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ABSTRACT

This paper proposes an aspiration-based model for (anonymous) cooperation where
a large population of agents are re-matched every period to play a Prisoner’s Dilemma. At
each point in time, agents hold a certain common aspiration level which is updated on the
basis of population-average experience. On the other hand, those agents who (relative to
current aspiration) feel "dissatisfied" switch actions at a rate which is increasing in the
magnitude of the dissatisfaction. The induced process is shown to converge in the long run
under quite general conditions. Moreover, if agents are responsive enough, the long-run
social state is seen to display some extent of cooperation, a constant positive fraction of the

population (always less than half) choosing to cooperate in every period.
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1 Introduction

The Prisoner’s Dilemma has become a paradigmatic benchmark in the study
of cooperative behavior within sharply competitive environments. In re-
sponse to its familiar “paradox,” the game-theoretic literature has approached
the study of this game from a wide variety of different perspectives (su-
pergames, incomplete information, bounded rationality, evolution, etc.).!
In everyone of these cases, it has been a crucial consideration in the analy-
sis that players’ interaction should display a certain degree of stability over
time.?2 Otherwise, the strict dominated nature of cooperation in any one-
shot situation seems to lead unavoidably to full defection as the only stable
social configuration, at least when the population involved is very large.?

This raises the question of whether there might be some considerations
inducing cooperation (at least partially) in social situations that are sub-
stantially more “diffuse,” i.e., when interaction is mostly ephemeral and
anonymous within a very large population. Casual observation suggests
that in many such situations (e.g., when “strangers” orderly interact in, say,
queues and traffic, or when valuable lost items are returned) indiscriminate
opportunistic behavior does not fully prevail, despite substantial odds to the
contrary.

Of course, one possible rationalization of such altruistic behavior is that
some people are guided by moral (non-strategic) principles. Here, however,
we show that an alternative (possibly complementary) view can also be put
forward. Specifically, we propose a very simple model of bounded rational-
ity which leads to a partial (never full) degree of cooperation under those
circumstances. The context involves a large set of agents (a continuum) who
are randomly matched in pairs every period to play a Prisoner’s Dilemma.
On the basis of past experience, they hold at every point in time some com-
mon aspiration on the payoffs they should get from the game. If, for any
particular agent, this aspiration is fulfilled (i.e. the payoff obtained does not

!See, for example, Friedman (1977) for models displaying indefinite repeated inter-
action, Kreps et al (1982) for a context with incomplete information, Neyman (1985)
or Rubinstein (1986) for an approach based on bounded rationality, and Fudenberg &
Maskin (1990) or Binmore & Samuelson (1992) for an analysis reflecting evolutionary
considerations.

2Even when, as in many evolutionary models, random re-matching of players is assumed
every period ~ cf. Axelrod (1984) — the game assumed to be played at each “point” in time
is in fact a repeated game, i.e., reflects some stable interaction between the two selected
opponents.

®In a context where the population is not too large (relative to the discount rate and the
gains from unilateral defection), Kandori (1992) and Ellison (1994) show that cooperation
can be sustained in the Prisoner’s Dilemma as part of an intertemporal equilibrium even
with repeated random matching.




fall below aspiration), this agent is assumed to remain choosing her former
action. Otherwise, she changes it with some probability, which will generally
depend on the magnitude of the dissatisfaction.

To underscore the social dimension of aspirations (see more on this be-
low), the whole population is postulated to have a common level of aspiration
which is continuously updated on the basis of “social experience.” Specif-
ically, it is assumed that if the observed (population-wide) average payoff
is higher than current aspiration, the latter gradually grows; correspond-
ingly, if average payoff falls below the current aspiration level, the entailed
adjustment is carried out downwards.

In the context outlined, the main results of our analysis can be summa-
rized as follows. First, we show that the long-run dynamics of the process is
particularly well-behaved. Specifically, the process is always seen to display
long-run convergence to some limit state, starting from any initial condi-
tions.

A crucial issue, of course, hinges upon whether or not such long-run
behavior will display some degree of cooperation. We characterize the con-
ditions for which each of these possibilities arise. Essentially, it is shown
that, if players are sufficiently reactive when “dissatisfied”, all robust limit
states involve a positive fraction of cooperators (never more than half of
the population). An interesting feature of these partially-cooperative limit
states is that they give rise to a situation which remains in a never-ending
flux. For, even though the extent of cooperation they induce of course re-
mains stationary, there is always a constant fraction of the population which
feels dissatisfied and thus switches actions.

Finally, the issue of uniqueness is addressed. In this respect, certain
(non-pathological) conditions are identified which ensure that the process
displays a unique (robust) limit state. In this case, therefore, the model
produces a single long-run prediction, whose dependence of the parameters
will be illustrated by means of simulations. We shall also rely on further
simulations to illustrate the behavior of the model when such uniqueness
does not apply, the dynamics exhibiting a multiplicity of equilibria with
disjoint basins of attraction.

The most direct precedent of the research reported here can be found in
the paper of Karandikar, Mookerjee, Ray & Vega-Redondo (1995) — here-
after KMRV - itself motivated by prior work of Bendor, Mookerjee & Ray
(1992). In KMRV, two given players interact over time playing a certain
Prisoner’s Dilemma. Along the process, both players follow an aspiration-
based adjustment rule, complemented with infrequent experimentation. On
the other hand, each player adjusts her aspiration level on the basis of her
own experienced payoffs. Under these conditions, these authors show that
the unique invariant distribution of the process is concentrated (for a small
mutation rate and gradual aspiration adjustment) in the cooperative out-
come.




Our approach exhibits the following crucial differences with KMRYV.
Firstly, the aspiration-updating dynamics is postulated to depend on so-
cial information. This responds to the intuitive idea that, in symmetric
social contexts, aspirations should be largely tailored to population-wide
experience (assuming information on it is available). A second crucial dif-
ference concerns the size of the population and the structure of interaction
postulated in each case. In KMRV, the same (two) individuals are taken
to interact throughout the process. This permits the kind of inter-agent
“feedback effects” which crucially underlie their results.* Here, however,
such effects are fully absent since the population is infinitely large and con-
tinuously re-matched every period. Despite the substantial odds against
cooperation induced by such anonymous and large-population context, we
find that some positive fraction of the population (in contrast with KMR,
never more than half of it) may end up cooperating in the long run.

More generally, the approach pursued in this paper is also related to
the recent literature on bounded rationality in games which, in Selten’s
(1991) terminology, displays “strategic reinforcement.” Important represen-
tatives of it are the Case-Based Theory of Gilboa & Schmeidler (1995),5
or the evolutionary models of Binmore & Samuelson (1993) and Borgers &
Sarin (1994). This literature has an early precursor in the work of Bush
& Mostellar (1955) and has been found to enjoy some empirical support in
laboratory experiments — see, for example, Selten & Stoecker (1986), Roth
& Erev (1993), or Mokherjee & Sopher (1994).

The rest of the paper is organized as follows. Section 2 introduces the
model. Section 3 presents and discusses the analytical results. Section 4
illustrates matters by means of some simulations. Finally, Section 5 con-
cludes.

4For example, when one player in the KMRV context starts defecting after a long phase
of cooperation, the other player will immediately respond by defection: the latter’s payoff
has drastically fallen and, therefore, she is now substantially dissatisfied with cooperation.
This makes any unilateral switch to defection a very short-lived situation, thus imposing
(dissatisfaction) pressure on both players to regain a cooperative situation.

5See also the work by Kim (1995) and Pazgal (1995) who apply Cased-Based Theory
to the Prisoner’s Dilemma. In order to obtain long-run cooperation they require that
players’ initial aspirations are sufficiently high relative to the cooperation payoffs.




2 The Model

Time t € [0,00) is measured continuously. At every ¢, the individuals of
a certain large population (with the cardinality of the continuum) are ran-
domly matched in pairs to play the following Prisoner’s Dilemma:

C D
C|lo,o0]|0,0
D] 8,066

Table 1

with® > ¢ > § > 0 and /2 < 0. These are the standard payoff requirements
on the Prisoner’s Dilemma. They make “defection” D a dominant strategy,
whereas “cooperation” C becomes the only symmetric and efficient outcome
(in particular, it dominates any symmetric mixing of cooperation and de-
fection). We shall also find it useful to assume that 6/2 > 6. This ensures
that the average payoff earned by the population is non-decreasing in the
fraction of cooperators, which simplifies some of the ensuing arguments.

At every t, the population is assumed to have a common aspiration «(t)
on what payoff to obtain from playing the game.® If the payoff a player re-
ceives at t is at least as high as this aspiration, then she is assumed to remain
playing the same action. Otherwise, she feels “dissatisfied” and is postulated
to switch actions at a rate which is dependent on the dissatisfaction gap.

To formalize these matters in a compact fashion, let f(x) denote the rate
at which any given agent receiving a payoff of m changes her action when
the current aspiration equals a = 7 + x.” Quite generally, this function is
simply postulated to be non-decreasing and satisfy:

=0 ifx<o,
1) { >0 ify>0.

It is also assumed to be continuously differentiable on the non-negative real
line [0,00). Note that this only requires f(-) to be right-differentiable at

SNote that the assumption of a common aspiration level is not the key feature of our
model. Rather, the crucial requirement is that the aspiration-updating rule be symmetric
across players and based on identical population-average information. For, under these
conditions, any initial heterogeneity in aspiration levels would disappear in the long run,
thus rendering the model proposed directly applicable.

7As usual in continuous-time adjustment models, f (a, ) can be conceived as the in-
dependent probability rate at which each of the agents obtaining a payoff of m switches
actions. In fact, since speeds of adjustment do not affect our analysis (see below), these
rates are best viewed as just relative magnitudes.




x = 0, thus permitting that marginal increases in dissatisfaction from x = 0
have positive first-order effects.

Denote by p(t) € [0,1] the frequency of individuals in the population
playing strategy C at t. On the basis of our previous discussion, the law of

motion for this variable can be written as follows:®

. —p? fla—0) = p(l —p) fla—0)
h= 1{+uﬂ—w®ﬂa—®+%1—m2ﬂa—5)} 1)

where k1 > 0 is some arbitrary speed of adjustment. The first two terms of
the above expression represent the flow of those individuals formerly playing
C who, given the payoffs they obtain after random matching, switch to play-
ing D. Reciprocally, the latter two terms reflect those individuals previously
choosing D who turn to playing C.

Note that (1) can be re-written as follows:

= k1 p=fla-o]+pl-pl-fla-0l+ |
p(l—p) fla—0)+ (1 —p)? fla-9)

which, provided f(x) < 1, suggests the following slight reinterpretation
of the dynamics. At every t, an infinitesimal and unbiased sample of the
population is given the opportunity of adjusting their strategy. From those
selected with a dissatisfaction gap equal to x, only a fraction f(x) in fact
decides to change strategies.

To complete the dynamics, we need to specify the law of motion for the
aspiration level a(t). As explained, we shall focus on a context where aspi-
ration adjustment is a social phenomenon based on population-wide perfor-
mance. Specifically, we postulate that the current aspiration level gradually
adjusts in the direction of realized average payoffs. That is,

= g {7 () — o} (2)
where k9 > 0 can be chosen arbitrarily and
(p) = (1— p) (6 + (1 — p)é) + p’o (3)

denotes the average payoff obtained by the population.

The pair w(t) = (u(t), a(t)) represents the state of the process at t. Its
dynamics is governed by the two-dimensional system of differential equations
given by (1) and (2), whose behavior is analyzed in the next section.

8For the sake of notational simplicity, the time variable t is omitted.




3 Analysis

It will facilitate our discussion to focus on
Q=1[0,1] x [8,0],

as the (compact) state space of the system. Thus, we shall concern ourselves
with aspiration levels that lie between the defection and cooperation payoffs,
6 and o. Under our assumptions on payoffs, we have:

pe(0,1)=6<a(u)<o. (4)

Therefore, it is clear that the dynamical system (1)-(2) is well defined within
Q since, in particular, the corresponding vector field “points inwards” in
the aspiration dimension at non-stationary points in the boundary of this
set. Furthermore, the fact that the vector field is Lipschitzian guarantees
(by virtue of standard results in the Theory of Differential Equations) the
existence of a unique solution path:

w(- | wo) : [0,00) — [0,1] x IR,

given any initial conditions wp € .

Obviously, both (0,6) and (1,0) are rest point of the dynamics. Our
first result establishes that, except if the system starts in the latter full-
cooperation state, every limit point of the system involves no more than
half of the population cooperating.

Proposition 1 For any initial conditions wy = (po, op) with po # 1, all
ensuing limit points w* = (u*,a*) have p* < 1/2.

Proof. Rewrite (1) compactly as
fr=r1Gi(p, @), (5)
Since, for all ¢, a(t) < o < 8, we have
f(alt) — ) = f(o(t) —0) =0
and therefore we can write:

Gi(u(t),a(t)) = —p(t)(1 = p(0) fla(®) + (1 = u(t))” f(at) —6)
= —(1—p(t) [ut) f(e(t)) — (1 = () f(a(t) - 6)].

Assume that p(t) > 1/2. Then, since f(a(t)) > 0 and
fledt)) = f(al(t) =) 20,

10




it follows that
= k1 G1(p, ) <0,

provided p(t) < 1. The latter is implied by any initial po < 1, which
completes the proof of the Proposition. l

In fact, one can build upon the previous Proposition and strengthen
substantially its conclusion. The next result establishes that all orbits
of the system converge to a unigue limit point with the above described
characteristics.?

Theorem 1 Given any initial conditions wy = (po, ), the ensuing orbit
of the system (1)-(2) satisfies limsoo w(t | wo) = w* for some rest point
= (u*,a*). Furthermore, if po # 1, then p* < 1/2.

Proof. As established by the well-known Poincaré-Bendixon Theorem
(see, for example, Hirsch & Smale (1974, p. 248)), the limit sets of the
orbits induced by a two-dimensional dynamical system either include a rest
point or are closed orbits. Thus, in order to ensure that the orbits of our
system are convergent, it is enough to rule out closed orbits and saddle rest
points towards which orbits return infinitely often.

To do so, we shall rely on the following result in the Theory of Ordinary
Differential Equations (see, for example, Arnold (1973, p. 198)):1°

Liouville’s Theorem: Let % (t) = H (z(t)) be a dynamical system defined
on a certain open subset U C IR", where H(-) is a differentiable vector
field. Then, if A C U has a volume V = [, d, then the volume V (t)
of the set A (t) = {y = z(t) : (0) € A} satisfies:

V (t) = [aqdiv H(z) da,

where the divergence of the vector field H (-) is defined as follows:

div H(z) = Z mgaf"" ,

i.e., the trace of the Jacobian of H (-).

9By virtue of the Poincaré-Bendixon Theorem, what this rules out is the existence
of limit cycles. Of course, Theorem 1 makes Proposition 1 redundant. They are both
included to clarify the line of reasoning involved.

190ther recent applications of this result within economic and game-theoretic environ-
ments include Keenan & Rader (1985) or Corchén & Mas Colell (1996). The latter apply
it to guarantee convergence of adjustment paths in bilateral games with one-dimensional
and compact strategy spaces. Liouville’s Theorem has also been widely used in the evo-
lutionary literature — see e.g. Hofbauer and Sigmund (1988} or Vega-Redondo (1996).

11




Let v : @ — IR? be the vector field leading to (1)-(2). We show below
that in the relevant subset of the state space (a region which is absorbing
in finite time), it displays negative divergence. To see that this implies
the claimed orbit convergence, suppose instead (the argument here follows
Corchén & Mas-Collell (1996)) that the system were to induce some limit
cycle or have a limit rest point which is a saddle. In the first case, the
set encircled by the closed orbit would be obviously invariant. So would
happen in the second case for the region enclosed by a corresponding chain of
orbits joining rest points. (Such a region must exist if orbits are to visit any
neighborhood of the saddle infinitely often.) In both cases, region invariance
implies constancy of (positive) volume, thus being incompatible (in view of
Liouville’s Theorem) with a vector field displaying negative divergence.

As advanced, we shall not show negative divergence of the vector field
everywhere in the state space. This is only confirmed for the open subspace

Ie={w=(u,a) EQZM<%+E, §<a<o}.

for some sufficiently small € > 0, as chosen below. Given any such €, we know
from Proposition 1 and 4) that the system will become eventually absorbed
(in finite time) by this set unless it starts at (1,0), a rest point. Thus, in
establishing orbit convergence, we may restrict without loss of generality to
initial conditions wgy € T..

We now compute the divergence of v = (v1,v2) for states w € I'c. This
is simply given by the trace of the Jacobian

() 28 (w) )

DV(/,L,C!) = ( @z(w) %(w) (6)

o O
with
8’01 y
7@ = m{-f@)+fla-0)-2f(a-9)
+2u[fla—6) — fla —0)+ f(a) — fla—0o)]}
% w) = ri{—p’ flla—0o)—pl-p[f(a) - f'(@=0)]+1-p?f (a6}
(‘;—f(w) = K90 —2642u(c+6—0)
Ovg ,
Fo w) = —kg

where note that the vector field is continuously differentiable for all w € T,
(in particular the function f(-)) since § < a < 0.
First, we obvicusly have;

8’02

E(QJ) = —Kg < 0.

12




As for the other term in the trace of the Jacobian, it can be re-written as:

P 0) = w1 (= £(0) ~21(a =) + [~ 8) + J(@)]}
since f(a —60) = f(a — ) = 0 for all w € I'c. Suppose we had p < 1/2.
Then,
31)1
op
Obviously, the negative sign of %%(w) still applies if p < % + ¢, for some
sufficiently small € > 0. Thus, for such a choice of ¢, the trace of D vy, o)
(i.e., the divergence of the vector field) can be ensured negative in I'¢, in-
dependently of the parameters k1 and x9. In view of our former discussion,
this completes the proof of the Theorem. B

w) < —k1 fla—8) <O0.

The previous result indicates that, given any initial conditions, there is
always a uniquely associated long-run state of the process. This conclusion
naturally leads us to what is the central question addressed in this paper:
When can it be ensured that some extent of cooperation will robustly prevail
in such long-run state?

Generically (in the underlying characteristics of the environment), an
answer to this question is contained in Theorems 2 and 3 below. The key
consideration turns out to be whether the switching-probability function f(-)
is sufficiently responsive at x = 0, i.e., at situations of “exact satisfaction.”
If it is (as reflected by the magnitude of the right-hand gradient), then some
partial cooperation will consolidate in the long run unless the system starts
exactly at the full-defection state & = (0, §). If, on the contrary, the function
f(-) is not responsive enough, then @ = (0, §) is asymptotically stable, thus
being “robust,” at least in the face of small enough perturbations.

Theorem 2 Assume -‘1—‘;{;(0) > eﬂ—%' Then, for all initial conditions wy #
& = (0,6), the unique limit state w* = (p*,o*) = limg,ow(t | wo) has
u* > 0 and, therefore, o* = w(p*) > 6.

Theorem 3 Assume d—‘f{%(O) < g;(%.Then, the rest point @ = (0,8) is
asymptotically stable.!

Proof of Theorem 2. First, we have to address the issue raised by
the non-differentiability of the function f(-) at x = 0 and its implications
on the differentiability of

vi(p, ) =k —p? fla—o)—p(l —p) f(a—0)
1(p; @) 1{+p(1—p)f(a_9)+(1_#)2f(a_5)}.

11 Ag standard, the rest point & is said to be asymptotically stable if: (a) it is Liapunov
Stable (roughly, the system remains always within any pre-specified neighborhood of this
point if it starts sufficiently close), and (b) there is some neighborhood of @ such that
every orbit whose initial conditions lie in it converges to this point.

13




On the one hand, note that for all w = (u, ) € Q, since § < a < o, the
first and third terms above can be ignored since they are identically zero.
To clarify the considerations pertaining to the other two terms, it is useful
to define the functions h; : [6,0] — IR, for each 7 € {0,6} as follows:

ha () = fa —m).

Then, we have
ho(a) = f'(a)
and we make:

() = E‘f(%(a )

for all a € [6,0]. With these specifications, the above functions are differ-
entiable on [4, g]. Re-writing (1) as follows:

=1 {1 = 1) ho(e) + (1= 1) ha(e) } (7)

we may now view vy (-) — and, therefore, the vector field v = (v1,v2) — as
continuously differentiable on €.

In view of these considerations, the asymptotic stability of @ = (0, 4)
can be evaluated in terms of the eigenvalues of the Jacobian of v(-) — as
the vector field has been reformulated — evaluated at it. We compute:

d

DV(O, 6) — ( —k1 f(ﬁ) ky d_xé‘“(o) ) . (8)
ko (6 — 26) —ky

The two eigenvalues of the above matrix are real. If Eg(‘t_r(()) > oﬂ—%’ one
(and only one) of them is positive. In this case, @ = (0, §) is a saddle point
(and, therefore, locally unstable). Since the eigenvector associated to this
latter eigenvalue points outwards of the state space, it follows that, in fact,
no initial conditions wg # & will lead the system to converge to & . (See
Figure 1 for an illustration of the local dynamics of the system around @.)
In view of Theorem 1, we may then conclude that the orbits must then
converge to some state w* = (u*, @*) with g* > 0. This completes the proof
of the Theorem. R

Proof of Theorem 3. From the considerations explained in the proof
of Theorem 3, the desired conclusion simply follows from the fact that if
E%—(O) < gé%, the determinant of the Jacobian (8) is positive. Therefore,
since its trace is always negative, all of its eigenvalues are real negative

numbers, thus inducing the asymptotic stability of &. l

Two further points are worth making in connection with the former
results.

14




(0, O’) (1, G)

&= (0 8) (1. 8)

Figure 1: Local behavior around @ in the unstable case.

Firstly, note that an obvious but interesting feature of any long-run state
displaying partial cooperation (cf. Theorem 1) is that, even though the ag-
gregate (or average) social configuration remains stationary, the underlying
process is in perpetual flux. In particular, there is a continuous process
of strategy adjustment carried out by a certain fraction of players which
become dissatisfied every period due to unlucky matching outcomes.

Secondly, it is important to understand that even if the conditions con-
templated by Theorem 3 are met, this does not imply that the full-defection
state @ is globally absorbing. Far from this: the simulations conducted in
the Section 4 illustrate that, even under those circumstances, long-run states
exhibiting partial cooperation will generally have a basin of attraction with
positive measure.

Finally, we address an issue on which Theorem 2 remains silent: Is its
prediction of partial cooperation unique? In general, it is not difficult to see
that this will not be the case, unless one contemplates specific requirements
on the different components of the model; specifically, on the function f(-)
and the payoff structure. To end our analytical discussion of the model, we
identify some illustrative sufficient conditions which guarantee such unique-
ness.

Proposition 2 Assume 0 — o — § > 0 and let the function f(-) be strictly
increasing and concave with f"'(-) > 0. Then, there exists at most one rest
point w* = (u*,a*) with p* > 0.

Proof. Let the functions G1(-) and 7(-) be as in (5) and (3), respectively.
From (1)-(2), it is clear that any rest point of the dynamics (u*, o*) must
satisfy

Gy(p* @(p")) = 0.

15




Define the function ¢ : (0,1) — IR as follows:

1
I—p

Y(u) = Gi(p, 7))

Then,

2
Y(p) = = 7 SR () = 0) = pf () + (1 = ) F(7 (k) = ).

Since 7(n) < o, f(T() — o) = 0, and the above expression can be simplified
and re-arranged to read as follows:

V() = () —8) — plf(7(L) = 8) + F(7(W))] .-

To confirm the desired conclusion, it is enough to verify that the func-
tion 1(-) is strictly concave in the interval (0, 1) — recall Theorem 1. We
differentiate:

Y(p) = f(7p) =67 (1) — f(@(p) —8) — f(@(w)
—p -7 () [F(@(p) = 6) + f(7(w)] -

And differentiating again:
W) = ') - 6) [F (W] + (7 (n) — 6) 7" (n)

—[f@p) = 8) + f'@w)] 7 (1) — [ f'(7(w) = 8) + f'(®(p))] 7' (1)

e ® ) () — 8) + P ()] — 7 @) [ F ) — 8) + £/ ()]
which can be re-written as follows

Yy = [FW{f'GFp) -6 - plf@Fp) -8+ @)} ()

—f(®(w) 27 () + p7" ()] + (1 — p) f' (7 () — 6) 7" ()
=2 f'(7(u) — 8) 7' (1)

Since f(-) is assumed concave and f"/(-) > 0, we have that
0> f'(7(n)) = f"(T(p) - 6),
and
F(m(p) = 8) = [f" (7 () = 8) + f'(®(w)] < f'(®(u)—8) =24 f"(7(1) - 6)

which implies that the first term of (9) is non-positive for all p € (0, %) On
the other hand, concerning the second term of this expression, we have:

27 (u) + pi"(u) = 2(0—26)—6u(c+6—10)
= (0—6)+(20-96)

16




which, in view of the assumptions that f(-) is strictly increasing, implies
that the second term of (9) is negative (again, for p < 1) since o > 6/2.
Furthermore, its third term is also negative since

7 (u)=2(6+0 —0) <0,

again from the restrictions contemplated on payoffs. Finally, the fact that
the last term of (9) is obviously negative, implies that ¢"(u) < 0 for all
p € (0,1), as desired. B

A scenario which satisfies the conditions contemplated by Proposition

2 is partly the focus of the simulations carried out in the next section (cf.
Scenario A below).
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4 Simulations

Our former analysis has characterized (generically) those conditions under
which we should expect some extent of cooperation to prevail in the long
run. Even though, as established by Proposition 1, such long-run level of
cooperation can never involve more than half of the population, it is obvi-
ously interesting to explore in more detail its particular magnitude as well
as its dependence on the different parameters of the model. To do this an-
alytically, one would need to impose stringent conditions on the different
components of the model - most crucially, on the switching function f(-).
Instead, we choose to resort to numerical simulations since, for the present
illustrative purposes, they would seem to allow a more intuitive and trans-
parent discussion.

All our simulations will be conducted for a family of switching functions
of the following form: .
X

ﬂﬁ—v+ﬂ-

This family is parametrized by ¢ and v, where ¢ € IN and v € IR . Clearly,
given any such g and v, f(x) € (0,1) for all x > 0. When ¢ = 1, the
function f(-) is a concave function whose right-hand slope at x = 0 becomes
arbitrarily large as v — 0. On the other hand, if ¢ > 1, the function is of
sigmoidal type, with a zero slope at x = 0, and approaching a step function
(with a single unit step at zero) as g — oo.

Tt follows from Theorems 2 and 3 that the behavior of the system must
be qualitatively different if ¢ = 1 or g > 1. Therefore, we organize our
simulations along these lines in what follows.

4.1 Scenario A: ¢g=1

In this scenario, the fact that f(-) is strictly increasing and concave with
F"(-) > 0 would allow us to rely on the uniqueness of interior rest points es-
tablished by Proposition 2, provided that the payoffs of the game are chosen
to satisfy the required conditions. In order to have these conditions satisfied,
we shall consider the following payoff table throughout our simulations:

C D
c| 7,7 1013
D|[13,0] 4,4

Table 2
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This choice of payoffs also implies that the hypothesis of Theorem 2 is
satisfied. That is,
df f(6)

dxt 0) 0 —26

or equivalently: ( )
6(6 — 26
T ()
for all values of v, since the RHS of the above expression is negative.
Consequently, the state @ = (0, §) is not locally stable and every (robust)
long-run state must display a positive fraction of cooperators. (In fact, such
a state is unique, as explained above, by virtue of Proposition 2.)
If, instead, the strict inequality converse to (10} applied for some v, then
& would be asymptotically stable for this case and, in fact, uniquely so.!?
Thus, given the convergence established by Theorem 1, we would have that,
generically, all trajectories would converge to @, thus leading to trivially
uninteresting dynamics. It is this motivates focusing on the case where (10)
holds.
For this case, Figures 2(a)-2(f) show how the dynamics of the process
responds to increases in v (i.e. a lower “responsiveness to dissatisfaction”).

[Figures 2(a)-2(f): see the end of the text]

First, we find that there is always a single (robust) limit outcome. In
view of our former discussion, this is as expected. Secondly, we also ob-
serve that the frequency of cooperators in the corresponding limit states
decreases monotonically with v. Again, this behavior should come to no sur-
prise since it is fully in accordance with an intuitive understanding of the
model. Specifically, note from the law of motion for u:

f(t) = w1 (1 = ) {Q — p) [f(a) — 6] — pf(e)}
that, for any (g, @), the ratio between the flows in and out of cooperation

is:
(L —p) fla—6)
pfl@) 7

which is a decreasing function of v. As a consequence, it is intuitively clear
that the long-run frequency of cooperators should decrease as v increases.

In a different respect, it seems also of some interest to explore the de-
pendence of dynamics of the process on alternative payoff structures. Since,
for the reasons explained above, we would still want to preserve both (10)
and the conditions contemplated by Proposition 2, a natural way to proceed

12This follows from the fact that if there were also any interior and asymptotically
stable rest point, there would also have to be another (unstable) one, thus contradicting
Proposition 2.
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is to consider a family of games which represent a “scaled version” of the
one considered above. That is, games with payoff tables of the form

C D
C |7y, Ty | 0,13y
D | 13y,0 | 4y,4y

Table 3

with y € IR, . Obviously, these payoff tables satisfy the desired conditions
for all y. Focusing on such parametrized family of games, we now argue that
the same effect induced on the dynamics by an increase in v is achieved by
a similar proportional decrease in y.

To confirm this claim, denote by f,(x) the switching function associated
with some given parameter v. Then, we have that, for any real v, y, and v:

fyo (- x) = fulx)-

Based on this identity, it is easy to see that, as long as v/y remains constant,
the paths of the system associated to two different values 3/ and y” are
trivially isomorphic. Specifically, to any path [1(-), &/(+)] corresponding to
y' one may associate the path [¢/(-), @”(+)] corresponding to y” with

Y
pC)=p(); o) =Z2d().
Therefore, the role of y and v in the model is fully reciprocal and symmetric.

4.2 Scenario B: ¢ > 1

When ¢ > 1, the slope of the switching function f(-) at x = 0 vanishes.
Therefore, in view of Theorem 3, we conclude that the state @ = (0, §) is
asymptotically stable. However, since the function f(-) is no longer concave
(as explained it has a sigmoidal shape), Proposition 2 no longer applies and,
therefore, there could be other robust (i.e., asymptotically stable) rest points
lying in the interior of the state space. In fact, this is shown to be the case in
the simulations presented in Figures 3(a)-3(f) and 4(a)-4(f) for two different
values of q (g = 2,5).13

[Figures 3(a)-3(f) & 4(a)-4(f): see the end of the text]

13The simulations are conducted for a Prisoner’s Dilemma with payoffs as displayed in
Table 2, i.e. with y = 1. The same considerations as before can be applied to changes in
y, the magnitude which now has to remain constant being v/y?.
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In these two cases, we find that, for small enough values of v, the inte-
rior of the state space is partitioned (except for a zero-measure separating
boundary) into two different basins of attraction. One of them corresponds
to the no-cooperation state @ = (0, §). The other basin includes all those tra-
jectories which converge to a unique interior rest point exhibiting a positive
degree of cooperation.

The maximum value of v for which the simulations show the existence
of two different basins of attraction is v = 2.5 for ¢ = 2 and v = 6 for
q = 5. For larger values of v, all interior trajectories of the system converge
to state @. Thus, in the simulations conducted, higher values of g strengthen
the tendency towards cooperation. This reflects the fact that higher values
of q increase “agents’ responsiveness”, thus reinforcing the key mechanism
underlying the rise of cooperation.

Finally, we also observe that, provided a robust interior rest point ex-
ists (i.e. the value of v does not exceed the corresponding upper bound),
increases in v have the twin effect of decreasing the level of cooperation
attained, as well as shrinking its corresponding basin of attraction. This
simply extends to the present context (¢ > 1) an intuition analogous to that
already encountered for g = 1.
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5 Summary and concluding comments

In this paper, a stylized aspiration-based model of bounded rationality has
been applied to a large-population context where players are matched to
play a Prisoner’s Dilemma. Under certain conditions on payoffs, every path
of adjustment and learning has been shown to converge to some given social
configuration. In this sense, therefore, the model has been found to induce
a clear-cut long-run prediction from every initial condition.

The central concern of the paper has been to characterize those condi-
tions under which a positive fraction of cooperators is obtained in the long
run as the (unique) limit outcome of social adjustment paths. This has been
seen to hinge upon the local behavior of the switching-probability function
at points of zero dissatisfaction. If it is sufficiently responsive (i.e., players
react with a steep enough gradient to small degrees of dissatisfaction), then
all adjustment paths starting in the interior of the state space lead to a pos-
itive fraction of long-run cooperation (never more than half). Otherwise,
the state where nobody cooperates is asymptotically stable, thus displaying
some local robustness in the face of small perturbations.

The focus of the paper has been on the Prisoner’s Dilemma since this
game represents a natural benchmark for which the implications of our ap-
proach can be usefully compared with other alternative models of bounded
rationality and social learning found in the literature. Next in our research
agenda is the study of other types of games for which aspiration-based learn-
ing may lead to interesting conclusions. As a first step, we are presently
studying simple coordination games where the main issue involved becomes
one of equilibrium selection. Preliminary analysis suggests that considera-
tions very different from the usual dichotomy of efficiency vs. risk dominance
(e.g. acertain notion of “spite” built upon relative payoff comparisons) drive
equilibrium selection in this context.
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