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RATIONALITY OF BARGAINING SOLUTIONS

M. Carmen Sanchez

ABSTRACT

We analyze the rationality of two person bargaining solutions by
considering conditions which are weaker than those used by Peters and
Wakker (1991) or Bossert (1994). As a particular consequence of their
results, the rationality of the Nash solution is obtained, although they
can not be applied to other well known bargaining solutions. The aim of
this paper is, on the one hand, to prove that a choice function defined on
the usual bargaining domain which satisfies Independence of Irrelevant
Alternatives, Weak Pareto Optimality and Pareto Continuity is also
rationalized by a preorder (reflexive, complete and transitive binary
relation). Moreover, the representability of this relation is analyzed.
These results can be applied, in particular, to the Nash solution and
moreover to the egalitarian (Kalai, 1977), monotone path solutions and
their lexicographic extensions. On the other hand, and by substituting
Pareto Continuity for Monotonicity assumptions, rationality 1is also
analyzed. As a consequence, a result along the same lines as Bossert’s
(1994) is obtained.
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0. INTRODUCTION

A bargaining solution is a special case of choice function which selects a
unique outcome for each choice situation (bargaining problem) and which is
achieved by means of cooperation by the agents involved. One of the
interpretations of bargaining solutions is to consider that the outcomes of
the bargaining problems are given by the recommendations of an “impartial
arbitrator” whose preferences represent, in some sense, the preferences of
the agents as a group. So, the agreement reached in each bargaining
situation may be thought of as the most preferred alternative within the

set of feasible outcomes according to the arbitrator‘s preferences.

Thus, rationality of bargaining solutions can ‘be analyzed by making
use of some results obtained for general rational choice functions. Along
these lines we have to mention the works of Lensberg (1987), Peters and
Wakker (1991) and Bossert (1994) who provide a set of sufficient conditions
in order to ensure the rationality of bargaining solutions by making use of
standard axioms used in cooperative bargaining models (Pareto Optimality,
Independence of lIrrelevant Alternatives and Continuity). In order to do
that, bargaining solutions are considered to be single-valued choice
functions whose domain is given by the family of convex, comprehensive and
compact subsets of IRf and, in this context, rationality by means of a

transitive binary relation is analyzed.



Peters and Wakker (1991) assume that the domain of the choice
function is given by the family of convex and compact subsets of lRi and
prove that a single-valued choice function which satisfies Pareto
Optimality, Pareto Continuity and Independence of Irrelevant Alternatives
is rationalized by means of a transitive binary relation. Recently,
Bossert (1994) has provided an alternative proof to this result by
considering convex, compact and comprehen_sive subsets of [Ri (which is the
usual domain in bargaining theory) and by imposing Continuity instead of
Pareto Continuiry. As a particular consequence of this result, it is
obtained that the Nash solution (1950) is rationalized by a preorder on the

set of alternatives which are chosen in some bargaining problem.

As Bossert (1994) mentions in his work, there are other important
bargaining solutions which are also rational(in the sense of choice
functions) but whose rationality is not obtained by applying that result.
This is the case, for instance, of the egalitarian solution (Kalai, 1977),
monotone path solutions and the lexicographic extensions of these solutions
which satisfy axioms which are different to those used in Peters and
Wakker’s or Bossert’s works (axiomatic characterizations of these solutions

can be found in Thomson, forthcoming).

In this paper it is proved that a single-valued choice function
defined in the usual bargaining domain which satisfies Pareto Continuity,
Weak Pareto Optimality and [ndependence of Irrelevant Alternatives is
rational, generalizing Bossert's result (1994). The existence of a

"numerical representation” of the choice function is also analyzed.

Moreover, it is also proved that, in the same context, a choice function
which satisfies Independence of Irrelevant Alternatives and Strong
Monotonicity is rational on the set of alternatives chosen in some choice
situation. Finally we present a different rationality result by weakening
the monotonicity assumption. In particular it is proved that a choice
function which satisfies Interior‘Monoronicity, Independence of Irrelevant
Alternatives and Pareto Optimality is also rational. As a consequence of
all of these results the rationality of the egalitarian, monotone path

solutions as well as their lexicographic extensions is obtained.

The paper is organized as follows: in Section 1 notation and
assumptions which will be used through the paper are introduced. In
Section 2 rationality results are presented and applied in order to obtain
the rationality and representability of well known bargaining solutions and

finally, in Section 3, rationality results without continuity are obtained.



1. PRELIMINARIES.

A bargaining problem is usually described by a pair (S,d) where S C [Ri is
the family of feasible utility vectors which individuals can afford and
de {Ri represents the disagreement point, that is the vector of utilities
which individuals would obtain if they do not reach an agreement. As is
usual in bargaining theory we assume that d=(0,0) and we restrict our
attention only to subsets of fRi (gains of the agents over the disagreement

point).

Moreover we consider the usual domain in bargaining theory which is

given by

2 . .
D={AC [R+| A is convex, compact, comprehensive

and there exists x € A such that x > 0}

where by x > 0 we mean that xi>0 Vi=1,2. From now on, by x>y we mean

X >y, Vi=1,2 and by x 2 vy, X 2y Vi=1,2.
In order to simplify notation, for every subset A of [Ri we will
denote by <A> the comprehensive and convex hull of A, which is defined in

the usual way, that is

<A>=nNn (B e IRi| A < B, B convex and comprehensive}

Formally a bargaining solution is a function which selects a unique
outcome for each and every subset of outcomes which is considered

(bargaining problem) within the domain D defined above. That is

FD —— [Ri

VSe D FS) € S

We will denote by F(D) the set of alternatives which are chosen in

some bargaining problem by the solution F, that is
F(D) = ( a&’| 3 € D such that F(S) =1a |

Therefore a bargaining solution is a particular case of single-valued
choice function in which the universal set of alternatives is considered to
be Ri and whose domain is the usual one in bargaining theory as
defined previously. From now on, this is the context in which we are going

to work.

The notion of rationality of a (single-valued) choice function states
the existence of some kind of binary relation whose maximization determines
the choice set for each choice situation. Formally, F is rational if there
exists a reflexive, complete and transitive binary relation R such that

VS e D,

(FS)) = { aeS| aR'z VzeS$ )



This notion of rational choice function corresponds to the notion of
regular-rational choice function used by Richter (1971), who proves that
this kind of rationality is equivalent to the transitive one in the

single-valued case.

Next we present the different assumptions (all of them standard ones
in bargaining theory) which will be used to obtain the rationality

results.

(PO). Pareto Optimality:
VSe D, FS) ePOS)=(xeSlyzxy=#x = yes$s)

(WPO). Weak Pareto Optimality:
VS € D, F(S)eWPO(S)=(xeS!y>x=>yES}

(1IA). Independence of Irrelevant Alternatives:

| VSl,S2 €D, S c 82 and F(Sz) € Sl = F(Sl) = F(Sz)

It is important to point out that (IIA) is necessary for the
rationality of a single-valued choice function (Peters and Wakker, 1991),
so any bargaining solution which does not satisfy this assumption can not
be rational in the sense we have just defined above. For instance, this is
the case of the Kalai-Smorodinsky solution (Kalai and Smorodinsky, 1975),
the Equal-Loss solution (Chun, 1988) or the Rational Equal-Loss solution

(Herrero and Marco, 1993).

With respect 1o continuity assumptions, we will make use of Pareto

Continuity (Peters, 1986) which is the condition also used by Peters and
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Wakker (1991) to present their results. This condition is weaker than usual
Continuity (slight changes in the subset of alternatives presented for
choice imply that the solution outcome does not change radically) and it
takes into account not only changes in the set of alternatives presented

for choice but also in its Pareto Optimal boundary.
(CONT). Continuity: If [An} c D, {An] - [A} in the Hausdorff topology;
then [F(An)) — {F(A)).

(PC). Pareto  Continuity: If [An} c D, (An] — (A} and
{PO(An)} — [PO(A)}‘ in the Hausdorff topology, then
(KA)) — [F(A)).

The binary relation which will be used to obtain the rationality of
bargaining solutions is the revealed preference relation which is formally
defined as follows,

Vxye®, x#y xPy & 3AeDl xyeA and F(A)=x
So this is an irreflexive binary relation although it is not generally
complete. From this we define the transitive closure of the revealed
preference (P*) as follows,

* —_ —_
xP¥*y & Elxl,>(2,...,xn € X such that x = X, P X, P..P X =y

The non-existence of cycles of length 2 for the revealed preference

is known as the Weak Axiom of the Revealed Preference (WARP), which is

11



equivalent in our context (domain closed under intersection) to (IIA)
(Hansson, 1968). Moreover whenever (IIA) is imposed we can use the

following equivalent formulation of the revealed preference relation which

will be used in the proofs:
Vx,y € !Ri, X#Yy xPy & Fkxy>) =x

In order to obtain rationality results for bargaining solutions we
will make use of the well-known Strong Axiom of Revealed Preference (SARP)

(acyclicity of the revealed preference). Formally,

(SARP). Strong Axiom of Revealed Preference: The revealed preference

relation does not have cycles, that is
impli no[x P x
X, P X, P..P X implies [xn l]

Ville (1946), and independently Houthakker (1950), proved that, in
general, this axiom is equivalent to rationality by means of a transitive
binary relation., However, in the particular case of considering
single-valued choice functions, the Strong Axioﬁ of Revealed Preference
also characterizes the rationality by means of a reﬂexiveb, transitive and
complete binary relation [see Richter (1971); Corollary 1, Chapter 2].
Therefore, in order to obtain some of the rationality results, it will in

fact be proved that the Strong Axiom of Revealed Preference is satisfied.
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2, RATIONALITY RESULTS,

Peters and Wakker’s (1991) or Bossert’s (1994) results can be applied in
order to obtain (in different contexts) that the Nash solution is rational.
If 'we wish to analyze the rationality of other well-known solutions, then
either Pareto Optimality or Continuity conditions must be removed., The
first result of the paper makes use of Weak Pareto Optimality instead of
Pareto Optimality and proves that this assumption together with
Independence of Irrelevant Alternatives and Pareto Continuity also implies
rationality. In particular this result generalizes the one obtained by
Bossert (1994) and allows us to prove the rationality of any monotone path

solutions as well as of their lexicographic extensions.

THEOREM 1. If F:D —— [Ri is a choice function which satisfies (I1A),
(WPO)} and (PC), then it satisfies (SARP).

Proof. (See Appendix A).

Remark 1: It is important to note that, although the usual bargaining
solutions satisfy at least Weak Pareto Optimality, the previous result can
also be proved by dropping this condition and by imposing only Independence
of Irrelevant Alternatives and Pareto Continuity. Of course, some of the
arguments used in the way of reasoning should change. So, although (IIA) is
not enough to ensure the rationality of bargaining solutions (see Peters

and Wakker, 1991), if we add (PC), this rationality can be obtained,

13



As we mentioned above and as a consequence of this result, not only
the Nash solution but any bargaining solution satisfying (PC), (WPO) and

(ITA) are rational, which we formulate as a corollary.

COROLLARY 1. Nash, Egalitarian, monotonce path solutions and their

lexicographic extensions are rational.

Now we want to know some properties of the relation which
rationalizes these bargaining solutions. Along these lines, Peters and
Wakker analyze the "representability" of the binary relation: a function
f:IRi-—)lR represents a binary relation P, if Vx,y e lRi x Py implies
f(x) > f(y). In particular they prove the existence of a . function which
represents the transitive closure of the revealed preference associated to
a choice function F (which satisfies (CONT), (PO) and (IIA)) and which is
maximized by F, that is f(F(A)) > f(x) VAeD, x€ A, x # F(A).

The following result shows that this representability result can be
also obtained in the context we have considered if Pareto Optimality
conditions are removed. Therefore, not only the Nash solution works as. if
max';mizing a group utility function, but also the egalitarian and monotone

path solutions.

THEOREM 2. [ F is a choice function which satisfies (CONT) and (IlA), then

. . 2 -
there exists a real function f:lR+ —R such that F maximizes [ over D.

14

Proof. Consider the following subset,
A=lac 1Ri| a = F(<z>) for some z € (Di }
Since it is a countable set, we rename its elements as follows,
A=(ali)iEI 120, IcN

Now by considering the transitive closure of the revealed preference
(which is asymmetric by applying Remark 1) we define, for each alternative
X in rRZ, the set 1 = {i e Il x p* ai) and the following function:

+ b3

s L rz0
€1l 2 *
f(x) ={ " x
0 ifl1 =0

First we are going to prove that x Py implies f(x) > f(y). Consider
XYy € IRi such that x P y. By (IIA) we know that F(<x,y>) = x and
F(<x>) = x. Moreover it is clear that if x P* y then Iy cl and therefore

f(x) 2 f(y). We analyze two different cases.

Case 1. y ¢ F(D).
In this case and by definition of P, we know that there does mot exist

z € R’ such that y P z. In particular, there does not exist z € A such that
+

y P* z, therefore Iv = @ and f(y) = 0.

15



With respect to alternative x, since F(<x>) = x, we know that x Pa
Va € <x>. So if we consider b € <x> N oi and we denote F(<b>) = w,

then we obtain that w € A and x P w, so we can ensure that f(x) > 0.

Case 2. y € F(D).
From (IIA) this implies that F(<y>) = y. We are going to analyze the
different configurations of alternatives {x,y}.

If x<y, then x € <y> and we obtain y P x, contradicting the

asymmetry of P.

If y<x and y € int(<x>), then it is enough to consider an
alternative z € int(<x>) N @i such that y € int(<z>). Since F(<z>) € A, we
denote F(<z>) = 2 thus we obtain that j € L due to a € <z> C <x>, but
j & Iy since y € <z> therefore if 2 # y it implies that a Py and if not

(aj = y) then no(y P aj) from the definition of P. So we can conclude that

f(x) > f(y).
In other cases, that is if (y £ x with y € <x>-int(<x>)} or

{no[x < and no[y < x]}, we can consider a sequence of alternatives as
Y y €q

follows,
(z) € @ A linxy>)<y>] | lz) — x
By applying the continuity of F we can ensure on the one hand that
F(<y,zj>) — F(<x,y>) = x
and, on the other hand, that there exists k € N such that

F(<y,zk>) ¢ [(x,y}

16

since X & <y,zj> Vj € N and if F(<yzzj>) =y Vj we obtain a contradiction
with the continuity of F. Therefore if we denote bk = F(<y,zk>) we have
that bk P y. If we now consider an alternative s € @i M <x> such that
s> bk and denote F(<s>) = a, we obtain that a € Aandx P a P bk Py,

so x P* a P* y and therefore f(x) > f(y). -

Finally it is clear that F maximizes f: if S € D and F(S) = w, then

wPs Vse S-{w) and therefore f(w) > f(s) Vs € S-{w}. |

17



3. RATIONALITY RESULTS WITHOUT CONTINUITY.

In this Section we present two different rationality results by dropping
continuity conditions and by imposing monotonicity assumptions instead. The
first one is along the same lines as Bossert’s result (1994) in which it is
proved that any choice function which satisfies (CONT), (IIA) and (PO) is
not only rational on F(D), but the rationalization satisfies some
regularity conditions (monotonicity, strict quasi-concavity,...). Along
these lines we will prove that a choice function which satisfies
Independence of Irrelevant Alternatives and Strong Monotonicity (if we
expand a set, then the outcome selected by the bargaining solution in the
new set is greater than or equal to the initial one) is also rational on
F(D) and that, under these assumptions, the rationalization satisfies
monotonicity and strict quasiconcavity. So we drop Pareto Optimality and
Continuity, although we need to require Strong Monotonicity in their place.

Formally the monotonicity assumption is as follows:

(SM). Strong Monotonicity:
VAB € D such that A ¢ B, F(A) < F(B))

THEOREM 3. If F is a choice function satisfying (IIA) and (SM), then it is

rational on F(D).

Proof. First we are going to prove that the revealed preference P is

transitive and then it will in fact be proved that it is complete when we

18

restrict our attention to F(D). As in the previous cases, by (IIA) we

obtain the asymmeltry of the revealed preference.

Assume that x P y P zfor some x,y,z € lRi. Then by (IIA) we know that
F(<x,y>) = x, F(<y,z>) = y, F(<x>) = x and F(<y>) = y. We consider now the
subset <x,y,z> and analyze F(<x)y,z>) = w. If w = x, then x P z and we

obtain the transitivity of P.

By contradiction, assume that w#x, If w=y then yPx,
contr;adicting the asymmetry of P. If w = z then z P y contradicting the
asymmetry of P once again. If w € <x,y> then by (HA) w=x, a
contradiction. If w € <y,z> then by (IIA) w = y, a contradiction. Therefore
the only possibility is that w € <x,z>, so by (IIA) F(<x,z>) = w. We now

analyze the configuration of ([x,z). If x <z then <x)y,z> = <y,z>, a

contradiction since w # y; if z < x then <x,z> = <x>, a contradiction since

w # X. Therefore no[x € z] and no[z < x], but by applying Strong
Monotonicity we know that w 2 x (<x,y> C <x,y,z>), therefore the only

possibility is that w = x, a contradiction.

To show that P is complete on F(D), consider x,y € F(D), x # y. It is
clear that it implies that x <y or y < x: if no[x € y] and no[y < x] and
we denote by w = F(<x,y>), we know (by applying Strong Monotonicity) that
since <x> C <x,y>, <y> C <x,y> and by (IIA) F(<x>) = x and F(<y>) =y,
then x £ w and y < w, which implies that w ¢ <x,y>, a contradiction. But if
x <y then xe <y> so yPx and if y<x then ye <x> and

therefore x Py,

19



Finally and in order to ensure the reflexivity we modify this

relation by considering

xRy & x=y o xPy

which is obviously complete, reflexive, transitive and also a

rationalization of F on F(D). =

With respect to the additional properties which this rationalization
on F(D) satisfies, we can ensure that under the same assumptions [(ILA) and
(SM)] it satisfies Monotonicity and Strict Quasi-concavity. First we

formally present these properties.

Monotonicity:  Vx,y € (D), if x>y then x Py.

Strict Quasi-concavity: Vx,y € F(D) if x Py and for some a € (0,1)

[ox + (1-a)y] € F(D), then [ox + (1-0)y] P y.

THEOREM 4. If F is a choice function satisfying (IIA) and (SM), then there
exists a rationalization on F(D) which satisfies Monotonicity and Strict

Quasi-concavity.
Proof. By applying Theorem 3 we know that there exists a rationalization on

F(D) given by R x Ry & x =y or x Py). We only need to show that

this relation satisfies the conditions mentioned above.

20

Monotonicity: Consider a,b € F(D) such thata > b. Sincea,b € F(D) we know

by (IIA) that F(<a>) = a and F(<b>) = b; so b € <a> and therefore a P b.

Strict Quasi-concavity: Consider a,b € F(D) such that a P b and o € (0,1)
such that [oa + (1-o)b] € F(D). By (IIA) we know that F(<a>) = a,
F(<b>) = b and F(<oa+(1-0)b>) = aa+(1-a)b. Moreover and by reasoning as in
Theorem 3 we know that a < bor b £ a; but a < b implies that a € <b> and
therefore b P a, in contradiction with the asymmetry of P. So the only
possibility is b < a, which implies oa+(1-at)b 2 b, so b € <ca+(1-0)b> and

therefore ca+(1-a)b P b. B

Remark 2: It is easy to prove that if we impose continuity to the choice
function then the rationalization is also Upper Semicontinuous [that is

Vxe F(D), (ye FD)| x P y) is open in F(D)].

As an immediate consequence of this result it is also obtained that
egalitarian and monotone path solutions are rationalized by an order on

F(D) satisfying those conditions.

COROLLARY 2. Egalitarian and Path monotone solutions are rational on F(D)
and the rationalization satisfies Monotonicity, Strict Quasi-concavity and

Upper Semicontinuity.

In order to obtain an alternative characterization result without

considering continuity conditions and by weakening the monotonicity



assumption, we present the following result. First we need the notion of

Interior Pareto Optimal point and Interior Monotonicity.

If S e D, an alternative x € S C R is an interior Pareto optimal
point if it is satisfied that x € intr[PO(S)], where by intx[PO(S)] we

mean the relative interior of subset PO(S).

So the notion of I[nterior Monotonicity in the two-dimensional case
states that if given a subset of alternatives, the outcome solution is an
interior Pareto optimal point, then if we expand the feasible set, the new

solution has to be greater than or equal to the initial one. Formally,

(IM). Interior Monotonicity: VAB € D, if

AcB and } = F(A) £ F(B)

F(A) is an interior Pareto optimal point in A

The next result shows that if we require Interior Monotonicity
together with Independence of Irrelevant Alternatives and Pareto Optimality
of the choice function, then it is obtained that the revealed preference is

acyclic,

THEOREM 8. If F :D——)lRi is a choice function which satisfies (PO), (IIA)
and (IM), then it satisfies (SARP).

22

Proof. (See Appendix B).

Finally we can also apply this result to obtain the rationality of

the lexicographic extension of the bargaining solutions mentioned above.



APPENDIX A

In order to simplify the notation, from now on whenever we write i + j we
mean - i+j if i+j<n and i+j-n if i+j>n for every
i,j € (1,2,...,n}). Moreover, VA € D, Fr(A) denotes the topological boundary
of A and for any pair of alternatives x,y € Ri seg(x,y) denotes the
segment which joins x and y up without considering x and y (in another case

we use seg[x,y]), that is, seg(x,y) = (Ax + (1-A)y  Ae(0,1)}.

To prove the acyclicity of the revealed preference we are going to
apply induction, therefore first we present the following result obtained by
Bossert (1994) in which the non existence of cycles of length 3 is proved.
In particular it shows that (IIA) is enough to guarantee the non existence

of cycles of length 3.

THEOREM 6. [Bossert, 1994]. If F:D ———H{Ri is a univalued choice function
which satisfies (1IA), then there do not exist cycles of length 3 for the

revealed preference.

An analogous result was obtained by Peters and Wakker (1991) in the
context of convex and compact (but not necessarily comprehensive) subsets
of lRi, but by imposing (PO) apart from (IIA) [see Peters and Wakker (1991);
Lemma 3.5.]. Moreover they prove that (IIA) and (PO) are not enough to

guarantee the non-existence of cycles of length greater than 3.

24

Proof of Theorem 1. We prove the acyclicity of the revealed preference
relation by induction, Because (IIA) is equivalent to (WARP) in this
context, there do not exist cycles of length 2 and, by Theorem 6, there do
not exist cycles of length 3. Let n>4 and suppose that there exists no
cycle of length k for all k<n; we are going to prove that there are no
cycles of length n either. By way of contradiction suppose that there

exists a cycle of length n, that is X X X € le such that

27
X, P X, P..P X P X by (IIA):

F(<x,x. >) = X, Vi=1,2,...,n
i+l i

F(<xi>) = X, Vi=1,2,....n

Moreover it is clear that X, can not be in <xj> for all j#i (if not, there

exists a cycle of a length smaller than n) and, therefore
[x¥>x! and x?<x2,] or {x¥<x% and x?>x2,]
i ] i i i ) i ]

for all i,j € {1,2,...,n}. Furthermore and in general, we can also ensure

that

X, ¢ <xp,xp“> Vp =1,2,...n, j # p,p+l (1)

since if not we obtain a cycle of length smaller than n. For the same
reason if we denote A = (x].xz,...,xn} we can ensure that whenever we
consider the comprehensive and convex hull of a subset of alternatives of A

with more than two alternatives or with two non consecutive ones according

25



to the cycle, then the choice set will never be one of the alternatives of

the subset, that is

VBcA such that B has more than 2 alternatives or two

non consecutive ones, then F(<B>) ¢ B 2)

If we now analyze the choice over the convex and comprehensive hull
of A, w = F(<A>), it must be w # X, Vi=1,...,n, since if not, we obtain a
cycle of length 2, a contradiction. So there exist alternatives XX, € A,
X #X such that w e <KX > Moreover and by (IIA) these alternatives
are non consecutive, since if w € <X X > for some i then it is obtained
that F(<xi,xi+l>) = w, a contradiction. Finally note that w € seg(xi,x”k)
since if not by (WPO) either w € <x>orwe <x. > and by (IIA) it would
imply that F(<xi>) =w or.F(<xi+k>) = w respectively, a contradiction.

Since we start from a cycle, we can assume without loss of generality
that xi < xiﬂ(, so the configuration of these two alternatives would be as

Fig.1 shows.

i+k

7

Fig. 1

Next we are going to analyze the different cases which exhaust all

,es X, ). Since by

possible configurations of alternatives {x, x .
i i+l itk

(WPQO) seg(xi,xm) € Fr(<A>) we know that any other alternative of A
(xj € A, j#,i+k) can not be placed over the line which passes through X,
and Xy (see Fig.1). So, and from the considerations we have made above,
we can ensure that there are only three different possibilities to place

alternative X which have been denoted as Al, B1 and Cl (see Fig.1).

CASE L: x € A
In this case by applying (2), (IIA) and (WPO) we know that
F(<xi+k,xi+l>) =w € seg(xi+k,xi+l], while applying (IIA) it is satisfied
that F(<xi,xi+k,xi+l>) =w (since <KX X > C <A> and
F(<A>) € <xi,xi+k,xi+l>). We are going to prove that this fact contradicts
continuity.

Consider the configuration of altematives w, Xp and X

(see Fig.2).

Fig. 2

For any t € [0,1] we define z(1) = tw + (1-t)xi+k,

A(t) = <X, X, k,z(l)> and the following function:
i+ "+

]
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g:[0,1] —> mi such that g(t) = F(A(1)

This is a continuous function since it is a composition of continuous ones,
and moreover by (IIA) and (WPO) it is clear that Vt e [0,1],
g(t) = FA() ¢ A(0) or g(t) = w . We denote B = g'l(wl), which is closed
(due to the continuity of g), nonempty (0 € B) and B = [0,1] (1 ¢ B).
Therefore we can ensure the existence of maximum of B, namely to' Since
t, € B we know that g(to) =W, and by definition of maximum Vte [0,1] such
that t > L it is satisfied that g(t) # W But this is a contradiction
with the continuity of g by considering € < hw - x 0 since g(t) ¢ A(0)
or g(t) = W, and therefore we can consider t as close as we want to t but

I g(t)-g(to)ll >¢g Vi> ty

CASE 2: x € B.

i+l 1
Given the configuration of altematives X, X, and X (see Fig.3), we
analyze the possible location of altemative x . The different
possibilities for locating this alternative have been denoted as B2, Cz’ D2,

E2 and F2. We are going to prove that the only one which does not give us a

contradiction is Dz'

i+k

Fig. 8
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2.1. If X., € A2, B2, C2 or F2, then by reasoning in an analogous way to
the previous case, by considering the following subsets in each case, a
contradiction with continuity is obtained (see Fig.4 and Fig.5):

In M . .
case of X, € A2, consider <xi+2,xi,w>) and <X, XS if

>; if

X, € B, consider <X
i+2 2

X F <X, X X >)> and <X X

27 i1’ ( P72 il ) i+2° 141
X (S } COl’lSider <X X w> and <X X >3 a]ld “lla y .1
42 2 i+2’ i+k’ i+2, i+k ’ ’ 1] ’ !

X, >

X, € C2, then consider F(<xi+2,xiﬂ,F(<x XX k>) and <X K

427 i i

Fix x
X142 i |+2)
X
t
A w
2
Xisk
Fig. 4
X F(<xl,x|+2xm>) X

Ut
X

i+2
w*
C
2 Xy
wr = F(<
F xi+éxi+1'xi+k>)
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2.2, Finally if X, € E - then F(<xi,xm,xi+2>) belongs to

<x,X, > U <X, ,X >  which implies by (IIA) a  contradiction
i+l 17 i+2
with (2).

Therefore, as we mentioned above, the only possibility for

alternative X, ) is D2. The final configuration of alternatives X X
1+ ’

x. and x__ is shown in Fig.6.
i+2 i+k

Fig. 6

By following an analogous way of reasoning, we are going to show that
there is also a unique possibility for locating alternative X, which has
been denoted as F3 (see Fig.6). Notice that this zone is defined by the line
which passes through alternatives X and Xl and the line which goes
through alternatives X, and X . Therefore the last two previous
alternatives which have been located together with X, are the references

to determine which this area is.

2.3. If x__ belongs to A, C, E_and G, a contradiction with continuity
33 ¥ Y s 3

is obtained [by considering the following subsets in each case: if

x,x > and <x,x > if x e C, consider
ioitk i3 i+3 3

X . € As’ consider <X,

i+3 3

30

<X, ,X, ,Xx, > and <x >; if € E i <
T3 2 w2 s i3 3 consider xi+2’xi+3’xi+k>
and <x _,x. > and, finally, if x _ € G, then consi <X,X
42’7 is3 ’ Y i+3 3 nsider i’ i+k’xi+3> and
<X >].
i+k’xi+3 ]

24.1f x € B then x, € <x _Xx >, a contradiction.
43 3 i+l 427 i3

2.5, Finally if X, € D3 then F(<xi+l,xi+2,xi+3>) belongs 1o

<X X > Y<K X >, in contradiction with (2) by (IIA).

Therefore, and by following an analogous argument for the rest of

alternatives
(xM,xM, ,xMH) we can ensure that the final

configuration of those alternatives in this case would be as shown in Fig.7.

Fig. 7

The final contradiction which is obtained is that there does not
exist any possibility of locating alternative X On the one hand we
know that the only possibilities for locating this alternative are the

areas denoted as A4, B4, C4 y D4 (see Fig.7). But in all of these cases a

contradiction is  obtained. In ~ particular if Xou € A4, then
)}
F(<x X >)=w and <X X > i
( k1’ i’xi+k ) F( itk+177d ) € Seg(xi+k+l’xi)’ n
contradiction with continuity; if x € D then F(<x = ,x X . >)
i+k+1 4 k-1 ik 14kl
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> in contradiction with (2) b
belongs to <xi+k_x,xi+k>) U <K X (2) by

TA); if x o1 € B4 then some of the alternatives xiﬂ_ for j=1,2,...,k-1
itk+
. ‘n . 0
belongs to <X X~ 2 contradiction; and finally, if X € C4 the
ideri < > a contradiction with continuity is
by considering XS Kkt y
i i < X, >) € seg(x and
obtained  once  again (F( SRR RN ) seg( e i+k+l)
< = .
F( Xi+k’xi+k+l>) xi+k)

Therefore in this case a contradiction is also obtained and so the
only possibility for the final configuration of alternative X, is' Cl (see

Fig.1).

CASE 3: x_ e C.
i+l 1
The different possibilities for alternative x. , have been denoted as As’

BS, Cs’ D5 and Es (see Fig.8).

Fig. 8

Butin A, B, C, and E, a coniradiction with continuity is obtained
by reasoning in a similar way to the previous cases [in particular by
considering the following subsets in each case: if X., € As’ consider

< < > if (>
xi+2,xi,xi+k> and <KX > b X, 2% and

€ B, consider <x X
i+2 5 i+ i+
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<X > if X > ;
i+l’xi+2’ : i and <xi+l’xi+2>’ and

€ C  consider <x ,x
i+2 5 i+

X
1’7142 Tk

finally, if x . € E_then consider <x,x  ,x > and <x_ ,X >].
i+2 5 ik i+ 17 ik

So the only possibility for alternative X, is D5 (see Fig.9), but

by reasoning as in case 2 the only possibility for X5 is Gs and the final

configuration of alternatives Xo X peeesXo is shown in Fig.10. A
¥

contradiction is now obtained when we try to locate alternative x ol (it
1]

can not be located in any place).

K

Therefore we can conclude that there do not exist cycles of length n

and the Strong Axiom of the Revealed Preference is satisfied. 8
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APPENDIX B

In order to simplify the proof of Theorem 5, first we present the following
lemma in which the non existence of cycles of length 4 is proved by

requiring (PO), (IIA) and (IM).

LEMMA 1. IfF:D ———)lRi is a univalued choice function which satisfies (PO),
(IIA) and (IM), then there do not exist cycles of length 4 for the revealed

preference relation.

Proof: By contradiction, assume that there exist alternatives

xl,x,x,x4eXsuchthatlex2Px3Px4le; so by (IIA) we know

273

that for every i=1,2,3,4:

F(<xi,xm>) = X

F(<xi>) = X,

By applying the same way of reasoning as in Theorem 1 we can ensure

that:

(a). xj € <x> Vi#j;
(b). x & <KX > Vi=1,2,3,4,  i#j,j+1;
(c). VBCA such that B has more than 2 alternatives or two non

consecutive ones, F(<B>) ¢ B.

34

Moreover in this case we also know that
(d). F(<x1,x3>) < w and F(<x2,x4>) < w by applying (IM) since
condition (c) together with (PO) implies that F(<xl,x3>) and
F(<x2,x4>) are Interior Pareto Optimal points in <X,X> and

<X.X,> respectively.

By reasoning as in Theorem 1, if we consider the subset

A= (xl,x2,x3,x4} and denote F(<A>) = w, we can also ensure that w ¢ A and

that either w € <XpX,> Of W€ <X 5X,> Without loss of generality we
1

. < x? and we are going to analyze the possible

assume that w € <xl,x3>, X
location of alternatives of A. The configuration of alternative X %X and
w as well as the different possibilities to locate alternative X, (which

have been denoted as Al, Bl, Cl, Dl and E]) are shown in Fig. 11.

WA

Fig. 11

CASE 1: X, € Al.

By applying (d), the possibilities to locate x, are Cl, D or E . However
in all of these situations by considering <x X .X,> and by applying (PO)
together with (c), it is obtained that F(<x‘,x2,x4>) belongs to seg(xz,xl)

or seg(xl,x4), both cases in contradiction with (ILA)).
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CASE 2: x, € B.

By reasoning as above, possibilities for x, are given by C2, D2 or E2 (see
Fig.12). However if x, belongs 10 C2 or D, it implies that x, € <x, x>,
in contradiction with (b), and if X, € Ez’ then by considering <X oKX >

and reasoning as in Case 1, a contradiction is also obtained.

Fig. 12

CASE 3: x € C.
In this case possibilities for x are A3, B3, C3 -or D3 (see Fig.13). But

all of them imply a contradiction:

if X, € A3 or Ds’ the contradiction is obtained by considering

<X X ,X,> Of <K XX, >, respectively, and by reasoning as in Case 1.

i < > 0or X, € <X ,X> spectiv
if X, € B3 or Ca’ then X, € <X,X, ) XX,>s respectively,

both cases in contradiction with (b).

36

Fig. 18
CASE 4: X, € Dl.
Now Fig.14 shows possibilities for locating X, (A4 and B4) but in both

cases the same contradictions as in the previous case are obtained.

Fig. 14
CASE §: X, € El.
Finally, in this case the way of reasoning is exactly the same as in Case 1

but by considering the subset <X X X,

3

Therefore we can conclude that there do not exist cycles of

length 4, B
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Proof of Theorem 5: As in Theorem 1 we prove the acyclicity of the
revealed preference by induction. By applying Theorem 6 and Lemma 1 we know
the non existence of cycles of length 3 and 4, respectively. We assume that

there are no cycles of length k Vk<n, n>4 and we also want to prove the

non existence of cycles of length n.

By  contradiction, ~ assume that  there are  alternatives

X € Ri such that x Px P..Px Px. Therefore and by

X XX

reasoning as in the previous cases it is obtained that:

(1): X; & <x> Vi

(2): X, g <KX > Yi=1,2,..n, j#,i+l

(3): VBCA such that B has two non consecutive alternatives or |B ‘23,
F(<B>) ¢ B

4y F(<xj,xj+s>) <w Vje(l,...n} s>l

(5): F(<B>) < w  VBCA: IB|>2

Moreover if we consider A = [xl,xz,...,xn] and denote by w = F(<A>) € <A>,
we also know that wg A and that there exist alternatives XX, € A, k>1,
such that W €<x,X > (in fact, by applying (c) and (PO,

W € seg(xi,xi+k)).

Without loss of generality we assume that x§ < X:+x‘ Now we analyze

h i i 0 ative X, yees .
the configuration f alternatives X% ’Xi+(k-1)

38

CASE 1. Assume that k>2.
Possibiliti i i
sibilities for locating alternative X have been denoted as

Al, Bl, Cx’ Dl and E1 (see Fig.15)

%///

CASE 11.x € A.
i+] 1

Then by applying (4) we kn i
y applying (4) ow that X, can be placed in Cl, Dl or El, but
in all of these cases we obtain a contradiction by considering
F(< i
( xi+l,xi,xi+n_l>), since by (PO) and (3) we know that F(<x, XX, 1>)
M+ I 1HD-
belongs i icti
gs o <xi+l,xi> or <xi,xi+n'l>, both cases in contradiction
with (ILA).
CASE 12. x e D orx € E
i+l 1 i+l 1
Alternative X, can not be located in these areas since we are assuming

that k>2 and by (4) we know that F(<x, o, k>) < w.
i+l i+

CASE 1.3. x. € B.
i+l 1

In this case we have to distinguish two possibilities:

13a. (k=13
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In this case we analyze the location of x ,, which can be placed in B,

C2, Dz’ E2 or F2 (see Fig. 16).

xl

X in s

N R A
. C 0 .

2 , ".

B, . . D'~’ Xiss
/// E,
Fig. 16

However all of these possibilities imply a contradiction.

In concrete if X, € B2 orx. € Fz, we obtain a contradiction by
reasoning as in the Case 1.1 but by considering <KX X > and
1 1te

<X, ;X

x> respectively,
1775427 143 esp y

If X, € E, then the contradiction appears when we locate X
M &

(xiH #* X, since n>4), which has to be located in C2 (from (4)

F(<xi+l,xm>) <w and F(<x x,H>) < w), by considering

2

F(<xm,x,

+3,x“>) and by reasoning as in Case 1.1.
1 }

If X, € D, by reasoning as in the previous case, X, has to be

i & ¥

located in C. (see Fig. 17), but in this case x _ € <x X >, in
3 < it2 37 i

contradiction with (4).

40

1+3

Fig, 17

Therefore the only possibility for locating alternative x, 5 is C2
i+

and moreover X, € <X X >, if not we have the same contradiction as

in Case 1.1. by considering <X K K > So the configuration of these

12

alternatives is as shown in Fig. 18.

Flg. 18
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Now, by applying (4) we know that x_~can be located in B, C,,
D orE,.
4 4

B € <X x>, in conftradiction with (4).
B4 if X, € B4, then X 2 w3 t tion with (4)

3

>) a

E: if x € E4, then by considering F(<xm,x

X
4 i+4 3" i

contradiction as in Case 1.1 is obtained.

C4, D4: if X, € C4 or D4 and X0 = %p then we have a
contradiction with (4) since in this case x € <x.,x > If x _#x
i+l i 4 i+5 i
then the possibility for locating X5 by reasoning in a way analogous to
that of Xy is below the horizontal line which passes through X Qaf
not, a contradiction with (2) is obtained); and the -same reasoning can be
applied to all of the alternatives until alternative X is reached. In
this moment a contradiction is obtained since this alternative has to be
below the previously mentioned  line, but it implies that
X, € <Xx > a contradiction with (2).
1 H4n-

i+l

1.3b. K#3].

In this case and by following a similar argument to the one used in the
previous case we obtain that the final configuration of alternatives X,

X is the one which is shown in Fig. 19. The

R { X
i1 7T kel Tk

contradiction which is obtained is the same as in the previous case when we

try to locate alternatives x. .

ey X .
7 Vel

42

Fig. 19

CASE 14.x € C.

itl 1
The contradiction and the way of reasoning is exactly the same as in the
case of Bl, although configuration of alternatives will be the one which is

shown in Fig.20.

CASE2.k = 2,n > 4.
Possibilities for X have been denoted as As’ Bs’ CS, D5 and E5 (see

Fig.21). If X, € As’ contradiction is obtained when we locate x
i+

b

n-1
since by applying (4) it has to be placed in Cs’ D5 or Es’ but then by
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considering <X ,X. ,X > we obtain the same contradiction as in
P71 M-
Case 1.1.
aced in A, B, C. or D (see
If X, € E5 then X.s has to be placed in o B C S (
Fig.21), but in each of these situations a contradiction is obtained by

considering <X, > and by reasoning again as in Case 1.1.
¥

l’xi+2’xi+3

J >

Fig. 21

With respect to Bs’ Cs and Ds’ the kind of reasoning which implies

the contradiction is analogous to the previous cases:

if X E'Bs then, by applying (4), X has to be located in C6
(see Fig.22), which is a contradiction with (2) (xi+l € <xi+n_l,xi>).
i+2

Fig. 22
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if X, € Ds’ then the contradiction is obtained when we locate X g
since by (4) it has to be placed in C7 (see Fig. 23) in contradiction with

@ (xm € <xi+2’xi+3>)‘

if X, € C5 the way of reasoning in order to obtain the

contradiction is exactly the same as in the case of C4 or D4.

Fig. 23
So under the assumption of the existence of a cycle of length n we
have proved that any of the possibilities for locating the alternatives of
the cycle imply a contradiction, therefore we can conclude that there are

no cycles of length n. =
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