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ABSTRACT

Two one-product firms compete in prices on a market with differentiated
products. Goods are differentiated because customers switch from one good
to the other at different relative prices. With the specification that mean
demand in the market is unit-elastic I provide conditions on the shape of
the customer density which guarantee the existence of a unique Bertrand
equilibrium.
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1 Introduction

In an oligopolistic market with differentiated goods firms compete in prices. Individual
demand functions and the taste heterogeneity between the customers determine market
demand. A large number of studies have looked at sufficient properties of the taste
heterogeneity of customers, described by a customer density on a parameter space,
in order to show the existence of equilibrium for particular specificatons of individual
demand.

The literature on product differentiation started with models in which customers have
unit demand and are uniformly distributed in a one-dimensional space (e.g. Hotelling,
1929, Gabszewicz and Thisse, 1979, D’Aspremont, Gabszewicz and Thisse, 1979, and
Salop, 1979). Another popular functional form on the taste heterogeneity is presented
in the logit model (for an overview see Anderson, de Palma, and Thisse, 1992). To my
knowledge the first articles dealing with shape assumptions on the customer density
guaranteeing the existence of Bertrand equilibrium are Neven (1986) and Caplin and
Nalebuff (1986). Both assume that the customer density is concave, Neven (1986) in
a Hotelling model of unit demand and Caplin and Nalebuff (1986) in a model with
unit elastic demand. Further work has focused on shape assumptions in models of
unit demand which give rise to the existence of equilibrium (Champsaur and Rochet,
1988, Caplin and Nalebuff, 1991b, Dierker and Podczeck, 1992, Allen and Thisse,
1992, Bester, 1992). Ansari, Economides, and Ghosh (1994) and Goeree and Ramer
(1994) then studied location-then-price games for non-uniform customer densities. Unit
demand seems to be the adequate specification for many durables such as cars and
microwaves. However, other goods such as soft drinks, beer, cigarettes, and potato
chips are bought in variable quantities.

Models in which customers buy a variable quantity have received less attention (Caplin
and Nalebuff, 1991b, Dierker, 1991, Anderson, de Palma, and Thisse, 1992, Peitz,
1995). In this literature it is assumed that taste heterogeneity can be described by
some log-concave customer density.

I restrict attention to a duopoly with unit-elastic demand. The behavior of customers
and firms is presented in section 2. Section 3 contains the existence and uniqueness
results. I show for a class of “fat” density functions and for a class of log-concave
density functions the existence of a unique equilibrium. All proofs are collected in the
appendix.

2 Behavior of Customers and Firms

Let me call the market under consideration the fruit market. I assume that there are
only two kinds of fruit, apples and oranges. For each of the fruits there exists a positive
price: p; is the price of an apple, p, is the price of an orange. There are other goods
in the economy but their prices are fixed. These goods are summarized by a Hicksian
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composite commodity xg; its price py is normalized to 1. Hence income and prices
p1, P2 are measured in units of the composite commodity.

2.1 Customers

A customer has to make two decisions: in the first step, how much to spend on fruit and,
in the second step, how to divide the fruit expenditure between apples and oranges.
A customer with fixed income y > 0 has a demand function for apples & (p1,p2) and
oranges &o(p1, p2) with the property that 0 < pi&i(p1, p2) + pea(p1,p2) < y. I assume
that a customer either buys apples or oranges. Expenditure on apples and oranges is
fixed at b and it is assumed that the point p;5 at which the customer switches from one
to the other is independent of expenditure in the market. Expenditure on apples is

b if <5
mé&i(p1,p2) = { 0 els]il/]?z < P12

A customer only buys apples if pi/ps < Pia.! Pi2 is one of the characteristics of a
customer. It will be convenient to use logs: § = —logpia. A customer switches from
oranges to apples when logps — logp; > 6. Customers evaluate apples and oranges
differently, i.e. they have different 6.

(A.1). There exists a continuous distribution function G over § € ® with G(0) > 0.
G has a density g which is continuous on [¢, §] and positive and continuously differen-
tiable on (,0). g has bounded support, i.e. § < @ implies G() = 0 and 6 > ¢ implies
G(6) = 1.

Without loss of generality G(0) > 0. ¢'(8) is defined as limg g ¢'(0) and ¢'(6) =
lim, -59'(¢). The assumption of a bounded support is taken because I want to in-
clude the uniform distribution. Also it facilitates the proof that firms choose out of a
compact strategy set.? The assumption of a bounded support implies that for a given
orange price one can always find apple prices sufficiently large such that mean apple
expenditure is equal to zero. All customers buy only apples if logps — logpy > 8 and
only oranges if logps — logp; < 6. If the interval degenerated to a single point all
customers would be identical with respect to the switching point. In such a case also
mean expenditure is discontinuous; goods are homogeneous. On the other hand, if g

1Ty avoid correspondences I assume that the customer only buys apples at a relative price equal to
the switching point. As customers will be assumed to be different and mass points for a distribution
over p1o will be excluded demand can be arbitrary at the switching point without changing aggregate
demand.

2See Caplin and Nalebuff (1991b) for a result with unbounded support.




had unbounded support there would be a positive demand left for any price combina-
tion (p1, p2) and each type of fruit.

Demand relevant customers characteristics are b and 6. B denotes conditional mean
expenditure of all customers of type @ which is assumed to be constant in 4.3
According to the description of the population of customers mean demand functions
for good 1 and 2 are of the form

B
Xi(p1,p2) = EG(logpz—logpl),

B
Xo(p1,p2) = ;2" (1 — G(logpa — logp1)),
where B > 0 is a constant. Next I present three examples which generate the mean
demand functions from above. Customers maximize their utility function u subject to
the budget constraint xg + p171 + pexza < .

Ezxample 1 in the goods-are-goods framework. Sattinger (1984) proposed a utility func-
tions which generates non-combinability and fixed individual expenditure b.

uw(zo, 1, T2) = (Zi=1,2 %)a 3™, At his critical price ratio % a customer is indifferent
between apples and oranges. A distribution over (g1, g2) generates a distribution over
#. Each customer spends ay on apples and oranges.

Ezample 2 following the Lancastrian characteristics approach. Example 1 is slightly
modified in the spirit of Lancaster (1979). Assume that each good can be described by
a vector v = (v},...,9") € R} of characteristics and that customers only derive utility
from the total amount in each characteristic, u(zg, 71, To) = @4(To, s TiVL, - - - » 2oi TiYe)-
One specification is that the characteristic are perfect substitutes and u(zg, 1, 22) =
(Ek PLDD 'yfxi)a x5~* where ) defines the type of the customer and is an element of
the n-dimensional unit simplex. The distribution on 6 depends on the distribution over
weights A and on the products’ characteristics 7,

Y APE
0 = log =———.
& >k Nk
A different specification is provided by Caplin and Nalebuff (1986).

Ezample 3 following the Hotelling approach. The utility function is defined as u =
(3, 4;)%xg® with @; = z;(1 + d(jw — 4]))™" and d(jw — L]) = el _ 1 we®R
denotes the type of the customer and [; € R the location of the good in the product
space. The devaluation factor d(|w — [;|) depresses the utility if the location of good

3B being constant in 6 is implied by stochastic independence of b and 6. In the subsection on
log-concave densities the results still hold if B(#) is log-concave in 8.
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¢ does not coincide with the location of the most preferred good of customer w. It
plays the same role as the transportation cost function in the Hotelling model. The
marginal customer @ who is indifferent between good 1 and good 2 is determined by
O = log;(’lz;_l;’lg)p L + Lt and there is a linear mapping from |w, @] into [0,8]. Further

examples in a one-dimensional product space are provided by Peitz (1996).

2.2 Firms

Firm behavior is standard: Good i, ¢ = 1,2, is produced by firm ¢ at constant marginal
cost ¢; > 0. Each firm faces a mean demand function X;(pi1,p2) depending on the
prices for apples and for oranges. Firms maximize profits, i.e. max,, m;(p1,p2) where
7i(p1, p2) = (pi— i) Xi(p1,p2), ¢ = 1,2. Note that prices below marginal costs are weak-
ly dominated. They are serially (strictly) dominated if assumption (A.2) is satisfied.
(A.2) says that if each firm sets price equal marginal costs both firms have positive
market shares.

(A.2). 8 <logcy —loge; < 6.

The strategy set of firm ¢ is R, . Throughout the paper I am primarily concerned with
the existence of a unique pure strategy equilibrium in prices. A pure strategy Bertrand-
Nash equilibrium is a pair of prices (p},p3) € R such that m(p,p}) > mi(pi, p}) for
all p; € Ry, 4,5 = 1,2, j # 4. In other words, pf is element of the best response
correspondence for pj.

3 Existence and Uniqueness of Equilibrium

3.1 Log-Concave Densities

Since log-concavity of G implies that profit functions are quasi-concave this property
is important to show the existence of equilibrium. As shown in Lemma 1 in the Ap-
pendix log-concavity of g carries over to G. The result corresponds to Lemma 1 in
Dierker (1991). To prove the existence of an equilibrium it remains to be shown that
the strategy set is compact.

A quite broad class of distributions have log-concave densities.* It includes such dis-
tributions as normal, exponential, and Weibull (for a larger list, illustrations and the
references see Caplin and Nalebuff, 1991a). Truncated forms of the above mentioned
distributions have also log-concave densities for a convex support and hence are exam-
ples of log-concave densities g with bounded support.

4In his Proposition 2 Dierker (1991) states that log-concavity of ¢ is implied by Schur-concavity
of g(0)g(¢’) which expresses the idea that for a random draw out of the population more equal
perturbations are more likely and shows the relationship between Schur-concavity and unimodality




To obtain uniqueness, two other properties, namely dominant diagonality under loga-
rithmic transformation and log-supermodularity, are sufficient.’

Proposition 1.
Assume (A.1) and let G be log-concave on [6, 8]. Logarithmic profits satisfy the domi-
nant diagonal property on the set of prices above marginal costs where demand is C?,
ie.

02 log ;
0log p;0log p;

82 lo v .o . .
i & (p1,pe)| fori,j=1,2,5#1.

W(Pl, D2)

The following proposition establishes that profits are log-supermodular.®

d

Proposition 2.
Assume (A.1) and let G be log-concave on [§,8]. Profits are log-supermodular on the
set of prices above marginal costs where demand is C2.

Theorem 1.
Assume (A.1), (A.2), and let g be log-concave. There exists a unique pure strategy
Bertrand-Nash equilibrium (p}, p3). The associated game is dominance solvable.

The assumption on costs guarantees that the first-order condition of profit maxi-
mization is always satisfied in equilibrium and both firms make positive profits. If it
is violated a firm can get the whole market with its price above marginal costs and, if
this happens in equilibrium, the inactive competitor disciplines the firm which serves
the whole market.

3.2 Flat Densities

I will now derive the same result as in Theorem 1 under the assumption that G is not
too far from the uniform distribution. A density is called flat if

q'(0)

10(6)] = \—(9(9))2

on the support of g. Clearly, p(6) = 0 for the uniform distribution on the interval [0, ].
But what does it mean that 8 is uniformly distributed? In contrast to Bester (1992)
who looks at unit and not at unit elastic demand the distribution is related to relative

<1

5In more than one dimension one can make use of Prekopa’s theorem (see Prekopa, 1973) to
obtain log-concavity which was explored by Caplin and Nalebuff (1991a,1991b) and Dierker (1991).
The existence result in the case of log-concave densities hold for any finite number of firms.

6SQupermodularity has recently been analyzed by Vives (1990) and Milgrom and Roberts (1990).
It has already been applied by Caplin and Nalebuff (1991b). The fact that one can enhance the
applicability by allowing for log-transformation is emphasized by Milgrom and Roberts.
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and not to absolute price differences.” If one changes py from 1p; to 2p; and from 2p,
to 4p; and if 6 is uniformly distributed then the share of customers who switch to good
1 is the same for the price change from 1p; to 2p; and from 2p; to 4p;. Note that
multiple peaks are compatible with a flat density. Note also that a convex density can
be flat. Hence the customer mass can be more concentrated around the end points of
[0, 0] than in the middle. Theorem 2 is the analogue to Theorem 1. Here, flatness gives
rise to the log-concavity of G.

Theorem 2.
Assume (A.1), (A.2), and let g be flat. There exists a unique pure strategy Bertrand-
Nash equilibrium (p?,p3). The associated game is dominance solvable.

One can show that as (6§ — §) — 0, pj — c2 and p} — ¢y, i.e. when the interval

shrinks to a single point the competitive outcome is reached. Without heterogeneity
the standard undercutting argument is valid. The theorem, though, is only for nonde-
generate intervals for § because otherwise continuity of mean demand is violated.
Note that 82 log((p; — ¢i)/p:i)/(8log p;)? = —pi/(pi — ¢;) which turns to infinity when
price turns to marginal cost. Hence for a small support of g and high marginal costs,
possible equilibrium prices have to be quite close to marginal costs so that log G does
not need to be concave to show the quasi-concavity of profit functions.
Uniqueness can be shown without exploiting the log-concavity of G and as a conse-
quence log-supermodularity. Even under a weaker condition on |p(#)| uniqueness holds.
The proof of uniqueness is elementary because I can construct a decreasing function
with a zero for the equilibrium. For 1 < |p()| < 2, I was not able to show the existence
of equilibrium.

Proposition 3.
Assume (A.1), (A.2), and let |p(8)| < 2 be flat. A pure strategy Bertrand-Nash equi-
librium (p},p}) is unique for strategy sets S; = Ry, 1 =1,2.

Under (A.2) one can compute equilibrium prices. For [p(6)| < 1 for 6 € [, 0], there

exists a unique solution #* to 2 1“&?1 8)-Gl) — ¢f Equilibrium prices then are
1 G'(0)+G(9)
% G(6*)

ps = c(l+ %%2)‘2)
In the model the extent of taste heterogeneity is expressed by g. According to example
3 one can view an enlargement of the support of g from [8,6] to [(1 4+ A)8, (1 + A)d],
A > 0, as a higher degree of product differentiation. Under the assumption that g is

4

71t is the advantage of the specification in logs that the distribution is scale independent.
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uniform the intuition that increased product differentiation leads to higher prices is
correct. Log-profits of firm 1 are

. logpo—logps 9
h—a +log B +log —A — —
g1 6—-20

log m1(p, A) = log

Proposition 4.
Assume (A.1), (A.2), and let g be uniform. Equilibrium prices p* are increasing func-
tions of the measure of increased product differentiation \.

4 Conclusion

Two one-product firms compete in prices. Goods are differentiated because customer-
s have different critical relative prices at which they revise their buying decision. I
showed the existence of a unique equilibrium provided that the customer density is
“flat” or log-concave.

Equilibrium profits are computable and the model may be a building block for two-
stage models with endogenous product specification (see Peitz, 1996).
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Appendix

Proof of Proposition 1. Remark that prices are chosen from (x;—j2c;,00)) N
{p1, p2| Xi(p1,p2) > 0,7 = 1,2}. On the interior of this set logm;, i = 1,2, are twice
continuously differentiable in log p;, ¢ = 1,2. I have to show that

Ologm 02 log ;

" (@logpi)? for i,j = 1,2, j # i.
(810gp2)2 ~ 310gpzalogp7 ore,J v 4y J 7é 1
pici 0%log G . 8%log G o 5 1og G
(pr —c1)?2  (Ologp1)? 0 log p10log po (81og p1 )2

Similarly for firm 2. O

Proof of Proposition 2. For (2 functions supermodularity is easily checked due
to Topkis’ Characterization Theorem.

02 log m; .. .,
> -
alogpzalogpj(plaPQ) = 0 for %7 172,.7 7é7'
0%log G(logp, —logpy) _ _ 9?log G(logpy —logpy)
0log p;101log pa (Ologp1)? B
for G log-concave on [0, 0] and in the same way for firm 2. O
Lemma 1.
If g is log-concave in 8 for @ € [0, 0] so is G.
Proof. (see Lemma 1 in Dierker, 1991)
~ 6
logG(0) = 10g/0 e"® dp where h(6) = log g(8)
214 (A _~ h(d) N h(8)
d10g~G(0) _ _pe___° _+H() ée <0
dg? ( JE en(®) dg) Jg €9 df

. i
= Kb / O gy < @
0

As h is concave: h'(0) < h/(0), 6 € [,0]. Hence,

i ; i
e /9 O gg < /0 () eh® dg < @ O
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Lemma 2.
Assume (A.1) and let G be log-concave on [#, §]. Profits m; are log-concave in log p; for
all price combinations such that demand is positive and p; > c¢;.

Proof.
log(p; — ¢1) + log B — logp; + log Glog 22 if log 22 €[4, ]
logm = P pr LT
log(p1 — ¢1) +1og B —logpy if log £2 € (6, 00)

log(p1—c1)+log B—log p; is concave in log p;. What remains to be shown is that the last
term is also concave in log p; for (log po—logp;) € [4,6]. Since 8(p1,p2) = log p2—logp1,
*G(6) _ 9*G(6(p1,p2))
dp? (0log pi)?

Similarly for firm 2. O

Lemma 3.
Assume that profits m; are log-concave in logp; for all price combinations where de-
mand is positive and p; > ¢;. Profits are quasi-concave in its own price for p; > ¢;.

Proof. Quasi-concavity is violated if there exists a py, pi1, and p;x with ¢; < pio < pin

and p;x = Apio + (1 — N)pir, A € (0,1) such that

(pio — ci)Xi(pio) > (pin — i) Xi(per)
and  (pin — ) Xi(pin) > (pir — c) Xi(pin)

Case i) pig = ¢;. The first inequality requires that p;y < ¢; which is a contradiction.
Case ii) pig > ¢;. Look at ¢ = 1, py fixed. For Xi(p;; = 0) the second inequality
requires p;y < ¢; which is a contradiction. By assumption, profit functions are log-
concave in its logarithmic price where demand is positive and prices above marginal
cost and Log-concavity implies quasi-concavity. O

Notation.

z = max {9 — 0 —1og G(0) +logcy, 8 — 8 — log(1 — G(0)) + log 01}

Definition. The best response correspondence R is defined as

R: 1, €*] X [cg,€*] — [e1,€7] X [, €7]
(p1,p2) ¥ (r1(p2),72(p1)) = R(p1, p2)

; Flr(pt, p;) = max,, m(pi,p;)} N, e*] f#0
o i) = { ) =, T}l 8
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Lemma 4.
Let profit functions be quasi-concave in their own price. There exists a pure strategy
Bertrand-Nash equilibrium for log ¢; < logp; < z.

Proof. The best response correspondence R is a correspondence with compact convex
domain into itself. Since profit functions are continuous the best response correspon-
dence is upper-hemicontinuous. The quasi-concavity of the profit functions guarantees
that R is convex-valued. Hence, one can apply Kakutani’s fixed point theorem. O

Lemma 5.
Assume (A.1) and (A.2). There is no logp; > z such that m1(p1,p5) > m(p],p3) or
(P, p2) > ma(py, P5).

Proof. Suppose there is log p; > 2 such that m1(p1, p5) > m1(pF, p3).

Case i). logps < z+6. Then m(p1, p5) = 0 for all logp; > 2 contradicting m (p1, p3) >
T (p;{ap;)

Case ii). z+ 8 < logp5. logp1 > z > log pj leads to a profit for firm 1 of

B B
(p1 — c1)—G(log p; — logp1) < (p1 — ¢1)—G(0)
b1 D1

because G(0) > G(log p5—logp;). For logp; > log p;—8 one has G(log p5 —logp;) = 0.
Thus one must have log p; < logp; — 8. Consequently, setting log p; > z gives a payoff

* b1 —C
log mi(p1,p3) = log —=——

, + log B + log G(log p5 — log p1)
1

Dp1—Q
D

< log <% — c1> + log B — log p5 + 8 + log G(0)

< log + log B + log G(0)

because (p; —c1)/p1 is increasing in p;. Set log p} = log pj —0. Tt gives firm 1 the profit

log 71 (p}, p5) = log (p—.;_ — 01> +log B — log p—;.
e e

It is not in the interest of the firm to set logp; > z > log p} if m1(p1, p5) < ™1 (P}, P5).

*

<= log <& - 01> —logps + 8 +1og G(0) < log (p_; — Cl) _ 1ng__g_
€ e

el
G(0) (% - cl) < et (p—z - cl>

= ¢ < pi(1—G(0)e?

(6 — ) —log(1— G(0)) + 8 +loger
— z+8 < logp,

A

—

@]
aQ
3
3
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which is a contradiction. In summary, one has 71 (p,p35) < m1(p3/ e’ ) < m(pt, )
for all logp; > z. For firm 2 one obtains ma(p3, p5) > ma(pi, pe) for all logpy > z. O

Proof of Theorem 1. Lemmas 1,2, and 3 imply that profit functions are quasi-
concave. Equilibrium existence for given compact strategy sets follows from Lemma 4.
Lemma 5 shows that firms will always choose out of strategy sets [0, e*]. Under (A.2)
prices in %[0, ¢;] are serially dominated and p; < ¢; is dominated given D > ¢, J F 1.
Hence an equilibirum in X;|¢;, €] is also an equilibrium in §Ri

Now I show uniqueness. Note that all strategy profiles (py, p2) with log p,—log p1 & [0, 0]
are serially dominated by some strategy with logp, — logp; € [6,0]. Consequently, all
prices for which Propositions 1 and 2 cannot be applied are serially dominated. By
Proposition 1 log-profits satisfy the dominant diagonal property and there exists a
unique pure strategy Bertrand-Nash equilibrium for the transformation (compare Mil-
grom and Roberts, 1990). Dominance solvability, which implies uniqueness, follows
from the uniqueness under log-transformation and log-supermodularity. O

Lemma 6.
Assume (A.1) and let g be flat. Then G is log-concave.

Proof. 5(p1,p2) was defined as log ps — log p;.

PlogGO) _ _0@)/GO) _ 1 s — o2
(Ologp1)? o(logp) G2(g)(g (0)G(0) — g7(9))

Log-concavity of G is equivalent to ¢’ (9~)G(9~) < g? (é) which is implied by | g’(é)lG 6) <
g%(8). Hence log-concavity of G follows from |§;—((%! < 1. Similarly for firm 2. O
Proof of Theorem 2. Lemma 6 establishes log-concavity for the domain of prices
above marginal costs and where demand is positive. Lemmas 2,3,4, and 5 then give
existence as in Theorem 1. Uniqueness and Dominance Solvability then follow from
Propositions 1 and 2. O

Lemma 7.
Assume (A.1) and |p(0)] < 2. An equilibrium (pf, p5) with prices above marginal costs
is unique on X;(c;, 00).

Proof. A situation in which both prices are above marginal costs and in which one
firm has zero demand cannot be an equilibrium. Hence only prices such that demand
is positive for both firms need to be considered. First-order conditions of profit maxi-
mization can be written as

c1G(log p3 — log p}) — (p} — c1)G'(log p5 — logp}) = 0
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ca(1 — G(log p5 — log p})) — (p5 — c2)G'(log ps — logpi) = 0

Replacing log p5 — log p; by 6*, rearranging, and taking ratios gives

Ql+ GO0 -GE) _ ,

a G+ G6Y) =0

Define the function ¥ with ¥(8) = %l%%)ﬂ — e’ Tt has to be shown that ¥(6) has

a unique zero 6* € [0, 9].

U'(0) = D(2G"(0)GH)—2G'(0)* - G"(0) —G'(6)) —€°
= D G/(0)2 [QI(Q)[QG(G) - 1] 2 1 J — ¢

g°(6) 9(6)
where D = 2(G'(0) + G(6))® > 0. Note that 0 < G < 1 implies (2G — 1) € [-1, 1]
and
gORGE) —1] _ |4O)RGE) —1]
9%(0) g%(0)

Then ¥'(8) < D G'(6)*[2 -2 — 9—(175] —e = —-D g(#) — e < 0. V¥ is decreasing in 6.
Therefore, 6* is the only zero of ¥. O

] <

g'(0)
g—w)l =2

Proof of Proposition 3. Because of (A.2) prices in [0, ¢;] are serially dominated
and the result follows from Lemma 7. O

Proof of Proposition 4. For any A > 0 one can find a z(\) such that there does not
exist an equilibrium outside [c1, &™) x [c,, e?V)]. Strategy sets are nondecreasing in \.
The associated game I'()\) with logarithmic profits as payoffs and logarithmic prices as
strategic variables is dominance solvable (see proof of Theorem 1). Finally, I need to
show that price elasticities of profits are increasing in the parameter \.

9?log mi(p, ) _ 1 1 0
OlogpiOA (1 + \)?lepaloani _ g

Analogously, for firm 2. O
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