemplated in the following subsection may be thought to have
little impact on the process. Under these conditions, it is clear that the ini-
tial conditions will generally have an important effect — a priori, we should
expect that different outcomes could materialize depending on where the
process starts.

An important conclusion in this respect is that the structure of payoffs
off-equilibrium will play a critical role in determining whether co-existence
of conventions can be observed across different locations. In particular, if we
focus again on the illustrative context provided by 2 x 2-coordination games,

15




co-existence may arise in a game of pure-coordination if § is not too large, but
not in a stag-hunt game. What is, for our purposes, the essential distinction
between these two kinds of games? Heuristically, the main feature at work
in stag-hunt games is that any player adopting strategy L prefers to interact
with other players choosing H (despite being “uncoordinated” with them)
rather than with those of her own kind. This obviously represents a strong
force towards the disruption of co-existence, even for small 6, through the
migration of agents originally playing the L convention to locations where
the H convention prevails. In contrast, such strong force for migration
away from an inefficient convention does not materialize any longer if the
game is of pure coordination. In this case, the fear to suffer a penalty
from uncoordination will deter migration (and thus the disruption of co-
existence) if friction is sufficiently significant. These considerations would
seem to suggest a possible explanation for different economic performance
in neighboring regions (e.g. North vs. South Italy) based on the persistence
of different conventions being played in each of them despite the possibility
of migration.

Finally, the question may be raised of whether our result on possible co-
existence is robust to the specification of the neighborhood structure. More
specifically, suppose that instead of isolated cities, we had an overlapping
neighborhood structure where agents at each location also interact with
those of neighboring locations, in a way reminiscent of Ellison [3]. Might this
alternative formulation not destroy the possibility of co-existence? While not
providing a full analysis of such a model, we believe this not to be the case.

Suppose, for example, that we have a finite set of locations (say 2n of
them) sequentially numbered and arranged along a circumference. Further
assume that agents at location ¢; are not only matched among themselves
but also with agents located at locations #;;1 and ¢;_;. Consider now any
initial state with a concentration of agents near location #; playing s1, and a
concentration around £, playing sg, intermediate locations having possibly a
mixed strategy profile. If agents play a pure coordination game and 8 is suf-
ficiently low, then any agent at an intermediate location will want to migrate
(to location #; if she is currently playing sy, or location 4, if she is currently
playing s9). Hence with positive probability, the final outcome will consist
of separated cities with distinct conventions, much like our model. Contrast
this with Ellison’s analysis where, since locations are fixed, strategies must
adjust until they are uniform throughout.
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3.2 Stochastic Stability

We now discuss a perturbation of the contemplated Markov chain where in-
dividuals mutate. More precisely, it is postulated that, with some stationary
and independent (small) probability €, every individual adopts an arbitrary
locational and strategic decision, unrelated to any of the considerations de-
scribed above. For concreteness, it will be assumed that, in this event, the
individual in question adopts any pair of strategic and locational decisions
with uniform probability.

This perturbation may be rationalized on different (non-exclusive) grounds.
One possibility is to think of the mutation process as modelling a very grad-
ual process of population turnover. When a newcomer replaces an incum-
bent, she operates from tabula rasa, thus choosing any strategy-location
profile with the same probability. Another alternative way of motivating
the exercise is as a test of robustness. Specifically, we explore what kind
of long-run behavior is robust to the introduction of small noise into the
process.

In any case, one important practical implication of the contemplated
perturbation is that it obviously ensures that the process is ergodic. Thus,
in particular, it has a unique well defined invariant distribution which fully
summarizes the long run behavior of the system. Denote by . € A(Q2) such
invariant distribution, in order to explicitly reflect its dependence on the
mutation probability. Since, as explained, we want to think of € as small,
we shall be interested in the limit invariant distribution which results when
€ — 0. Such limit invariant distribution

pt = lim pe (5)

e—0

will be shown to be a well defined element of A().

When enlarging out the time scale so that mutations can significantly
affect the dynamics of the process, the appropriate limit notion to study is
that of stochastic stability. Heuristically, a state is stochastically stable if it
is visited a significant fraction of time in the long run, when a small rate of
mutation does affect the dynamics of the process. This is precisely the idea
captured by the limit invariant distribution of the process, as defined in (5).
Since, as explained, the stochastic process is ergodic for any given ¢ > 0, this
probability distribution identifies the long-run frequencies observed along
any sample path of it, almost surely (a.s.).

Note, of course, that in order for a state to be stochastically stable,
it must necessarily belong to some limit set of the unperturbed dynamics.
Thus, in view of Theorem 1, we may equivalently speak of a stochastically
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stable state or set. For the sake of completeness, we provide the following
formal definition.

Definition 1 The state w € ) is stochastically stable if p*(w) > 0, where
p* € A(Q) is as defined in (5).

We are now in a position to state our main result.

Theorem 2 A state w € Q) is stochastically stable if, and only if, it satisfies:

(i) I e{l,..,I}, 3ge{l,..,Q} s.t. wyg=mn.
(ii) The (unique) strategy sq played at w belongs to the set p(6).

Proof. See the Appendix.

In contrast with Theorem 1, the above result establishes that no si-
multaneous co-existence of conventions may prevail in any of the long-run
states. However, depending on the nature of the payoff structure (which
affects the set ¢(8)), the process is consistent with what we could interpret
as inter-temporal coexistence. For example, in the context of the 2 X 2-game
described in Table 1, the two states where the whole population alterna-
tively play H or L will be observed a significant fraction of the time in
the long run if we have a pure coordination game and 6§ < %E—g-. (In this
case, p(0) = {H,L}.) This contrasts with those results in the literature
(e.g., those by Oechssler [11], Ely [5] or Mailath, Samuelson & Shaked [10]
summarized in the Introduction) where, by allowing agents to adjust their
locational choices as the process evolves, efficient configurations arise as the
long-run outcomes.

To gain some basic intuition for our result, recall our former heuris-
tic discussion (following Theorem 1) on the different implications of pure-
coordination and stag-hunt games with respect to the possible co-existence
of conventions. As it was explained, stag-hunt games induce strong migra-
tion forces towards locations where the efficient convention is being played,
whereas these forces do not exist for the alternative kind of games when
friction is significant. It is precisely these same considerations which un-
derlie the differential fragility of each type of convention in the presence of
mutations. For games of pure coordination, both conventions (H and L) are
comparably robust to mutations since both exhibit a similar difficulty in be-
ing disrupted by migration. In contrast, if the game is of the stag-hunt type,
the inefficient convention is extremely fragile to the appearance of someone
playing the efficient strategy in some other location. If this happens by
way of mutation, a wave of migration can be immediately triggered (with
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some positive probability), leading to the eventual collapse of the inefficient
convention.

New light will be shed on these ideas with the analysis carried out in
the next section of a context with a few immobile players. To conclude the
present discussion, it is important to emphasize that it is the introduction of
friction into the adjustment framework which crucially underlies our conclu-
sions. For, if § is made sufficiently large, thus largely removing the practical
implications of friction, our framework approximates that of former litera-
ture, leading as well to similar conclusions. (Specifically, it is clear that, if
0 is large enough, ¢(0) includes only the efficient strategy.)

Remark: Even though issues related to rate of convergence are peripheral
to our concerns in this paper, it may be worthwhile to make the following
point. In our model, the maximum expected waiting time to observe any
long-run (i.e. stochastically stable) outcome is of the order ¢!, where € is the
mutation probability.” Thus, in contrast with most of existing evolutionary
models, the rate of convergence towards long-run outcomes is very fast and
independent of either the population size or the payoff structure of the game.
To the extent that this rate of convergence is a natural basis for assessing
the relevance of a long-run prediction, those of our model appear to be on
relatively firm grounds.

As advanced, in order to attain a clearer understanding of the nature and
robustness of our results (specifically, on the role played by player mobility),
it is useful to consider a context where some players (possibly very few) may
have their mobility restricted. This is our purpose in the following section.

4 A Few Immobile Players

Consider a variation of the original model where some individuals are as-
sumed immobile, i.e. may adjust their action but not their original location.
For a sharper contrast with our previous analysis, we shall focus our atten-
tion on simple coordination games with just two strategies: s; and s9, where,
say, s1 is taken to be the efficient strategy. That is:

w(s1,81) > 7(s9, $2)-

This is a game as described in Table 1 above, where s; is identified with H
and so with L.

7An easy way to confirm this statement is to observe that, in the language of Ellison
[4], the co-radius of any of our stochastically stable equilibria is 1.
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Suppose now that some (arbitrary and non-empty) subset of locations
Ly C L have a few immobile players. Since the particular number of im-
mobile players per location have no implications for our results we shall
simplify formal details by assuming that all locations in £¢ have m immo-
bile individuals (the same number, assumed odd® and larger than 2, in all
of them). Moreover, we shall think of the immobile players as representing
only a small minority relative to the whole population (i.e. '—n—lf—ol being very
small), although this is not essential.

Since the model is, in every other respect, fully parallel to that described
in Section 2, we dispense here with a formal description of it. It only needs
to be noted that, due to the additional restriction experienced by immobile
players, the state space has to specify separately the matrices of action-
location entries for each of the two types of individual, mobile and immobile.
That is, a state w requires the specification of two I X Q-matrices (w!, w?)
with the obvious adding-up conditions to be satisfied by each of them. (For
example, if w! stands for the matrix corresponding to immobile players and
location £; € Ly, then we must have Z(?:l wz-lq =m.)®

In this context, the essential gist of our previous analysis will be rein-
forced. In particular, it will continue to be the case that in games of pure
coordination the efficient convention is not necessarily selected in the long
run (provided, of course, friction is significant). However, an interesting
new aspect introduced by the presence of immobile players is that, in those
games of pure coordination, a single convention is now selected in the long
run, in contrast with what occurred in the original context where all players
were assumed mobile (recall our discussion following Theorem 2). More-
over, this convention turns out to coincide with the risk dominant strategy
s, satisfying

77(31*1 51‘) +7T(Sr7 sr’) > 7‘-(31"7 sr) +7T(3'r’) Sr’) )

for r # r'. Note, of course, that it may well happen that s, # s1, i.e. the
risk dominant strategy is the inefficient one.

On the other hand, if the game is of the stag hunt type, the analysis
remains essentially unaffected by the introduction of a few immobile players.
In this case, that is, the (single) long-run strategy continues to be (for almost

8The assumption that m is odd is just a simplifying assumption which guarantees that
e L is an integer. It could be dispensed with in Theorem 3 below by assuming that (given
the payoff structure of the game) m is large enough.

9Since no confusion should arise, we keep the same notation as before for both the

state space and the particular states.
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all players, including every mobile one) the efficient one, as in the original
context.

The above summarized conclusions are formally presented in the follow-
ing result.

Theorem 3
m(81,81 )— (51,82

(a) Assume 0 < w(82,52)—7(s1,82)°
Then a state w € §) is stochastically stable if, and only if, it satisfies:\!

> (h k) =n. (6)

;e

0 and let s, be the risk-dominant strategy.

(b) Conversely, if ms1,31)-m(s1,92) < 0 then q state w € () is stochastically

7(82,52)—7(51,52)

stable if, and only if, it satisfies:

Y (Wit +wit) =n—m(|Lo| —1). (M)
tiec

Proof. See the Appendix.

Part (b) of Theorem 3 simply establishes that, for stag hunt games, the
conclusion obtained in the previous section is robust to the introduction of
a few immobile players. Part (a), on the other hand, is formally different
to the conclusion obtained before, although it displays a similar spirit. It
indicates that when the game is of pure coordination, the risk-dominant
convention (possibly inefficient) is achieved in the long run. Since clarifying
the mechanism leading to this latter conclusion should prove useful in un-
derstanding the general approach proposed in this paper, we discuss it next
in some detail.

In every one of our different contexts (both here and in the previous
section), the easiest (i.e. most likely) transitions across mutation-free sta-
tionary points always involve the opening of “beach-heads” in unoccupied
locations. Once some such location has become colonized by a self-sustaining
population (i.e. one whose members do not prefer to return), the rest of the
population may migrate to it in one of two different fashions. Either they

10For the present 2 x 2-context, this inequality is equivalent to saying that ©(f) =
{51, 52}. Analogously, the reciprocal inequality considered below implies that ¢(8) = {51}

1 As can be seen from the argument used in the proof of the theorem, both of the
summatories included in (6) and (7) can have their locations £; restricted to lie in Lo.
That is, every long-run state has all players located in one of the locations where there
are inmobile players.
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move by fast adjustment if it is profitable to migrate when the opportunity
arrives or, alternatively, they do it by the slower process of accumulating
one-step mutations. In any case, the event which triggers the process is
always the establishment of such a beach-head.

When a given location has immobile players, it always remains a poten-
tial beach-head to be used by mobile players in implementing a transition
towards it and its corresponding convention. If only by drift, such transition
is bound to occur sooner or later. But, once it has occurred and other loca-
tions have consequently become depopulated, setting up new beach-heads
in previously empty locations will turn out to be a much more difficult (i.e.
unlikely) event: they will require some simultaneity of mutations, an infre-
quent but unavoidable event if a stable enclave is to arise. Thus, in the
end, the considerations which underlie transitions within permanently es-
tablished beach-heads (i.e. within those locations with immobile players)
should prove crucial in shaping the long-run dynamics of the model. In pure
coordination games, with sufficiently large friction in strategy adjustment,
it is not difficult to see that the driving force operating within these loca-
tions must be the same as in standard evolutionary models (whose players
are all “fixed”). Consequently, as in these models, risk dominance becomes
the long-run selection criterion. On the other hand, in stag-hunt games,
the establishment of a small enclave where the efficient strategy is played
is sufficient to attract all mobile players, and hence our earlier analysis is
essentially unaffected.
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5 Summary

This paper has been motivated by the premise that endogenizing the struc-
ture of interactions is an important step forward in extending the evolu-
tionary analysis of equilibrium selection in games. In comparison with the
literature that contemplates a fixed interaction structure (e.g. Kandori,
Mailath & Rob [9], Young [13], or Ellison [3]), our results emphasize the
positive role of migration as a force for efficiency. In particular, efficiency is
always ensured in stag-hunt games, irrespective of risk considerations and
the presence or otherwise of some immobile players.

We are not alone in seeking to endogenize location choice, as the papers
by Oechssler [11], Ely [5] and Mailath, Samuelson & Shaked [10] summa-
rized in the Introduction indicate. However, our substantive conclusions are
quite different from these papers, since our efficiency result is significantly
qualified. Specifically, it does not apply to pure coordination games. In this
case, not only has it been shown that co-existence of conventions is possible
in the medium term but that, in the long term, efficiency is not ensured
since either both equilibria are stochastically stable (if all players mobile) or
the risk dominant equilibrium is selected (when a few players are immobile).

Clearly, the critical reason for this different conclusions derives from our
assumption that the opportunities to change locations and adjust strategies
are not fully correlated. Consequently, an agent always experiences some
uncertainty on her ability to adapt optimally to some new environment she
might consider migrating to. We believe that this feature of the model is
realistic and captures an important feature of the phenomenon of migration
in the real world. In our view, its inclusion leads to some interesting qualifi-
cations of the clear-cut conclusions of long-run efficiency that can be found
in other related models of the existing literature.
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Appendix

Proof of Proposition 1. If at a state w a single strategy s, is played
by all players at the single location #;, then clearly for any player, the unique
“better-response” is sq, since (s4,8,) is a strict Nash equilibrium. Hence
I'(w) = w, i.e. no other state is accessible from w,thus proving that {w} is a
limit set.

To prove the converse, we show that if m (> 2) distinct strategies are
played at £;, then with positive probability we have a transition to a state
where m — 1 distinct strategies are played. By induction, this ensures that
some state where a single strategy is played is accessible from any given
state w.

Let s4 and s, be distinct strategies played at any state w, and denote by
v(8q, 87, w1) the expected payoff from strategy s, to a player who is currently
playing s, at location ;. (Note that since we have a single finite population,
the payoff to a player from changing his strategy when the system is at any
given state also depends upon the player’s former strategy.). We may write:

Q
v(Sgq, Spyw1) = Zw(sq, Su) Wiy — 7(Sq, Sr)
u=1
and therefore:
v(sq; Sy w1) — V(sq, Sq,w1) = (g, 8q) — (g, 5r)
v(sy, 8q,w1) — v(sp, Spyw1) = 7(sp,8,) — T (8p, Sq)

Adding the latter two expressions, one obtains:

[v(sq; Sr, w1) — V(Sq, Sq, w1)] + [V(Sr, Sg,w1) — V(5p, Sy, wi]

= [m(sq:8q) = T(3r,8¢)] + [T (5r,5) — 7(5g,5-)] >0

Hence either the sg-player would like to adjust to s, or the s,-player
would like to adjust to s;. Assume w.l.o.g. that the former applies. With
positive probability all s,-players get the chance to adjust strategy, and
choose s, while all players who are not playing s, do not get the chance to
adjust. Hence from a state where m distinct strategies are played, we have a
positive-probability transition to a state where m — 1 distinct strategies are
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played. By induction, we therefore have a transition with positive probabil-
ity to a state where a single strategy is played. Since this state is absorbing,
no further transitions are possible. B

Proof of Theorem 1. Let w € Q satisfy conditions (a)-(d) of the
theorem. Suppose that a player who is currently playing strategy s, at
location ¢; is given the opportunity to move. By (a) and (c), the player’s
current payoff is 7(sg, s4). If the player moves to a non-empty location £;,
then (by (b)) a distinct strategy s, must be played at this location. Since
(d) implies that

7(sq,8q) > O (sy, 87) + (1 — O)m(sgq, 57)

the player’s payoff from migration is strictly less than the expected payoff
from remaining at ;. Given that a player does not migrate, he will clearly
not change his strategy either. Hence I'(w) = {w}.

To prove the converse, let w be any given state. With positive probability,
no player gets the opportunity to migrate for () periods but gets instead the
opportunity to adjust his strategy. Hence, by Proposition 1, we have a
positive-probability transition to a state where the same strategy is played
at any location with two or more players. On the other hand, with positive
probability, all loners (if any exist) get to migrate to some location and also
adjust to the prevailing strategy. Combining these considerations, we may
assert that there exist positive probability that if state w did not satisfy (a)
or (c), a (multi-step) transition takes place to a state ' which does satisfy
both of them.

Suppose now that the resulting state ' displays two distinct locations,
£; and £;, where strategies s; and s, are being played, with s, being possibly
identical to s,. If either (b) or (d) is not satisfied at ', then for the players
at one of these locations (say, at £;), it is weakly better to migrate to ¢;
and adjust strategy to s, (if this is different from s,). This occurs with
positive probability until we are at a state satisfying all of conditions (a)-(d),
which is absorbing. This shows that no state violating one of the conditions
contemplated in the theorem can be part of a limit set of the unperturbed
dynamics, thus completing the proof of the theorem. N

Proof of Theorem 2. Since a stochastically stable state must obvi-
ously belong to a limit set of the unperturbed dynamics, Theorem 1 already
narrows down substantially the states that need to be considered. Specif-
ically, we just need to consider states w which satisfy (a)-(d) in Theorem
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1. For future reference, denote the set of those states by U(#), letting V' (0)
(€ U(0)) stand for the set of states satisfy (i) and (ii) in the statement of
the theorem.

As customary in recent evolutionary literature, our proof shall rely on
the graph-theoretic framework developed by Freidlin & Wentzel [7]. Partic-
ularized to our context, it may be briefly summarized as follows.

For each w € (2, define a w-tree H as a collection of ordered pairs (“ar-
rows”) (w',w") such that:

e Every o' € Q\ {w} is the first element of exactly one pair;

e Fromevery ' € Q\{w} there exists a path {(w°, w!), (w!,w?), ..., (W1, w")}
such that w® = &' and w™ = w. The set of all such w-trees is denoted
by H,.

Denote by 7, the transition matrix of the perturbed evolutionary dy-
namics when the mutation probability is €. Define, for each w € §,

q(w) = Z H Te(w' "), (8)

HeHo, (v w')eH
Then, as established by Freidlin & Wentzel {7, Lemma 3.1, p. 177}, we have:

W) = q(w)
pelw) = ) ®)

Each g(w) is a polynomial in €. Thus, the limit invariant distribution
defined by (5) is well-defined and, therefore, unique. To compute each g(w),
it is useful to introduce a cost function on transitions:

c:QxQ—->NU{0},

which for each pair (w,w’) specifies the minimum number of mutations
¢(w,w’) needed for the transition to occur with positive probability via
mutation-free dynamics. That is, if d(w,w’) denotes the number of indi-
viduals whose location or action differ between w and ’, then

c(w, ) = mn}2 {d(w,w") : T(W", ') > 0}.
w''e

The function ¢(-) is extended to every path h and every tree H, by simply
adding the cost of all their constituent links. It is easy to see that the order
of each ¢(€), as a polynomial in ¢, is simply given by ming¢yy, c(H). Thus,
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from (9), it follows that the set of stochastically stable states are precisely
those whose minimum cost trees are themselves minimum across all possible
states in (). -

From the previous considerations, the proof of the theorem simply re-
quires verifying the following lemma.

Lemma 1 For all © € U(0)\V(0) and every w-tree f{ € Hy, there exists
some @ € V(0) and an &-tree H such that ¢(H) < c(H).

Proof of the Lemma. Given any state @ € U(0)\V(0), consider the
following two possibilities:

(a) S(w) = {sq € §:wiq > 0} = {s4}, i.e. is a singleton;

(b) |S(@)] = 2.

For any of these two cases, we first construct an auxiliary path h from @
to some @ € V(). This path connects & and & with arrows (v, w”) which
satisfy:

(W W' = 0 ifu ¢U(0) (ie. o isnot a limit state) (10)

c(w',’) = 1 otherwise.

In case (a), consider any state w® which is derived from @ by one indi-
vidual mutating to some new location £° and adopting any strategy sqo €
©(0). Since s; ¢ ¢(), it follows that a transition from wp to a state @ where
every individual plays strategy sq in location £° is costless. Therefore, the
path {(@,w®), (w° @)} satisfies condition (10), as desired.

In case (b), let £ denote any of the locations occupied in state & with its
(at least two) individuals adopting some given strategy s;. Consider a chain
of transitions in which, in every one of them, one (and only one) individual
in locations other than £ mutates to this location, adopting action sz All
of these transition involve a unit cost. Eventually, all individuals are at
location £, adopting action s;. Let & be the resulting state. If s5 € (o(6), the
desired path has been constructed since then & € V(). Otherwise, simply
proceed as described for case (a), connecting @ to some other state & € V(0)
through a path which verifies the contemplated requirements.

To complete the proof of the lemma, consider now any @-tree HeH,.
By “tree-pruning” operations we want to transform H into an @-tree H of
lower cost, where @ is a state in V(0) to which & may be connected through
a path h satisfying (10). This can be done through the following steps:

(1) Eliminate the arrow (©, ') in H which starts at &.
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(2) For all states w which can be costlessly connected to & (i.e. belong to
its “basin of attraction”) replace the arrows which started from these states
in H by direct arrows to @, i.e. with corresponding (w, @).

(3) For all states in the path R (including @) simply replace the original
arrows starting at them (or add, in the case of @) with their respective arrow
included in this path.

It is immediate to verify that, once steps (1)-(3) have been conducted, the
original w-tree H has been transformed into a well-defined @-tree. Moreover,
by (1) and (2), at least a cost of 2 has been saved since, in order to escape
the basin of attraction of &, at least two mutations are needed. On the other
hand, by adding the arrow from @ included in path ;L, the cost has increased
by only one unit. Combining these considerations, the proof of the lemma,
and thus of the theorem, is complete. W

Proof of Theorem 3. As in the proof of Theorem 2, we shall rely
on the graph-theoretic techniques developed by Freidlin & Wentzel [7]. For
expositional simplicity, we shall assume that Lo = {{1,4¢2}. The argument
for any non-empty set of locations with fixed players proceeds in a fully
analogous fashion.

We start by introducing some concepts and facts which shall be used
throughout the proof. The first concept is analogous to Samuelson’s [12]
notion of mutation-connected component of Nash equilibria. For each 4, j =
1,2, define:

Cij = {w = (W', w?) : (wf; +w}) + (w%j +‘U%j) =n},

i.e. the set of states where everyone is either in location 1 or 2, those in the
first location playing strategy s; and those in the second location playing
strategy s;. We shall call each C;; the ij- component. As for Samuelson’s
original concept, it is easy to see that all (mutation-free stationary) states
in a given component are connected via one-step mutations. (Note that this
crucially depends on @ satisfying the inequality included in the statement
of the theorem.) Moreover, it follows by an argument fully parallel to that
used in the proof of Theorem 2 above that only states in some C;; may be
stochastically stable. Indeed, one can adapt a result in [12, Theorem 2, p.
48] to conclude that if any state in a given component is stochastically stable
so is every other one in this component.

We are now interested in extending the previous concept as follows. Let
A denote the set of limit (or minimally absorbing) states of the mutation-free
process. Given any i, j = 1,2, we define

Dy ={w= (W, w?) € A:wi; > 0; w%j > 0},
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as the extended ij-component, i.e. the set of states which have all individuals
which are in location 1 play strategy ¢ and all those which are in location 2
play strategy j. (Therefore, the configurations prevailing in other locations
are unrestricted, provided, of course, that all individuals in each location
play the same strategy.)

Suppose w.l.o.g. that strategy sq is the risk dominant strategy. First, we
address Part (a) of the theorem. To prove the desired conclusion, it is enough
to show that for every w ¢ Cag, and any w-tree H € H,, which is of minimum
cost, there is some ' € 2 for which an w'-tree H' exists whose c¢(H') < c¢(H).
In fact, by the mentioned fact that all states in a given component are jointly
included in (or excluded from) the set of stochastically stable states, it is
sufficient to prove the previous statement for some (i.e. not every) state
w in each component C;;, with ¢ or/and j equal to 1. For concreteness, we
shall make i = 1 and j = 2 (the argument is fully analogous for the other
two cases) and choose the state w € Cj with w?; = 0, (i.e. the state in Cio
where all mobile players are in location 2 playing strategy s2).

We shall find it useful to restrict our attention to w-trees H defined only
in states belonging to 4. Note that, as argued by Kandori & Rob [8], if
one focuses only on those periods where the process visits states in A, the
corresponding “imbedded process” can be described as a Markov chain on
A. And clearly, for the sake of identifying the stochastically stable states, it
is sufficient to apply the graph-theoretic techniques of Freidlin & Wentzel
[7] to such imbedded process.

Let & € Cyp be the state uniquely characterized by the equality &%, = 0
(thus, in analogy with w above, @ is the state in C1; where all mobile players
are in location 2). In the w-tree H under consideration (restricted to A),
there must exist a path, say h, linking @ to w. Consider now the following
transformations on this w-tree:

(1) Choose along path h the first state whose successor is not an ele-
ment of the extended component D2 and identify this state with w’ above.
Eliminate the arrow starting at ' in H.

(2) Add the arrow (w, ).

The previous set of operations transforms the original w-tree H into a
well-defined w'-tree. On the cost side, step (1) decreases cost by no less than
mtl (je. ™1 + 1), whereas step (2) increases cost by exactly m=1 Thus,
overall, the cost of the resulting tree must be strictly less than that of the
original w-tree H. This completes the proof of Part (a) of the theorem.

Finally, to prove Part (b), it simply needs to be realized that if the game
is of the stag hunt type (or @ is large enough), every limit state where the
efficient strategy is played in some location must have every mobile player
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choosing this strategy. Thus, a transition to a state satisfying (7) can be
materialized after just mT“ mutations from a state w € Cy1 where, say, every
mobile player is concentrated in one of the locations. On the other hand, a
transition away from the collection of states satisfying (7) must necessarily
involve a number of mutations which grows unboundedly with n, the size of
the total population. Therefore, if n is large enough relative to m, it should
be clear how we can rely on the techniques repeatedly used in this paper to
prove rigorously the desired conclusion. To avoid unnecessary redundancy,
the formal details are left to the reader. MW
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