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MODELLING CONDITIONAL HETEROSKEDASTICITY:
APPLICATION TO STOCK RETURN INDEX "IBEX-3S

Angel Ledén & Juan Mora

ABSTRACT

This paper compares alternative time-varying volatility models for
daily stock-returns wusing data from Spanish equity index IBEX-35.
Specifically, we have estimated a parametric family of models of generalized
autoregressive heteroskedasticity (which nests the most popular symmetric
and asymmetric GARCH models), a semiparametric GARCH model, the stochastic
volatility model SV(l1), the Poisson jump diffusion process and finally, a
non-parametric model. We obtain that those models which use conditional
standard deviation produce better fits than all other GARCH models. We also
compare all models using a standard efficiency test (which compares within
sample predictive power} and conclude that general GARCH models

(specifically the TGARCH(1,1) model) perform better than all others.
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1. INTRODUCTION.

In the last decade there has been an increasing interest in modelling the
predictable component of volatility, or conditional variance ht, for a given
time series £, This concern with conditional variance is due to the fact
that, in many financial models, the risk premium is a function of it. This
paper compares alternative statistical models for daily stock return
conditional variance proposed in recent literature. The focus is on the

Spanish equity index IBEX-3S.

As we know, the return can be decomposed into anticipated (conditional
mean) and unanticipated returns. It has become commonplace to model
unanticipated returns using a white noise n and a term which reflects
conditional standard deviation h:/z. The pioneer models were Engle's (1982)
autoregressive conditional” heteroskedasticity (ARCH) model and Bollersiév's
(1986) Generalised ARCH model (GARCH). ARCH and GARCH models with normal
disturbances cannot capture some important characteristics of the data. The
most interesting features 'not addressed by these Gaussian models are
leptokurtosis and leverage or asymmetric effect (Black 1976). In order to
handle with the former, some authors have proposed various alternative
distributions for the white noise (Kon 1984, Kim and Kon '1994), whereas
others adopt a semiparametric approach and leave it unspecified (Engle and
Gonzalez-Rivera 1991, Linton 1994). In order to handle with asymmetries,
various generalisations of GARCH models have been proposed (see Hentschel

1995 and references therein); most of these models are nested on the General



Family of GARCH Models proposed by Hentschel (1995), what makes it possible

to test all other models using standard testing techniques.

In recent years, some other alternative approaches to model conditionally
heteroskedastic time series have appeared. One of the most fruitful ones is
the stochastic volatility (SV) model, first proposed by Taylor (1986), which
introduces a stochastic term in ht, which is no longer the conditional
variance. Another interesting model is the Poisson Jump Diffusion (PJD)
model, which introduces a stochastic term in €, in order to capture
additional extraneous shocks (see, for example, Kim and Kon 1994). Both the
SV and PJD models are discrete time approximations of continuous time models
used in financial literature. Finally, we have also considered in this paper
a purely nonparametric method, which is based on the fact that in most
models ht is a conditional expectation (see, for example, Pagan and Uliah
1988); -thanks to it, it is easy to propose estimates of this quantity which

do not require any functional specification.

The remainder of the paper is structured as follows: in Section 2 we
describe the data set we analyse; in Section 3 we analyse the dynamic
structure in mean of our series; in Section 4 we first introduce and
estimate the conditional heteroskedasticity models ARCH, GARCH, the general
family GARCH(1,1); then we describe and estimate several alternative models
for conditional heteroskedasticity; in Section S5 we present the resuits of a
standard efficiency which examines the "in-sample” predictive power of all

models. Finally, Section 6 concludes.

2. DESCRIPTION OF DATA.

The IBEX-35 is a stock-exchange index that includes the shares having more
liquidity in Madrid Stock Market. Since November 1991, this is one of the
official indexes in Madrid Stock Market, though it has been computed since
the beginning of 1987. The IBEX-35 was constructed with the aim of getting a
difficult-to-manipulate stock-market indicator which was computed in a

continuous way.

Our data set consists of the IBEX-35 daily closing prices from January
1987 to June 1995. Prior to our formal analysis, we took logarithmic
differences of the daily closing price series, and then multiplied it by
100. That is, our daily index return is computed as Rt = 100 x Ln(St/St_l),

where S" is the closing price at day t.

Before analysing the dynamic structure of our series, we first analyse
whether there exists any "day of the week" effect in the series‘. Recent
empirical studies (Pefia 1995) show that before Computer Assisted Trading
System (CATS) was introduced at Madrid Exchange Market (December, 1989) the
“day of the week" effect was not negligible. Specifically the "dummy"
variable corresponding to Monday is significant, showing the presence of
"weekend effect”. Nevertheless, after CATS implantation this effect
vanished. In order to test the veracity of this hypothesis, we have divided

our sample into two periods:



Period I: January 1987/December 1989 (734 observations).

Period 2: April 1990/June 1995 (1311 observations).

In each period, we estimated by OLS regression models with Rt as
dependent variable and five "dummy" variables, one for each day of the week,
as independent variables (days after holidays were recorded as Mondays). The

results of these OLS regressions were:

Period I: R= .388 D - .085D_- .161 D_- .049 D _+ .015D_, R’=0.022
t 1t 2t 3t 4t St
(3.45) (-.84) (-1.60) (-.54) (.18)

i : = - - - + _2:
Period 2: Rt .088 Dn 072 DZt .068 Dst' .099 DM. .102 DS'.' R™=0.022

(-1.08) (1.00) (-1.07) (1.33) (1.63)

(heteroskedasticity-consistent t-statistics are shown into brackets). These
results confirm the evidence shown in Pefia (1995): during the period
1990-1995 there is no "day of the week" effect but this is not the case for
the period 1987-1989. For this reason, we have decided ito consider for the

remainder of the article only Period 2.

3. MODELLING DYNAMIC STRUCTURE IN MEAN.

First of all we must analyse whether the IBEX-35 return series presents some
kind of mean dependence. Several different autoregressive moving-average
(ARMA) models have been adjusted to our 1311 observations. We estimated all
models by maximum likelihood (ML) assuming a normal distribution for the
disturbances {these estimations were carried out using TSP). In order to
compare all estimated models, we report the Schwarz Information Criterion
(SIC), defined as SIC = ln(LML) - [q x In(T)]/2, where LML stands for the
likelihood function of the model evaluated in the ML estimator and g is the
number of parameters in the model. According to this criterion, the model
with highest SIC is the preferred one; observe that the second term in SIC
is a penalty for models with a high number of parameters (q). Table 1

presents SIC values for each estimated ARMA model.

TABLE 1

COMPARISON OF VARIOUS ARMA(p,q) MODELS

Model} AR(1) AR(2) MA(1) MA(2) ARMA(1,1)

SiCc | -198.52 | -202.08 | -198.66 | -202.12 -202.07

These models do not Include a constant term.

We do not report results for models estimated with constant term because,
in all cases, the constant term was not significantly different from O

(«=0.05). In models MA(2) and ARMA(1,1) some parameter was not statistically



significant («=0.05). In all models the Ljung-Box statistic for residuals
with 20 lags was close to 19, with p-value well above 0.05. However, as
expected, there is evidence of autocorrelation in squared residuals.
According to. these results we decided to choose the AR(1) model, for which

the parameter estimate is 0.103 with a t-ratio of 3.762.

In the remainder of the work we use the residuals of these estimations,
hereafter denoted as €. We have split this series into two periods: from
April 1990 to August 1994 ("in-sample" period: 1103 observations) and. from
September - 1994 to June 1995 ("out-of-sample" period: 208 observations).
Finally, the first 6 observations from the "in-sample" period are only used
as initial values in the various estimation processes. Thus, the series e,
which we consider in the remainder of the paper consists of 1097

observations of the residuals of an AR(1) model.

4. MODELLING DYNAMIC STRUCTURE IN VARIANCE.

Our main  interest is to examine the performance of alternative models for
conditionally  heteroskedastic time series wusing the observations £,
described in previous section. All models we will use here consist of two
equations: one of them specifies a decomposition for the observations £, and
the other one is the volatility equation. In Table 2 we summarize these
equations for the models we use in this paper. For a detailed description of

these models see, for example, Hamilton (1994) or references cited below.

TABLE 2

MODELS FOR CONDITIONALLY HETEROSKEDASTIC TIME SERIES

Model Equation for € Volatility Egquation
_ 12 . - q 2 P
GARCH(p,q) € = ht n, M i.i.d. h=w+ ZJ:laJCt-j+z\:IBiht-i

— 2 -_—
E[nl]—O, E["z]'z

. L2 L _ As2 M
Family-G(1,1) e = ht n.om ii.d. g(ht,A) =0t aGht_lf(nt_l) +
Eln J=0, E[nf]=1 B gh Ak f(n)=[n-bl-c(n-b);
As2 .
g(hA) = { (h 1/i)/x if A=0
lnth ™) if A=0
w2 - B .
SV(D) e = ht no M, ii.d. ln(hl)—w+Bln(hl_l)+t/)t, ""t ind. n
B 2, . - 2,_ 2
E[nt]—O. E[T)t] 1 k’lt iid., E['/!t] 0, E[lﬂt] O-l/’




\ . 2
Poisson-JD € =hl/2n +X , n i.i.d. =+ Qg + Bh
tor ot t t-1

N
Tt 2
Xt—):1=1yu’ Yu N(“v’vv)

Y ind. Y if t#s or i#j
ti s)

N;Poisson(k), Nt i.i.d,

, 2 L _
Non-Parametric € = ht n,n, i.i.d. hz Var(cxllt_l)

Eln 1=0,E(n)=1 I, = information set at t-1

4.1. Generalised autoregressive conditional heteroskedasticity (GARCH).

Models of generalised autoregressive .conditional heteroskedasticity (GARCH)
specify present conditional variances as a function of past conditional
variances and past squared observations. They were first proposed by
Bollerslev (1986), who generalised the simpler autoregressive ‘conditional
heteroskedasticity (ARCH) models previously formulated by Engle (1982}
Certain restrictions on parameters are necessary in order to ensure
positiveness and stationarity of conditional variance (see, i.e., Nelson and
Cao 1992). In recent years these models have been extensively used and must

be considered in the first place as a benchmark.

Estimation of GARCH models can be easily carried out by constrained
maximum likelihood (ML) assuming a specific distribution for n, The

log-likelihood function to be maximized in a GARCH model is
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Ln[L(cl, s ET)] = (I/Z)Zulln(ht) - Zml"[f(‘i/hz ), (1)

where f is the density function of LR The starting values of the
conditional variance sequence ho, vy h_(p_” have been considered as
parameters. First we estimated different GARCH specifications assuming
normality of n, and imposing non-negativity restrictions on all parameters
in the conditional variance equation. The estimation process was carried out
using the CML subroutine of GAUSS . In order to compare the goodness-of-fit

of these estimations we used the Schwarz Information Criterion (SIC), whose

values are reported in Table 3.

TABLE 3

COMPARISON OF VARIOUS GARCH(p,q) MODELS

Model{ARCH( 1) |ARCH(Z2){ARCH(3)|ARCH(4);ARCH(5) |ARCH(6)

SIC |-1717.1|~-1707.6|-1701.1{-1704.6{-1693.2|-1696.7

Model| G(1,1)] G(1,2)] G(1,3)]| G(2,1)] G(3,1)

SIC |-1691.0(-1694.5|-1697.9|-1693.1{-1700.1

According to SIC, the GARCH(1,1) model is the preferred one. It is also
worth noting that in all models where ¢>3 the constrained likelihood

function is maximized when some of the parameters are exactly equal to O.

As non-normality is known to be a typical feature of financial time

series, we have also estimated the GARCH(1,1) model considering two other

distributions: a t distribution with v degrees of freedom and the
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Generalised Error Distribution (GED) with parameter v, Both have been
normalized to have zero mean and unit variance. Their corresponding density
functions can be seen, for example, in Hamilton (1994), p. 662 and p. 668,
respectively. The t distribution has thicker tails than the normal one and
is, thus, more appropriate when modelling financial time series. The GED
distribution is used because its density function is flexible enough to
capture important discrepancies with respect to normality, but nests the
normal distribution as a special case when v=2; in this distribution v is a
positive parameter governing the thickness of the tails. In Table 4 we
report the estimates we obtained with their standard errors into brackets

(computed using the Berndt et al. (1974) (BHHH) procedure), and SIC.

TABLE 4

ESTIMATION OF GARCH(!,1) MODELS

kurtosis (EK) statistics of ;)t with their asymptotic standard errors into
brackets, Bera-Jarque normality test-statistic (BJ) with  its asymptotic
p-value in square brackets and Box-Ljung statistics with 20 lags for TA)t and

ﬁf (Q(20) . and Q(ZO)*, respectively) with their asymptotic p-values in square

brackets.
TABLE 5
DIAGNOSIS OF GARCH(l,1) MODELS
T - *
Distrib. SK EK BJ Q(20) Q(20)
-0.83211(10.,2427| 4904.1| 13.83 2.35
Normal
(.0740) [ (.1479)][.0000]|[.7398]|[1.000]
t -1.149818.3263 - 13.56 2.08
(.0739)((.1768) [.7570])[1.000]
GED -1.0042|15.8781 - 13.65 2.10
(.0739)|(.1824) [.7518]|[1.000]
Standard Errors Into brackets; p-values 1into square brackets.

Results on Tables 4 and 5 show that the normal distribution is by no means

appropriate:

the BJ test based on skewness and excess kurtosis statistics

Distrib. w oLl ﬁl h0 v SIC
Normal . 139 . 118 .783 1,605 - -1691.0
(.0302)](.0206)|(.0387)|(2.560)
¢ .082 . 161 .785 | 2.596 6.760 [-1631.4
(.0275)1(.0351)|(.0415)|(3.964){(.8156)
GED .108 . 146 779 | 2.546 1.320 |-1649.8
(.0366)](.0368){(.0514)1(5.043)|(.0460)

Standard errors Into brackets .

In order to compare these models, it is also convenient to compute

several diagnostics measures based on standardized residuals, constructed as

~

r1/2 . .
nt = Ct/ht . Specifically, in Table 5 we report skewness (SK) and excess

clearly rejects the null hypothesis of normality; and if we test Ho: v=2 vs
Hl: v#2 when the GED is used, the asymptotic p-value we obtain is also
virtually 0. Between the other two specifications, the t distribution is the

preferred one according to SIC.

Some authors have suggested that the problem of non-normality in n, may

be handled leaving that distribution wunspecified and using nonparametric



methods to estimate it. Engle and Gonzalez-Rivera (1991) suggested this FIGURE‘I

procedure and Linton (1994) studied it in detail proving that it is possible

to obtain an asymptotically efficient estimate of a reparameterized ARCH{(q)

model and his estimate may be also used in a reparameterized GARCH(p,q) 2.6
model. Specifically, the semiparametric estimate applies to a GARCH(p,q) in

which the equations for £, and volatility are, respectively: - :

— HISTOGRAM

r - 1! b=0.15

= ()", 0" Lid, Eln) =0
e, = (h) m, m iid Eln J=0, (2)

2! b=06.35

* _ q 2 P d -
ht =i ZJ=17J£t~j+Zl=161ht-i' (3) i
~-- 3t b=0.BB

*
Observe that if we denote 0'727 = E[nt] and rewrite (2) and (3) with nt = o‘nnt, L
h* = h /0‘2, ol = w, ¥y = w /ol (I=j=q) and & = B/cr2 (I=i=p) then we obtain
t t n J i m i im

a GARCH(p,q) model. This reparameterization is necessary because the 8.3 -

restriction E[nf] = 1 in the standard GARCH(p,q) model is not appropriate -

for semiparametric estimates. Following Linton (1994) we have estimated an
ARCH(3) and a GARCH(1,1) model using FORTRAN {Linton only describes the 6.2

semiparametric ARCH model, but the generalisation to GARCH models is r /i

straightforward). In order to estimate semiparametrically these models,

c s . ~ % ~2 . . .
initial estimates (7,6,an), a smoothing value b and three trimming values

c,d,e must be selected. The initial estimate was obtained by ML estimation

assuming a normal distribution for n, (this estimator is root-n-consistent -

even though n, does not follow a normal distribution). We have selected the |

smoothing value by previous inspection of various nonparametric estimates of -3 -2 -1 o 1 2 3

the density of nt, which were obtained using as data the standardized

h i i i i i i dardised Residual (ARCH(3))
observations €,/h,. These estimates are depicted in Figures | and 2. Nonparametric Density Estimate of Standardised Residual (




These figures suggest that b=0.15 may be an appropriate smoothing value.

FIGURE 2
Anyway; we also report all results for b=0.35 and b=0.55. As trimming values
we selected c¢=e=1000, d=0.0001; we also computed estimates with other
I LIRSRLIRI LI LA l TTTT T T 1T TI TTTT llfT] TT 171 I'TTT i 1T I[
- _ logical values of ¢, d and e but results were entirely similar. Finally,
r 2 following Linton’s (1994) advice, we did not use sample splitting or
i 1 7 discretization. The estimates we obtained are reported in Table 6.
L — HISTOGRAM { \ e
- -- 1! b=0.18 | : -
\ TABLE 6
i w21 b=8,38 \ 7
I / 2\ | SEMIPARAMETRIC ESTIMATION OF ARCH AND GARCH MODELS
©- 31 b=8.55 i/ “\'\
L i 4 T T T
,’ ".}\ Model [ARC(3)|ARC(3) |ARC(3})|ARC(3)iG(1,1){G(1,1)|G(1,1){G(1,1)
\
B /:] y 7 Init. {b=.15 |b=.35 |b=.55 Init. b=.15 b=.35 b=.55
i i ’ v, | 184 . 181 .206 .250 .847 .849 .662 .941
i ,‘ ‘ 7 (.100)](.022)1(.050)|(.064)}(.562)(.064)|(.073)]|(.087)
- / \ . v, | -142 | .168 | .187 | .199 - - - -
B ’[f' W\ | , (.081)(.021)|(.047)|(.061)
\
i ,'/ i i v, | -188 | 179 | .213 | .179 - - - -
R
I //g; L\ (.132)(.023)|(.050){(.065)
I —\—]\ s | - - - - 783 | .690 | .729 | .667
i ' Y | (.042)1(.073)[(.052)|(.062)
\}‘ : Standard errors into brackets.
\ ;
L Lo 4
1\ AY
L !"\ . A
s L 1 We observe that semiparametric estimates do not differ from parametric
ez Sl T ones, though standard errors decrease dramatically in most cases. In Section
! 111 l Lt | ) I | ! 1Ll L ! VI I | [ [t 3§ [ H | i ! 5 ' L4 1t 1 L1 ll
5 we compare these estimates using a standard regression efficiency test.
-2.8 -2 ~1,8 -1 -8.8 @ 8.8 1 1.8 2 2.8

Nonparametric Density Estimate of Standardised Residuals (GARCH(l.1))

18 19



4.2. General Family of GARCH(I,1) models.

In recent years, there have been numerous refinements of GARCH models. These
new models have been formulated trying to explain different empirical
regularities of data which GARCH models fail to capture, chiefly:

1) -Asymmetric behaviour of responses, also known as "leverage effect":
negative surprises seem to increase volatility more than positive surprises;

2) -Leptokurtosis: fatter tails than those allowed by GARCH models,
specially when estimated with normal disturbances;

3) -Nonlinearities: the assumption of linear dependence between ht and
ht_J, cf_l (i>0,j>0) seems too restrictive in many situations.

Though most of these generalisations of GARCH models do not display
obvious links to one another they all can be embedded in the family of GARCH
models proposed by Hentschel (1995). In Table 2 we specify the two equations
which describe the family of GARCH(1,1) models (hereafter referred to as
Family-G(1,1})). This model contains seven parameters (wc,aG,BG,A,p,c,b) in
the variance equation. If we impose restrictions on parameters and
reparameterize the model, it is possible to obtain the following models:
GARCH(1,1) (if A=p=2, b=c=0 and we rewrite the variance equation of the
Family-G(1,1) with wG=(w+B—1)/2, aG=tx/2, BG=B then we obtain the variance
equation of the GARCH(L1) model); Exponential GARCH (EGARCH) model of
Nelson (1991) (restrictions A=b=0, u=1 on Family-G{1,1)); Threshold GARCH
(TGARCH) model of Zakoian (1994) (A=u=1, b=0, |c|=1); Absolute value GARCH

(AGARCH) model of Taylor (1986) and Schwert (1989) (A=p=1, |c|=1); Nonlinear

20

asymmetric GARCH (NAGARCH) model of Engle and Ng (1993) (A=u=2, ¢=0); GARCH
model of Glosten et al. (1993) (GJR-GARCH) (A=u=2, b=0); Nonlinear GARCH
{NGARCH) model, natural extension of the Nonlinear ARCH mode! of Higgins and
Bera (1992) (A=u, b=c=0); and Asymmetric power ARCH (APARCH) model of Ding
et al (1993) (A=p, b=0, |ci=1). To sum‘up, eight well-known generalisations
of ARCH models are nested in the Family-G(1,1). The Quadratic GARCH
(Q-GARCH) model of Sentana (1995) is the only popular model which is not

nested in the Family-G(1,1).

The main advantage of the Family-G(1,1) is that it is easy to check thé
validity of most generalisations of GARCH models by simply performing
standard likelihood-ratio, Wald or LM tests. As before, we have estimated
all models using two different distributions for . t and GED. In Tables 7
and 8 we report the estimates and the BHHH covariance matrix of estimates.
In the optimization process the value ho was considered as a parameter. With
the estimates contained in these tables it is straightforward to carry out
Wald tests to analyse the validity of all restricted models. Instead, in
Table 9 we prefer to report the results for likelihood ratio tests, with the

corresponding asymptotic p-values in square brackets.
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ESTIMATION OF

TABLE 7

FAMILY-G(1,1)

-t Distribution

W a. {30 A M b c v

-.1088| .1751| .8278{1.0362) .7367{-.2963{ .5504|7.0119 i
.0024|-.0031|-.0030| .0496} .0142| .0010{-.0015] .0052 :
.0045| ,0029-.0573|-.0188]|-.0028| .0038|-.0068 P‘

.0280(-.26551-.0402{-.0031| .0084| .0092

2.7668| .4857| .0375|-.0972(-.0457

.1215| .0148|-.0289| .0012

.0159|-.0137|-.0122

.0261|~-.0235

.7508

Estimates (flrst row) and BHHH covarlance matrix.

ESTIMATION OF

TABLE 8

FAMILY-G(1,1)

- GED Distribution

wG ao BG A i b c v
-.0640| .0918| .81781.66371.2544| .0124| .3584|1.3433
.0006|-.0009|-.0003| .0196| .0082| .0006|-.0005| .0006
.0020| .0011{-.0042{-.0199|-.00701 .0062|-.0011
. 0190(-.2459({-.0537|-.0120: .0168|~-.0003 ff
3.7643| .9244| .1843|-.2452| .0156 !
.3316| ,1019(-.1183| .0082 H
.0926-.0814| .0036
.0948|-.0008
.0026
Estimates (first row) and BHHH covariance matrix.

22

TABLE 9

Likelihodd Ratio Test and SIC for Models nested on Family-G(1,1)

H t Distribution GED Distribution

0
Model

LR Statistic SIC LR Statistic SIC

GARCH 16.778 [.002] |-1631.4114.214 [.007] |-1649.8

EGARCH 4.808 [.186] |-1628.9| 2.128 [.546] |-1647.3

TGARCH 1.886 [.596] {-1627.5 .384 [.944] |-1646.4

AGARCH 1.136 [.567] |-1630.6 .367 [.832] |-1649.9

NAGARCH | 8.278 [.041] [-1630.7| 4.062 [.255] |-1648.3

GJR 9.740 [.021] |-1631.4] 5.506 [(.138] |-1649.0
NGARCH [10.366 [.016] |-1635.2|10.901 [.012] |-1655.2
APARCH 1.834 [.400] |-1634.5 .118 [.943] |-1653.3

Asymptotic p-values In square brackets,.

From Tables 7, 8 and 9 we can draw various interesting conclusions. First of
all, the t distribution produces better fits than the GED distribution
(observe the values of SIC). Moreover, those models with hi/z in volatility
equation (namely TGARCH, AGARCH) perform better than those with hz (namely
GARCH, NAGARCH, GJR); and TGARCH also performs better than EGARCH. In fact,
when the t distribution is wused, all models which model variance are
rejected («=0.05). The reason why this happens is because the estimate of A
is far from 2 (see Table 7). The NGARCH mode! is also rejected because the
hypothesis ¢=0 is not plausible. Among the other three models, the TGARCH
model is preferable to the APARCH model because restriction A=u=1 can be

accepted in both cases. It is more difficult to discriminate between TGARCH

23



and AGARCH when the t distribution is assumed. The former is nested on the
latter with b=0; but if we test this individual restriction .using the
general model, the asymptotic p-value we obtain is only slightly greater
than 0.01. However, if we examine the values of SIC we observe that the gain
of the the additional parameter in the AGARCH model is not sufficient, in
terms of likelihood, to justify its presence. When the GED distributioh is
used, most conclusions continue to hold, though in this case the models
which use variance are not rejected and we can accept that parameter b is 0
(usual significance levels) -thus, the TGARCH model results clearly

preferable to AGARCH model.

4.3. Stochastic Volatility Models.

In all preceding models, ht was known, except for parameters, at time t-1.
In a stochastic volatility (SV) model, ht is modelled using an unobserved
variable. In this paper we estimate the SV(I) model described in Table 2
(see Ruiz 1994 for more details). Before estimating the model, following

Ruiz (1994), we make a reparameterization in order to use the Kalman filter

estimation techniques. If we denote €t = ln(nf) - E[ln(nf)], et In(e?) -
t
¥#
E[ln(nf)] - E[ln(ht)] and hl = ln(ht) - E[Ln(ht)], then we can rewrite the

SV(1) equations as:

* _ * . _ 2,
e =h +§&, €& iid, EI§]J=0, Elg J=n/e, (4)
* * . _ 2,_2
ht = Bht—l + l/Jt, wt i.i.d., E[wt]-O, E[wt]-GW' (5)
24

Using the fact that E[ln(‘nf)] + E[ln(hl)} = E[ln(cf)], it is possible to
obtain an estimate ﬁ* of this quantity and construct approximate
observations for ct S ln(cf) - ﬁx. And using these observations we can
obtain B and G‘Z estimating by quasi maximum likelihood 8 and a‘lz (for this
estimation we use the Kalman filter error/prediction decomposition; see

Hamilton 1994, pp. 372-389), Assuming that ln(ht) is stationary it is also

possible to obtain a consistent estimate of w taking into account that then
Eltn(eD)] = Elin(n?)] + E(in(h )] = E(In(m’)] + w/(1-B) (6)

In this model B, }1* are consistent estimates of B, E[ln(cf)], respectively
and E[ln(nf)] = o(1/2)-In(172) = -127 (see, for example, Abramovitz and
Stegun 1970; ¢ is the digamma functién). Therefore (6) allows us to obtain a
consistent estimate of w. The estimation results are (standard errors are

shown into brackets):

& = 0.005; B = 0.972; &; = 0.023.
(0.012) (0.013)

4.4, Poisson Jump Diffusion Model.

In the Poisson Jump Diffusion (PJD) process, a new random variable Xt is
introduced in the equation for €, (see Table 2). With the construction
described in Table 2, (Xt} proves to be a sequence of i.i.d. random
variables having mean Auy and variance A(cri-uj), see Parzen (1972). This

variable is introduced in order to capture extraneous shocks which affect
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the mean of the observed series. Parameter A controls how frequent these

shocks are. (See, for instance, Kim and Kon 1994 for more details).

In this model, n‘ follows a N(0,1)  distribution; hence, the

log-likelihood function can be written as:

Inlfe |1,_)1 = T PriN=j) x fle |1, N =) : (7

All terms in (7) can be easily obtained because € conditional to It-l and
Nt=j follows a normal distribution with mean juy and variance h" + _jo*\z(. In
practice, the sum in (7) must be truncated in the estimation process.
Following Ball and Torous (1985) criterion, we have only considered the
first 11 terms in the summation. The estimation results are (standard errors
are shown into brackets):

~

O = .062; B = .789; o = .147; A = .010; QY = -.477; &3 = 17.899; Bo = 1.817.
(.024)  (.036)  (.036)  (.005) (.787) (7.605) (1.167)

The value of SIC for this model is -1631.1143. If we compare this value
with those in Table 9, we observe that some generalised GARCH models
(specifically, TGARCH, EGARCH, AGARCH and AGARCH with t distribution for ‘nt)
seem preferable to this PJD model.

4.5. Nonparametric Estimation of Conditional Variance.

An alternative approach to model conditional variance consists of simply not

specifying any functional form for it and use nonparametric estimates of it.
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This approach may be specially useful if the researcher is not interested in
parameters relating present conditional variances to past ones, but in

analysing the series € with predictive purposes or the like.

The nonparametric estimate of ht is based on the fact that if

E[et|It l]=0, then the conditional variance s simply a conditional

expectation: h = = Var(ct|It_l) = E[€f|IH]. This conditional expectation

can be estimated using any standard nonparametric regression estimator. The

researcher must only decide what variables should be included in Il_l and

the type of nonparametric regression estimator. As the convergence rate of
nonparametric estimates decreases as the number of regressors increases, it

is convenient not to include too many variables in I . As our study is

purely univariate, we have decided to consider Itl = {et LR 2} and use

= ZT w cz., with Kkerne! Nadaraya-Watson

as nonparametric estimate m .
2t J=LEL ]

weights, that is, for Jj#t:

kli(e -¢_ )/bl x kl(e _-e_ _)/b]
t-1 j-1 -2 j-2

T
s=1,s#t

) k[(s‘_l—cs_l)/b] % k[(st-z—CS-z)/b]

if the denominator is not 0, or O otherwise. Observe that this is a
"leave~one-out" estimate because € is not used to estimate E[cf“H], We
have used the Epanechnikov kernel k{(u) = 0.75(1-u”) for |ulsl or O
otherwise. We have not tried to obtain an optimal smoothing value or

"bandwidth" b; instead we have previously depicted the estimates we obtained

for various bandwidths and finally present here the results for three

27



different smoothing values b which cover all possible cases. In Figures 3, 4
and 5 we show the nonparametric estimates of conditional variance we
obtained with b=0.4, b=0.8 and b=12, respectively. The performance of these

different estimates will be compared in Section 5.

FIGURE 3

Nonparametric Estimate of Conditional Variance, b=0.4
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FIGURE 4
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Nonparametric Estimate of Conditional Variance, b=0.8
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FIGURE 5

III[T[I[Illlll"]ll'l"ll lllllllll IIIT'ITYTIIVTT"!III

lll!llllll]llI|IllIll!(lllllll]l(lllkllll"lliIlll‘lll!]

e

100 280 3090 400 566 660 700 B899 Se60 1090 110

Nonparametric Estimate of Conditional Variance, b=1.2
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5. COMPARISON OF "IN-SAMPLE" PREDICTIVE POWER.

We will compare the goodness of fit of the different models carrying out a
standard regression efficiency test {(see e.g., Pagan and Schwert 1990). The
idea behind the regression which is used in this test is the following: if
ht=E[Cf|It—1]' then cf = a + [3hl t U, with «=0, B=! and v, is a white
noise. As h‘ is unknown, we replace hz by 5{ and estimate by OLS the
equation cf = a + bfzt + Error; if )A'al is indeed a good approximation of h'.’
then & and b in this regression should be close to 0 and 1, respectively.
Moreover, ht=E[cf|IH] also implies that the coefficient of determination
R in the regression model ef = a + [3ht + U is higher than the R? which
would be obtained in any regression model with independent variables within
Iz—l' Therefore, it is also logical to expect that if le is a good estimate

of ht then this property of maximum R® continues to hold.

We have estimated by OLS the regression equation ef = a + bﬁt + Error

. . ~ 1097 . - .
using as observations of (h'.)t_l the estimates of conditional variance
obtained with each one of the models described in previous section. In Table
10 we analyse those models which do not allow for asymmetric behaviour of
responses and in Table Il we analyse those models which do allow for
asymmetries. We report the estimates of a and b with its standard errors,

the coefficient of determination R™ and the Ljung-Box statistic of residuals

computed with 20 lags (Q(20)).

A number of interesting conclusions is derived from Tables 10 and Il.
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a) The semiparametric estimates of GARCH models perform better than the
parametric estimates, though differences are not high. And this happens even
though the assumed distribution for n, is not normal (observe that the
semiparametric GARCH(1,1) models produce higher coefficients of
determination than the parametric ones).

b) All generalisations of GARCH models which we have considered in this
table perform similarly and they all outperform the traditional GARCH(1,1)
model. Surprisingly, the only general model estimated with GED distribution
produces a better fit than all models estimated with t distribution. Among
these, the AGARCH model performs better, but differences are not remarkable.

TABLE 10

"IN-SAMPLE" PREDICTIVE POWER, Symmetric Models

Model Distr. a b R? 0(20)
ARCH(3) Normal| .398  .709  .0434  54.12
(.185) (.318)
ARCH(3) Semip.| .409  .693  .0439  54.33
b=0.15| (.183) (.098)
ARCH(3) Semip.| .492  .599 0430  55.20
b=0.35| (.175) (.085)
GARCH(1,1) |Normal| .116  .919  .0537  44.15
(.200) (.117)
GARCHI(1,1) |Semip. 240 1.188 0591 36.81
b=0.15| (.182) (.143) _
GARCH(1,1) |Semip.| .038 1.384 0570  39.78
b=0.35| (.204) (.170)
GARCH(1,1) t 447 669  .0536  44.28
(.168) (.085)
GARCH(1,1) | GED 341  .750  .0540  43.83
(.178) (.095)
SV(1) Normal| -.799 1.954  .0679  80.59
(.274) (.220)
PJD Normal| .487  .719  .0533  44.66
(.165) (.091)

Standard error s into brackets,
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c) SV(1) mode! produces better fits than ARCH and GARCH models, but
results obtained with it are not entirely satisfactory because it is not
accepted (usual significance levels) that a=0 or b=l in this regression; PJD
model produces similar results to GARCH(1,1) model.

d) Among the nonparametric estimates, the one with highest smoothing
value is the one which performs better (the results for b=0.4, not included
here, were worse than those obtained for b=0.8 and b=1.20}. Anyhow, all of

them perform worse than parametric and semiparametric models.

TABLE 11

"IN-SAMPLE" PREDICTIVE POWER, Asymmetric Models

Model Distr. a b R® Q(20)

EGARCH(1,1) t .028 1.024 .0700 43.55
(.190) (.113)

TGARCH( 1,1} t .040 1.003 0640 49.26
(.196) (.116)

AGARCH(1,1) t .026 1.014 .0709 47.81
(.190) (.111)

APARCH(1,1) t .044 .999 0655 48.96
(.193) (.114)

Fam.-G(1,1) t 025 1.017 0664 48.36
(.194) (.115)

Fam.-G(1,1)| GED -.084 1.084 0713 48.01
(.199) (.118)

Nonparam. |b=0.80] .831 .457 0217 115.88
(.166) (.093)

Nonparam. |b=1.20} .251 .929 ,0330 94.19
(.223) (.152)

Standard errors Into brackets.
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e) The hypothesis that the error term in cf = a + b;tt + Error is a
white noise process is rejected in all cases. This feature of this
regression test has already been observed by other authors: (see, for
instance, Pagan and Schwert 1990) and is possibly due to the fact that in

our regression we replace the true value hl by an estimate of it.
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6. CONCLUSIONS.

This paper intends to present, in a unified way, most of the models for
conditionally heteroskedastic time series which have appeared in recent
years., We compare their behaviour using the Spanish stock return index

IBEX-35.

ARCH and GARCH models wuse simple equations for conditional
heteroskedasticity. But in fact their simplicity makes them unable to
capture the empirical regularities observed in most financial time series.
Among the various generalisations of GARCH models which have recently
appeared in the literature, those models which use conditional standard
deviation (specifically TGARCH and AGARCH) have performed better than the
rest. Moreover, the leptokurtosis observed in financial time series makes
models with t distribution more appropriate. However, the results obtained
for the semiparametric GARCH models suggest that semiparametric TGARCH or
AGARCH models may outperform parametric TGARCH or GARCH models with ¢t

distribution,

We have also analysed here three models which do not fall into the family
of GARCH models: Stochastic Volatility (SV), Poisson Jump Diffusion (PJD)
and Nonparametric. The former two ones produce worse results than General
GARCH models, but possibly because we have only studied here simple
versions. It is probable that generalisations of these models may result

comparable to the more complicated TGARCH or AGARCH.
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