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ABSTRACT

A model of "satisficing” behavior in the repeated Prisoners Dilemma is
studied. Each player has an aspiration at each date, and takes an action.
[Slhe switches from the action played in the previous period only if the
achieved payoff fell below the aspiration level (with a probability that
depends on the shortfall). Aspirations are updated in each period, according
to payoff experience in the previous period. In addition, aspirations are
subjected to random perturbations around the going level, with a small
"tremble” probability. For sufficiently slow updating of aspirations, and
small tremble probability, it is shown that in the long run both players

cooperate most of the time.
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1 Introduction

Consider a Prisoner’s Dilemma played repeatedly by two ‘satisficing’ plavers. Each player
has an aspiration at each date, and takes an action. [S]he switches from the action played
in the previous period only if the achieved payoff fell below the aspiration level (with
a probability that depends on the shortfall). Aspirations are updated in each period,
depending on the divergence of achieved payoffs from aspirations in the previous period.

The aspiration-based process is characterized by two specific features: (i) inertia:
every action 1s repeated with at least a certain probability bounded away from zero;
and (i) experimentation: with a small probability, players’ aspiration levels experience
small random trembles around the “going” aspiration, thus preventing them from being
perpetually “satisfied” with any given action We examine the long run outcomes that
are induced by vanishingly small tremble probabilities This paper therefore builds on the
work of Bendor, Mookherjee and Ray [1992], in which a model of “consistent” aspirations-
based learning was introduced.®

We make precise and prove the following result (Theorem 1 below):

If the speed of updating aspiration levels is sufficiently slow, then the outcome in the
long run involves both players cooperating “most of the time”

The mode] therefore describes an adaptive learning process where individuals not
only cooperate, but play strictly dominated stiategies of the stage game for “most of
the time”. While players may (and occasionally do) profit by deviating from cooperative
behavior, the dynamics of the process ultimately lead back to mutual cooperation

Section 2 introduces the model, and some of its preliminarv properties Section 3
presents the main results. Section 4 contains an informal discussion of some of the
results. Section 5 discusses related literature All proofs are in Section 6

2 The Model

Consider a Prisoner’s Dilemma:

whete @ >0 > 6 >0

5That paper did not consider the updating of aspitations within a game For discussion of this and
related literature, sec Section 5




Player 1’s state at date t is given by an action A; € {C, D}, and an aspiration level
oy, which is a real number. The corresponding objects for player 2 are given by B and
B:. A state is the paii made up of player 1’s state and player 2’s state

The state at date t determines payoffs 7} and 77 for the two players We now describe
the updating of each player’s state

We describe the rule followed by plaver 1; an analogous rule is followed by player 2
There are two features. First, actions are updated as follows: if wg > o4, then player 1
is satisfied, and A; = A;11. Otherwise player 1 is disappointed, so [s|he switches action
(Aj+1 # A;) with probability 1 — p, where p is an indicator of mertia It is assumed that
p is a nonincieasing function of the extent of disappointment (o — 7} ). satisfving:

1 p=1 ifa,—ﬂg < 0, and
2. p€ (p,1) otherwise, for some p € (0,1)

3 pis continuous and the rate at which it falls is bounded, i e, for all z > 0, 1—-p(z) <
Mz for some M < c0.%

Figuie 1 desciibes p. In words, for any given positive degree of disappointment, the
player will switch his action with positive probability However, the probability of not
switching is bounded away from zero.

Second, with respect to the updating of aspirations, it is convenient to first consider
the case without any “trembles”.

2.1 The Model without Trembles

Aspirations are updated as an average of the aspiration level and the achieved pavofl at
the previous plav. For player 1, this vields

Qpy :/\O‘[+(1A)\>7T}, (1>

\

where A € (0.1) may be thought of as a persistence parameter. assumed equal for both
players for simplicity. A parallel equation applies to player 2

The updating rules (without trembles) define a Markov process over the state space
(C,D}? x IR? This process will be denoted P, and will be referred to as the untrembled
process

Given amv action pait (A, B), let the corresponding pure strategy state (pss) refer
to the state where this action pait is plaved with aspiration levels exactly equal to the

5This last set of conditions is inessential for our main result, though employed in the proof As
will be discussed in Section 4, modified arguments apply in the case where the inertial probability is
discontinuous at the point of zero disappointment, 7 ¢, is bounded away from 1 as well as 0 for any
positive disappointment
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Figure 1: THE FUNCTION p.

achieved payoffs: a = w!(A4, B), 8 = n?(A, B). It is clear that everv pss is an absorbing
state of the untrembled process: if players are satisfied with the pavoffs they receive in
an ongoing action pair, they have no reason to alter their actions o1 aspirations Indeed,
it is for this very reason that it is necessary to explore the robustness of any absorbing
state by admitting the possibility of perturbations

Before proceeding to the case of trembles, however, it is useful to settle a preliminary
question: does the untrembled process always converge to some pss”?

PROPOSITION 1 From any gwen initial state, the untrembled process P converges almost
surely to some pure strategy state

This result is discussed further in Section 4

2.2 The Model with Trembles

While the untrembled process always converges to some pss, one suspects that some
of these may not be 1obust to small perturbations in a plaver’s state. To model such
phenomena, we introduce trembles in the formation of aspirations.’

"Starting with any pss, a small upward push to a player’s aspiration level will cause that player to be
disappointed, and hence induced to experiment with other actions. An alternative modeling approach




With probability 1 — n, aspirations are formed according to the deterministic rule
(1), while with the remaining probability n, the updated deterministic aspiration « is
perturbed according to some density g(.,«). Assume, again for simplicity, that 7 is the
same for both players.

Informally, we would like small perturbations on either side of a to be possible, but
at the same time, uninteresting technical complexities would be introduced by allowing
aspirations to wander too far from the payofis of the game, and we want to avoid these
In what follows, we impose appropriate restrictions

Assume, then, that there exists some compact interval A which contains all feasible
payoffs such that for each o € A, the support of g( |a) is contained in A, and moreover,
that g(a'la) > 0 for all ¢/ in some nondegenerate interval around « (relative to A)
Furthermore, suppose that ¢ is continuous as a function of

Finally, assume that all initial aspiration vectors lie in the compact region A?. and
that all perturbations are independent over time and across players.®

Denote the resulting stochastic process by P7. A standard theorem (see, e g, Meyn
and Tweedie (1993), Theorem 16 2.5) guarantees that the process has a well defined long
run outcome:

PROPOSITION 2 For n > 0, the process P" converges (strongly) to a unique limit distri-
bution 1", wrrespective of the initial state

3 Main Results

Bv Proposition 2, the introduction of tiembles serves to single out a unique (though
probabilistic) long-1un outcome. Obviously, one is interested in the nature of the long
run distribution IT7 when the tremble probability n is close to zero, since this is likely to
vield a selection from the multiple long-run limits of the untrembled process

Some preliminary steps are needed before we can state such a result precisely To
begin with, one needs to ensure that the sequence of long run distributions I17 has a
well-defined limit as n goes to zero

PROPOSITION 3 The sequence of distributions I17 converges weakly to a distribution 11~
on £ asn |0

Proposition 3 is a corollary of a general theorem on the long run behavior of Markov
processes subjected to small stochastic perturbations, which also provides a precise chai-
acterization of the limiting distribution. Because this result may be of wider interest than

would directly allow experimentation with different actions Woe suspect that the results would be the
same In such an approach

8 As usual, a simila1 definition holds for player 2 It is immateiial to the argument whether the function
g is the same for both players




the specific application studied here, we provide a self-contained statement of this general
theorem in Section 5 (Theorem 2). Theorem 2 also yields the following description of
the limit distribution IT*.

Use @; to denote the one step transition probability of the stochastic process, condi-
tional on the situation where only player i’s aspiration is subjected to a tremble. Let @
denote %(Ql +()2). We may interpret this as the transition rule when exactly one player
trembles, with both players being equally likely to tremble.

Let R denote P, the infinite step transition rule in the untrembled process. This
is well-defined by Proposition 1. Finally, let QR denote the composition of @ and R
In words, the process QR refers to the effect of subjecting exactly one plaver (chosen
randomly) to a tremble in her aspirations, followed by the untrembled process thereaftel
for ever.

PrROPOSITION 4 The himiting distribution IT* is the unique invariant distribution of the
process QR

By Proposition 1, the untrembled process converges to a pss It follows that an
invariant distribution of @R must be concentrated on the pss’s Proposition 4 says that
@R has a unique invariant distribution, which is precisely the limit of the invariant
distributions corresponding to vanishing tremble probabilities.

In words, the selected long run outcome can be obtained as the unique long run
outcome of an “artificial” Markov pirocess defined only over the four pss’s, with the
transition probability between pss’s obtained as follows: Starting with the former pss,
subject one player chosen randomly to a single tremble in aspiration to obtain a new state,
from which the untrembled process is left to operate thereafter to ariive eventually at
some pss.

Why do we need a precise characterization of the limit of the long run distributions,
unlike previous authois? The reason is that the long run distiibution will not gener-
allv be concentiated on a single pss. This is in shaip contrast with random matching
contexts considered by Kandorii, Mailath and Rob (1993) and Young (1993}, where the
corresponding process singles out a unique limit state

In the informal discussion, which we relegate to Section 4, we attempt to provide a
clearer intuitive explanation of this observation.

We are now in a position to state our main result

THEOREM 1 The weght 117 (C, C) placed by the lmiting distribution 117 on the mutual
cooperation pure strateqy state 1s close to 1, for persistence parameter A sufficiently close
to 1. Formally,

ilinln (C,.C)y=1




4 Informal Discussion

The assertions thus far may be summarized as follows. First, the untrembled joint process
of aspirations and actions always converges to a pure strategy steady state. Second, the
trembled process is ergodic and converges to a unique invariant distribution Third,
these invariant distributions (viewed as functions of the tremble) themselves settle down
to a “limit” invariant distribution. Finally — and this is the main result — the limit
invariant distribution places almost all weight on the cooperative outcome, provided that
the persistence parameter is sufficiently close to unity. We discuss these informally in
turn.

Begin with the convergence of the untrembled process Our formal proof takes the
easiest route towards establishing convergence, by exploiting a degree of inertia in the
model that is built in by assumption. Specifically, given any state, there can be an
infinite run on the current action pair, which would cause aspirations to converge to the
corresponding payofs.

We illustiate this by starting with the (C, D) action vector, with 2’s aspiration lying
above the cooperative payoff, while player 1’s aspiration does not exceed this payoft
What is the probability of an infinite run on (C, D) thereafter in the untrembled process,
which would result in convergence to the (C, D) pss? Along such a path, plaver 2 would
have no cause to switch away from D, so what is needed is for player 1 to stick with C
perpetually despite being disappointed at every stage. At stage ¢, player 1’s aspiration
and hence disappointment level would be Ao Hence the probability of converging to
(C, D) is [I21 p(A'o), which is positive if and only if

o0

S 1-p(No)] < oo

t=1

a condition which is satisfied, since the left hand side equals

A similar argument can be given for the possibilitv of an infinite run on anv action pair,
and any initial set of aspirations, as detailed in the proof of Proposition 1. Note that no
assumption has been made concerning the speed at which aspirations are updated This
is an imphcation of our assumptions concerning inertia

Howver. it must be emphasized that while this is the easiest way to prove Proposition
1, the result also holds under weaker assumptions concerning the inertia function p,
providing we restrict aspirations to not be updated too rapidly. For instance, if the
inertia probability p is discontinuous at 0, so plavers switch with a probability bounded
awav fiom zero whenever disappointed. the infinite 1uns used above to secure convergence

10
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Figure 2: ILLUSTRATION OF THEOREM 1,

are no longer possible. Here is a sketch of an alternative argument for convergence for
the case where A is close to 1. Suppose, contrary to the assertion of the proposition,
that the untrembled process does not converge Then it can be shown that the process
must wander infinitely often thiough the interior of the rectangle I depicted in Figuie
2. Now concentrate on this rectangle. Observe that while aspiiations lie within this
rectangle, there is a positive probability that (C,C) will be plaved soon thereafter. To
see this, suppose first that (D, D) is played. Then both players will be disappointed so
with positive probability both will switch to (C,C) If (D, C) is plaved. plaver 1 will be
happy while player 2 will be disappointed, precipitating (D, D) next period with positive
probability, whereupon the previous argument applies. A completely parallel argument
holds for the action pair (C, D)

All that remains is to bound this probability away from zero, which can be done by
applying the argument to a suitably chosen compact subrectangle of I Now couple this
observation with the infinite recurrence of I to establish convergence to (C,C). This
contradicts the assumption that the untrembled process does not converge and we aie
done

11
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Figure 3: POSSIBLE CONVERGENCE TO (D, D) FROM PERTURBED (C,C)

The observation that the trembled process is ergodic is a standard one, familiar by
now in the literature on stochastic evolution What is of interest is that unlike the results
in that literatuie, it is perfectly possible for the limit invariant distribution (as trembles
vanish) to place weight on more than one pure stiategy state In part this comes from the
kind of inertia-based arguments provided above. But it is important to observe, yet again
that inertia is only sufficient and not necessary to generate these features For instance, a
“long aspiration cycle” can be triggered by a perturbation from the (C, C') pss, leading to
ultimate convergence (with positive probability) to the (D, D) pss from below (Figure 3
depicts such a path for a particular parametric specification, albeit somewhat cryptically,
by the curved arrow). These possibilities necessitate a more detailed analysis To get
a handle on which pure strategy state is likely to receive the lion’s share of probability
weight, we must deduce a formula for the limit invariant distribution This is done in
Theorem 2, which is stated and proved below

This theorem is the building block on which our proof of the main result {Theorem
1 is based We show that while the limiting distribution assigns some weight to all pss’s,
the weight placed on the (C, D), (D,C) o1 (D, D) pss’s must become arbitiarily small

12




when aspirations adjust sufficiently slowly: the process spends “most of its time” in the
vicinity of the (C, C) outcome. In this sense, mutual cooperation is the unique long run
outcome.

‘The proof of the theorem is long and involved, requiring an assessment of the limiting
probabilities of transiting from the (C,C) pss to the other pss’s (in the process QR),
relative to transitions in the reverse direction, as A converges to 1. It is shown that the
probability of transiting from any of the other pss’s to the (C,C) pss is bounded away
from zero for all values of A close to 1, whereas the probabilities of the reverse transitions
converge to zero as A — 1.

The main reason for this is that transitions following a single perturbation of the
(C,C) pss to the other pss’s must necessarily require one or both plavers to not switch
their actions for long stretches of time, even if they are disappointed As aspirations
adjust more and more slowly, the bouts of inertia required become indefinitely large, and
therefore increasingly improbable.®

On the other hand, the transition to the (C,C) pss, can be shown to be ineitia-fiec
relative to the reverse transitions described above Showing that this is so involves some
long and delicate calculations, embedded largely in Lemma 3 For instance, starting
with the (D, D) pss, when player 2 experiences a positive tremble on his/her aspirations,
aspirations move to a point like N in Figure 2. From that point onwaids, we show that
aspirations tend to diift back, with large probability, into the interior of the rectangle 7,
and that this argument can be made without any 1eliance on inertia, so that it survives
even when the persistence parameter is close to unity. Intuitively, the argument is simple
Imagine a point just to the left of N in Figuie 2. Then player 1 has aspirations low
enough so that he is satisfied with his choice of the ID action irrespective of what player
2 does. Player 2, dissatisfied, will switch back between C and D. This induces a drift of
aspirations to the southeast, pointing into the interior of J. What is needed is a similai
result for the point NV utself and points even slightly to the right of it. which necessitates
a complicated analysis.

Once the process drifts back into I, we are in a familiar realm. We have already
argued (see above) that from this point on, convergence to (C,C occurs with positive
probability, in a wayv that does not relv on inertia

Note in conclusion that even for small tremble probabilities and speed of aspiration
updating, the process does not converge to mutual cooperation in the long run. Co-
operation simply becomes statistically dominant. Players perpetuallv oscillate between
different action pairs, as their aspirations are occasionally subjected to trembles in differ-
ent directions, with effects that last bevond the trembles In paiticular these trembles

°If the inertia function p were to be discontinuous at 0, then the piobability of converging to any other
pss from the cooperative pss following one tiemble is obviously zero, so the result is straightforward in
that case.
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cause them to experiment with actions different from those used in the recent past. For
instance, starting with mutual cooperation, such trembles induce experimentation with
defection, which leads to transitory gains from exploiting the cooperative partner. How-
ever, the partner is dissatisfied in such situations, and will switch to defection as well,
which serves to “punish” the initial defector. A period of mutual defection then ensues,
which tends to disappoint both players, inducing an eventual return to the cooperative
phase. The players play a dominated strategy often not owing to a feature of the learning
rule which causes them to stick to an inferior action in a single person environment, but
rather owing to the nature of interaction between the decision rules chosen by the two
players.

5 Related Literature

The model of learning considered in this paper presumes a limited form of rationality,
where players need not know the structure of the game, or the opponents’ previous ac-
tions; nor do they have to be able to solve maximization problems. In the terminology
of Selten (1991), such models represent “stimulus” or ‘reinforcement” rather than “be-
lief” learning. They originated in the mathematical psychology literature (see Bush and
Mosteller (1955)), and have 1eceived a certain degree of support in laboratory experi-
ment situations involving human subjects (see Suppes and Atkinson (1960), Selten and
Stoecker (1986), Roth and Erev (1993), Mookherjee and Sopher (1994, 1995)). Other re-
cent explorations of such models of learning include Binmore and Samuelson (1993) and
Borgers and Sarin (1994), who both explore the relationship with ‘replicator dynamics’
models, and Gilboa and Schmeidler (1992, 1993) who develop an axiomatic “case-based
decision theory” where players satisfice relative to aspitation levels that are based on
past experience.

The structure of interaction between plavers in our model does not coirrespond to
random matching of pairs selected from a certain population, as in the ‘evolutionary’
literature — cf., for example, Binmore and Samuelson (1993), Borgers and Sarin (1994),
Kandori, Mailath and Rob (1993) or Young (1993). In our context, a giwen pai1r of agents
plays the game repeatedly over time. This stands in contrast with some of the well-known
models whose concern is to provide an evolutionarv basis for the rise of cooperation, e g,
Robson (1990), Fudenberg and Maskin (1990), or Binmore and Samuelson (1992) They
consider situations where the repeated Prisoner’s Dilemma is recurrentlyv being played
between pairs of individuals randomly selected from the general population In a sense,
their objective is to select among multiple equilibria of the underlving supergame by
embedding it in a wider intertemporal fiamework Instead, our approach remains within
the the scenario of a single indefinite repetition of the stage game, singling out the stage
outcome which happens to be played most of the time 1 the long 1un

14




Bendor, Mookherjee and Ray (1992) is a precursor to this paper. In that paper,
aspirations were assumed to be fixed, and models of reinforcement learning that led
to long run outcomes consistent with aspiration levels in general two player repeated
games were analyzed. Such an equilibrium notion is appropriate for chaiacterizing long
run outcomes in contexts of evolving aspirations where the latter converge. This paper
extends this model to include an explicit process of evolving aspirations as well as of
strategies of players, but in the context of a specific game, the Prisoner’s Dilemma
Aspirations do turn out to converge, and the long run outcome is essentially cooperative,
thus vindicating the solution concept used in that paper.

Kim (1995) and Pazgal (1995) both apply the Gilboa-Schmeidler case-based theory
to games of coordination or the Prisoners Dilemma. They allow aspirations to evolve
simultaneously with the strategies selected by players in a context of repeated interac-
tion, and provide conditions under which long run outcomes entail cooperation. These
conditions entail initial aspiration levels lying in prespecified ranges: for instance, Pazgal
needs to assume that they are sufficiently high relative to the cooperative payofls for
both players, while Kim assumes that they lie slightly below the cooperative payofls for
both players. Our model in contrast predicts cooperation in the long run, irrespective
of initial conditions Another important difference is that Kim and Pazgal both assume
that aspirations average mazimal experienced payoffs in past plays, whereas we assume
they average the actual experienced payoffs. Hence their theory imparts a certain ad-
ditional degree of “ambitiousness”™ to players, which helps in ensuring conveirgence to
cooperative outcomes.

6 Concluding Comments

The learning dvnamics studied in this paper is admittedly styvlized and the context to
which it is applied undoubtedly special However, we want to conclude the main bodyv of
the paper by discussing its robustness in the face of alternative specifications, outlining
as well a vaiiety of different possible extensions

As amply discussed, the essential role of trembles in our framewoik is that of liber-
ating the process from “fragile” pss’s And, as it turns out, only the (C. () pss proves
to be resilient enough to display anv significant long-run weight, as the adjustment of
aspirations becomes very gradual In this light, it seems clear that a wide variety of
alternative perturbations of the process would tend to produce the same 1esults Con-
sider, for example, a model where aspirations always adjust deterministicallv according
to (1) but, occasionally (i.c., with some small probability ) players adjust their actions
arbitraiily (that is, not according to the function p). This would be a formulation moie
in line with the approach of recent evolutionary literature (where plavers are assumed
to “experiment”) and would secem to lead to results which are qualitativelv the same
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as described here. It would still be true that a transition from the pss (C,C) to any
of the other three pps’s will be a very unlikely event after one tremble, if X\ is close to
one. Reciprocally, the converse transitions would still require very little inertia (and,
therefore, would be much more likely), after one single tremble The logic underlying
our analysis would seem to be essentially unaffected by this alternative specification.

Another variation on the model pertains to the postulated law of motion on aspira-
tions. The geometric formulation considered here could be 1eplaced with

_ ; 2
Qi1 = P ‘;:O Ty ( )

that is, a simple average of past payoffs In a heuristic sense, (2) could be interpreted as
a limiting case of owr framework when A — 1.0 Whether this new feature also leads to
similar conclusions is an open question. The main issue here is that, in this alternative
context, any transition becomes progressively more lengthy as time proceeds This could
conceivably lead to non-ergodic behavior despite the fact that the relatwe likelihoods of
the different transitions across pss’s would display the same features as described in ou:
model.

Let us now outline some interesting extensions of the game studied here We shall
focus on three of them: (a) coordination games; (b) random-matching population con-
texts; (c) richer intertemporal strategies. The extent to which we feel we understand
each of these extensions is decreasing in the order mentioned

First, it is not difficult to see that the same asymmetry between upward and down-
ward movements in aspiration levels would appear in strict coordination games (i.e,
symimmetric games where every main-diagonal payoft is positive, all others being equal to
zero). If the game has a unique equilibrium which dominates all others, it can be shown
that the long-run outcome of a process analogous to the one described in this paper
would coincide with such an equilibrium

A second extension would involve a finite-population context where plavers are ran-
domlv matched every period to play a game, say a Prisoner’s Dilemma. Even though
we have not worked out the details of such a model, we conjecture that the cooperative
outcome (ie., all plavers choosing C) would still be the unique long-run outcome for A
close to one. 'The reason is that, in this context, the destabilizing effect of one tremble
would still be the same as before, once we are allowed to specify the particular outcome
(o1 chain of outcomes) of the matching mechanism. Since every matching outcome has
some positive probability, so has anvy finite chain of them required for the perturbation
to operate in the desired direction. Combining this ideas with an analogous 10le for

YOf course, one could not carry out this limit operation literally since this would amount to freezing
the aspiration level at its initial value

16




inertia still present when A is large, the logic used above would seem applicable to the
population context outlined.

Finally, it might be of interest to allow for players who may rely on the intertemporal
nature of the interaction and use history-dependent rules. In this context, players could
end up using certain rules not only due to their “direct” payoff performance but also,
indirectly, because of the behavior they induce in others. Again, one would postulate
reinforcing mechanisms of the type described on the set of possible rules, the learning
process being occasionally perturbed by stochastic trembles. A preliminarv issue which
would arise in this respect pertains to the specification of the space of rules to be con-
sidered. Initially, one might consider simply addding to the “flat” (historv-independent)
rules, a simple reactive one (for example, in the Prisoner’s Dilemma, a strategy of the
Tit-For-Tat variety) In this framework, it may be possible to shed some light on the
difficult issue of whether sophisticated rules may either arise or, at least. play a crucial
role in facilitating the emergence of simple cooperative behavior

7 Proofs

Proof of Proposition 1. Given initial aspirations (ag, ), aspirations at all later dates
will be contained in the convex hull of {ag, 8y) and the four (pure) pavofl points of the
game. Let this convex hull be denoted C and let the maximum aspirations for the two
plavers in C be denoted by & and 8 respectively.

Consider any state («, 3, 4, B) with (o, ) € C. Let the payoffs generated by the
action pair (A, B) be denoted (!, 72). Consider the probabilitv of an infinite run on
this action pair, which is given by

h(e,8) = [ p(A e — 7))p(\(3 — =%))

t=1

We claim that (i) h(a,3) > 0 for every (a,8) € C, and (ii) h is nonincieasing in each
argument
To prove (1), it suffices to check that:

i[l — (M a = 7)), A (B = 7)) < oo,

t=1

where I(dy, d2) denotes p(dy)p(de) This condition is satisfied because the left hand side
is bounded above by

A

——{la = 7'+ 10 -7}

thus establishing (1) Claim (1) follows directly from the fact that p is nonincieasing
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Given (i) and (ii), we see that for every (o, 8) € C,
h(a, B) > h(&,b) > 0.

Let € > 0 denote the minimum value of h(@, ) across all possible initial action pairs.
It follows that at every date the probability of converging to the pure strategy state
corresponding to the ongoing action pair is at least ¢, thereby completing the proof. ®&

We now prepare for the statement and proof of Theorem 2. Let A(FE) denote the
set of probability measures on a compact state space F, endowed with the Borel o-
algebra. For any transition probability @ on E and any measure p € A(E), define
pQ = [ u(z)Q(z, ) Two transition probabilities P and @ naturally induce a thitd PQ
through composition: PQ(z,.) = P(z,.).Q. This permits us to define m-step transition
probabilities iteratively: P™(xz,.) = P™ 1(x, ) P, where PYis the degenerate probability
on

Given a real valued function f on F, define Pf = [ P(z,dy)f(y)
A measure II on E is tnvarwant with respect to P if ILP =11
Perturb the transition probability P in the following manner: define for n € (0, 1),

PT = (1—-¢n)P + ¢(n)Q"
QT =1 —-9vmQ+v(n)Q]

where ¢(n) — 0,9(n) — 0,0 < ¢(n) <1,0<y(n) <lasn—0

THEOREM 2 Assume that

[a] For each =z € F, T% }:E;O P'(x,.) converges weakly to a probability measure R(z,.)
[b] @ has the strong Feller property: Qf is continuous for all bounded measurable f on
L

[c] @ is open set nreducible, ie, for all open sets U and all 2 € . 50, Q" (2, U) > 0;

n=1
and

[d] @R has a unique invariant measure IT*

Then P7 has a unique invariant measure 117, which converges weaklv to [I" asn | O

Proof. Given any n > 0, properties [b] and [¢] implv that P7 is a T-chain Applying
Theorem 16.2.5 in Meyn and Tweedie (1993), P7 is uniformly ergodic, and has a unique
mvariant measure 117 Then

I [(1 = @) P + o(n)Q") = 117,

implying that
MM =" — (1 — p(n)IT"P
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Given any bounded continuous function f, apply the probability measures above to P™ f:
I @) QP f =TI P™ f — (1 — ¢(n))[I". P+
Multiplying by (1 - ¢(n))! and summing over ¢ = 0, .., T we obtain
T
7 (G(m)QN{S (1 — ¢(m))' P f} = TITF — (1 = ¢(n))THH07 PI+1 ¢
t=0

Taking T — oo, and using sup, |7 PT*! f(z)| < sup, | f(z)], we get

" {Q"g"}y =1"f, (3)
where
7) = 9000~ 6(0) P (2)
Note that Im7_.eo 727 31— P'f(z) = Rf(z) implies ¢"(z) — Rf(2) as n | 0. Now
II".Q"9" = (1 — ¥(n)I1".Qg" + ¥ (n)II".QTg". (4)

Since {g7(x)] < sup, |f(y)] = M < oo, we also have [II".Q7g"| < A As Q is stiong
Feller, it follows that Qg7 and QRf are continuous. Hence

sup 1Qg"(z) — QRf(z)| — 0

as 1 | 0. Thus, if 7, is any sequence with 1, | 0 with II"™ — IT in the topology of weak
convergence,

0™ Qg™ — QRS (5)
(4) and (5) together imply that
I QM g™ = [LQRY (6)
Combining (3) and (6),
QRS =11f,
It then follows from [d] that IT = II*, which completes the p1oof H

Proof of Propositions 3 and 4. Define

() =0 + 29(1 - n),
2

)

/ = -

i) n? 4+ 2n(1 —n)
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It is then evident that
P =1[1-¢(n)]P + ¢(n)Q"
where
Q" =[1-4¥MQ+y(nQ”,
@* denoting the transition probability when both players are subjected simultaneously
to a tremble
Assumption (a) of Theorem 2 is established by Proposition 1, while assumptions (b)
and (c) are valid by construction. Hence it remains to check assumption (d), i.e., that
the process QR has a unique invariant distribution. We know from Proposition 1 that
every invariant distribution of QR must be concentrated on the four pss’s. Hence it
suffices to show that there exists a pss (the mutual defection pss) which can be reached
with positive probability from every other pss in the QR process
For this it suffices to check that the action pair (D, D) will be played at some date,
when we start at any pss and subject the aspiration of one player to a tremble. The
reason is that once this happens, the reasoning of Proposition 1 implies that with positive
probability there will be an infinite run on (D, D) thereafter, causing convergence to the
(D, D) pss. If we start with the (D, D) pss then this is obvious, owing to inertia. And
if we start with any other pss, then one small upward tremble to one player’s aspiration
will cause (C, D) or (D, C) followed by (D, D) to be played with some probability ]

For the proof of Theorem 1, we need some additional notation If w¢ denotes the
pavoff to player 1 in anv period s, then

asp1 = Ao + (1 — N)mg,

so that
las = as] = (1= Mlas —m5] < (1= )W,
where 117 is the maximum conceivable value between aspirations and pavoffs (the width
of the compact interval A to which aspirations belong)
Let 7" be the minimum number of periods that need to elapse before aspirations at
time 7 + 2 are different from aspirations at time 0 by an amount not less than a Then
it 1s clear that 7" > T(A, a), where T'(A. a) is the smallest integer such that

(1= N[T(Aa) +2]W > a

It follows that B
(1= T a) > 5 21 - ) (7

Note that if @ > 0, then T(A,a) > 0 for all A sufficiently close to unity, and indeed. that
T(X a) — oo as A — 1. This construct will be used at various stages below

For any (&,i)) > O such that §+a < o —dand 6 +b < o — b, let I((i,l}) be the
rectangle defined by [6 +a,0 —a] x [§ +b,0 - b]
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LeatMa 1 Consider any (&,E)) > 0 such that 6 +4 < o —a and 6 +b < o — b Then
qen any € > 0, there exists Ay € (0,1) such that

Prob*(ay, B, 5:) — (0,0, (C,C)|(ar, Br) € 1(a,0) > 1 —¢

for all T and all X € (A1, 1).

Proof. Fix any T with (ar,fr) € I(a,b)). Let T*(A) be the minimum number of
periods  such that (apyiyo,Orii42) € I(%, %) Observe that if a = lmin{&,@}, then
that T*(X) > T'(A, a) (see (7)). It follows that a lower bound for T*()) can be found that
is independent of T

We observe, next, that theie is ( > 0 (independent of T" and A) such that as long
ast =17 +2,T+3,...,T(\a)+ 7T, s = (C,C) with probability at least (. To see
this, suppose first that (C,C) is played in period ¢ — 2. In that case (C,C) is played in
period t with probability one. If (D, D) is played in period t — 2, then the probability is
easily seen to be at least p(%)p(g) If at date t —2, (D, C) is played, then the conditional
probability of playing (D, D) at t — 1 is at least [1 — p(6)] (because player 1 will stick
for sure to D, and player 2 will switch with probability at least [1 — p(6)]). Thereafter,

a switch to (C,C) in period 7 occurs with probability at least p(%)p(%
probability in this case is therefore at least [1 —p(é)]p(%)p(%) Finallv, the argument for
(C, D) is symmetric

Thus in all cases, the conditional probability of playing (C,C) at date ¢ is bounded
below by the positive number ¢ = [1 — p(8)]p(2)p()

We mayv now compute a lower bound on the probability of (C,C) being plaved at
least once in T(A, a) —2 periods. The probability that (C, C) will never be plaved during
this stietch is clearlvy bounded above by (1 — g‘)T(Ara)—? Thus the 1equired lower bound
is given by 1 — (1 — )T@)=2 Choose A; such that

}. The conditional

1-(1=)TCa)=2 5 _ ¢

We complete the proof bv showing that once (C,C) is played during these periods,
(a1, Br. ) — (0,0,(C,C)) as t — oo. To see this, simplv observe that whenever (C,C)

is plaved during this time, say at date s, (as,3s) < (0 — 2 o — %) bv the construction

of T(A,a) Tt follows that once (C,C) is played, it will be plaved 1epeatedlv thercafter,
and we are done. s

LerzaA 2 Let T(X) be a sequence of positive integers such that T(A) — oo as A — 1
For each X, let {X}}, Z}} be a finite horizon stochastic process with terminal date T'(\),
such that X, takes values only i {0, 1} (there is no restriction on Z;)
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Suppose that for each M, X()\ is equal to a constant 1(\) (which can take the values 0
or 1). Use the notation hy to denote t-histories for each t > 1, and the notation L{h;)
to denote the value of X} | for every t-history

Suppose that for every A € (0,1),

Prob(X} = 1}h) < u < 1,

whenever L(hy) = 0, while
Prob(X; = 1)) <wv < 1,

if L(ht) = 1. Then for every v > 0,

TN

u+ v
Piob{—— N x < — 77 Y blash— 1 (8
1o {T(/\)+1;) t"l—v+u} o 8)

Proof. We begin with a coupling result that will be needed for the proof

CraiM. Suppose {Ug, Ui, Us,...,Ur} is a finite sequence of random variables that as-
sume values in {0,1}. Suppose that Uy = ¢ (where ¢ is either 0 or 1), and that for
=1,

Prob(Uy = 1|hy) = pe(hy) < u < 1,

if L(hs) =0, and
PIOb(Ut = 1‘}71*) = pz(hf) S v < ].,

Let {V1,Va,.. ,Vr} be a (finite-horizon) Markov Chain with values in 0,1 such that
Vo =7ras well and for all >0

Piob(Vi,, =1[V; =0)=u  Prob(Viz1 =0|Vi=0)=1—-u
Piob(Vipr = L[y = 1) = v Prob(Viuy =0V =0) =1 ¢
Then for all z,
Prob(Uy +Us+ ... +Ur <z) > Piob{(Vi+ Vo + .+ Vp < 2) (9)

We prove this using a standaid coupling aigument. Define q(0) = v and ¢(1) = v
Take a probability space Q = [0, 1] with the Borel o-field on Q, and product Lebesgue
measure.

For ¢ = (z1,292,...,27) € §, let &o(:c) = 1. Recursively, for ¢t > 1, having de-
fined Uop,. . Uiy; Vi, ., Vig, let Lx) = ]3,(00(213),[}2(21)), LU (=) and mi(z) =
q(V,Al(:z:)) Now define (7,,, \7} by

U(e) = 1z, <e )
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and B
Vt(x) = 1{I¢S7h(m)}'
Observe now that for all ¢t = 0,1,. ., T, and each = € €1,

Ui(z) < V(). (10)

To see this, proceed inductively, noting that the statement is trivially true at ¢ = 0.
Recursively, if the statement is true at some t — 1, note that by the constiuction of U,
V and ¢,

&i(z) < me(x).
The required inequality (10) at date ¢ follows right away from this observation
Finally, observe that using product Lebesgue measure, the distribution of ([707 (71, L, (]7)
is the same as the distribution of (Up,Ui,...Ur), and also that the distribution of
(\70, Vi, \7T) is the same as the distribution of (Vg, V1,... V)
Now the required conclusion (9) follows immediately, because the corresponding state-
ment for (50, .. ﬁT), (VO, o VT) is a direct consequence of (10).

With the Claim in hand, we return to the proof of the lemma. It will be sufficient
to establish the lemma for the case where 7(A) is a constant ¢, independent of A The
general case then follows easily from a subsequence argument.

Let {V;} be the Markov chain constructed in the Claim. Then interpreting XtA as Uy,
(9) implies immediately that '

Prob( 1 TZ(/\:)X)‘< U+ v ) > Prob %)V< . |
OD| ——r—— [ ob{—— o
: T()\)_{“'l =0 £ 1—v+u ™ ! T(A)-‘}—l =0 t= l1—v+4+u

By the stiong law of large numbers for Maikov chains, the RHS above conveiges to 1,
and we are done

LEMMA 3 There exist positive numbers a and b with §+b < o — b, with the property that
for any € > 0, there exists Ay € (0,1) such that

Prob{(a, B, st) — (0,0,(C,CN|(a1,87) € N} > 1 — ¢ (11)
for every T and X € (Mg, 1), where N = [6 — a,6 + a] x [§ + 2b,0 — 2]

Proof. We begin the proof by choosing the numbers ¢ and b, and defining some other
values that will be needed in the argument.

Start by choosing & > 0 such that 0 < § — 2b < § +2b < ¢ — 2b and define the
rectangle M) by

My = {a,B)lae{d—b6+b},8€elb+2b,0 201}




Consider the process commencing from some aspiration vector (ap, fr) € M at date T,
and any given vector of actions. For each A, note that a lower bound on the the minimum

number of periods after which (ariit0, BTaa2) fails to lie within the larger rectangle,
Mo, defined by

Mo = {(a,B)o € [6 — 2b,6 +2b), B € [6+b,0 — b]}

is given by T'(A,b) (see (7)).

Clearly, there is an interval [, 1] such that for every X in this interval, T(\b) >0
For the rest of the arqument, A\ will be taken to Le 1n this interval

Define K = Tb/V —2(1— ) >0 It follows then that for all X € (M 1),

(1= NT(Mb) > K >0 (12)

Next, fix a € (0,b] and define the following quantities:

d = 1-pla)>0
e’ = p(2b)[1-p)] >0
Y= pl6—2b) < 1 (13)

Observe that the inequalities above hold because p(z) € (0,1) whenever 22 > 0
We will impose a further restriction on the choice of a. It must satisfy the additional
restriction that

d/
6 — Vley - O
( ((Ha)](” 17 +d

(6 +a)d  2a
i +d K (14)

> —a(l—¢x) -
where K is given by (12), and x is a stiictly positive number satisfying the equality

x = min{p(2b)p(c — 6 = b),p(6 +b)} — ¢ (15)

for some small but positive €

Let us check to see that this can be done Ceitainlv x can be chosen as in (15)
Having done so, note that the RHS of (14) goes to 0 as a — 0, while the LHS of (14)
converges to the positive quantity

[0 - 6]e’x

(to see this, use (13)). Bv the continuitv of both sides of {14) in a at a = 0, it follows
that there exists o small but stiictly positive such that both §+a < ¢ —a and (17) holds
We complete our construction by noting that there exists ¢ > 0 such that if we define

d = 1-pla)+¢€
e = p(2b)[L —p(b)] — ¢
1= plb—2b) - €. (16)
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then d, e and 1 all lie strictly between 0 and 1, and moreover ,

(6+a)d _ 2a

> ‘a(l—ex)—ng (17)

0= (6 +a)) (ex —

In what follows, a, b, d, e, 1, €, and ¢ are fixed by these considerations, irrespective of
the value of A € [A,1).

Let Wy = {(C,C) is played for some T' < t < TN+ T, anday <bd+afor T <
k <t} = Note by the construction of T(\,b) that (ay, ) < (0 — b0 — b) for all
t € {0,1,...,7(N)} . Consequently, if Wy occurs, (C,C) will be plaved repeatedly
thereafter, and (o4, B¢, 1) —— (0,0, (C,C)) for sure. Thus

Prob*{(cx, B, s¢) — (0,0,(C, C))|W1} = 1 (18)
In what follows, we suppose, then, that the event W, does not occui
Denote by 5> the event {(ay, B,) € I(a,b) for some T < ¢ < T(A b) + T}

Cramt. There exists a function g(A) on (N, 1), independent of T, with g{(A) — 1 as
A — 1, such that

Prob*(S*|(ar, Br) € N,~ W1) > g(A) (19)
To establish this claim, let W, be the event {a; > & + a for some t = T,T +
L. ,T(Ab) +T — 1}. Note that by the definition of conditional probabilities,
ProbX(8%|(ar, Br) € Ny~ Wi) = Prob™(8(ar, B,) € N, Wy, ~ 1¥)Prob* (Wa)
+ Prob*(S*(ar, Br) € N, ~ Wy ~ T17)Prob™(~ Wa),
First evaluate Pxob’\(S’\{(aT,,Bt) € N, Wy, ~ W) Note that if W, occurs (at some date
t), then by a property of T(A\,b), oy < §+26< ¢ —2b < o — a. by the choices of a

and b. So a; € [6 +a,0 —a] Also, by construction of T(A b), it must be the case that
Br € [6+b,0 —b], so that (ar, B;) € I(a,b) This shows that

Prob*(S5* (a7, Br) € N, Wo, ~ ) = 1 (20)
It remains to evaluate the conditional probability
Prob*(S*|(ar, Br) € N, ~ Wy, ~ W)

for each T

It will be useful in what follows to concentrate on the action plavs in each of the
periods T + 1,. ., T(A,b) + T One way of doing this is to note that the overall
stochastic process, conditional on some initial action sy, (ap, A7) € N and the event
~ W, defines a stochastic process (which in general will be non-Maikovian) on the
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actions s; played in periods t = T, T+ 1,...,T(A, b))+ T. This process can be described,
given the initial conditions, by a sequence of functions (one for each date), describing the
probability of each action pair at date £ conditional on the entire history of actions hA; up
to that date. At 1, let P’\(H,ht) denote this function. With slight abuse of notation, we
will use P to denote the probability of various events as well, conditional or otherwise
Let p denote the fraction of occurrences of (D, D), and « the fraction of occurtences
of (C, D), for the dates T, T+1,.. ., T()\,b)+T. Of course, i and -y are random variables
for each A
Recalling the definitions in (16) and the definition of x in (15), consider the event Z
described by
p<l-ex (21)

and
e — (22)
SuBcLAM. There exists a function g(A) on (A, 1), windependent of T with g(A) — 1 as
A — 1 such that
Prob*(Z|(ar, Br) € N, ~ Wy, ~ W1) > g(N\) (23)

The argument up to the third paragraph following (27) is concerned with the proof
of this Subclaim

Begin by computing PA((D, D), h;) for each A, ¢ > 1 and h,.

Let s(h) denote the last action vector, i e, the action at date ¢ — 1, under the ¢-
history hy. If s(hy) = (D, D), then the probability that both players continue with D is
at least p(2b)p(c — 6 — b) (since player 1’s aspiration cannot exceed § + 2b and player 2’s
aspiration cannot exceed o — b, by the construction of T(X\,b) ). If s(h:) = (C, D), then
by a similar argument, the probability of moving to (D, D) the next period is at least
p(6 —2b). If s(hy) = (D, C), the probability of moving to (D, D) is at least p(é +b) By
invoking (15), we see, therefore, that

PM(D,D), hi) > x +¢

for all Ay and all A
Let E* be the event

T(Ab0)+T
1 (

{T(A, b) + 1

\

)
Lp.py > X},
=T

where the notation 1, denotes the indicator function of the action vector s Note that
x i1s independent of 7' Now apply Lemma 2, with X; = 0 whenever (D, D) is plaved,
X¢ = 11if anvthing else is played, with Z; set equal to some constant, with v = v =1 — x,
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and v = €. We may deduce that there exists a function g; () (with g;(A) — 1 as A — 1)
such that

[} PAEY) 2 g1(A).

Next, consider the probability P*((D,C), hy) for histories such that s(h;) = (D, D).
For (D, C) to follow (D, D), player 1 must stay at D while plaver 2 switches Because
or < 6+ 2b, player 1 stays with probability at least p(2b), while because 0; > & + b,
player 2 switches with probability at least [1 — p(b)]. Consequently, recalling (16), we see
that

PM(D,C),hy) > e+ ¢ (24)

for all ¢ > 1, all A, and all hy with s(hy) = (D, D)
Now, consider the event

TAL)+T
F={ Y 1lpe 2exT(b)},
t=T

where y is the constant used to define E*, and a particular conditional probability
PX(F*E). Because the event E* occurs in the conditioning, the number of occurrences
of (D, D) is at least as big as xT'(A, b) for each A

Use this information to construct a stochastic process as follows FEach occurrence of
(D, D) is to be treated as a “date”. The number of dates will be taken to be the greatest
integer not exceeding x7'(A,b): this is T(A) in Lemma 2. Throw awav all information
after this date Let X, be the following random variable that describes the action vector
immediatelv following the tth realization of (D, D): X = 0if (D,C) occurs, and X =1
otherwise. Let Z; be a list of all the action vectors that follow the fth occurrence of
(D, D), up to the t + 1 th occurrence of (D, D). [If (D, D) is immediately followed by
another (D, D), then set Z equal to some arbitrarv constant.] This process fits all the
conditions of Lemma 2, if both u and v are identified with 1 —e—¢' Applving the lemma,
we may conclude that there exists a function ga(A) with g2(A) — 1 as A — 1 such that

(1] PAFMEY) 2 g2(2)

Again, note that go is independent of T, since ¢ is.

Next, consider the probability PA((C. D), h,) First suppose that s(h,) = (D, D). For
(C, D) to follow (D, D), player 1 must switch to C while plaver 2 stavs at D Because
we are conditioning on ~ W and so in particular on ~ W5, we have a; < §+a. It follows
that the transition occurs with probability no more than [1 — p(a)] It follows (recall

(16)) that
PY(C, D), h) <1 -pla)=d—¢ (25)

for all > 1. all A, and all i, with s(h) = (D, D)
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Next, suppose that s(ht) # (D, D). In this case, PA((C, D), h;) can only be positive
when (C, D) itself was played last (remember that we are conditioning on ~ W) This
requires that player 1 stick to his previous action, which will occur with probability at
most p(6 — 2b). Using (16), it follows that

PM(C D), hy) <1+ ¢ (26)

for all t > 1, all A, and all hy; with L(h;) # (D, D)
Consider, then, the event

TO)+T J
Gr=1{ S L

We claim that there exists a function ¢3(A), independent of T', with g4(A\) — 1 as A — |
such that

[II1] PA(G?) 2 g3(N).

Proving this claim requires the application of Lemma 2 vet again Start with the
(unconditional) event G*. Define a stochastic process as in Lemma 2 with T'(\) = T(), b)
, with X = 1 if the action vector at time t+7 is (C, D) (and 0 otherwise), with v = d—¢'
and v = 1+ €, and with v = ¢ Take Z; to be some constant for all ¢ Now the lemma
applies, so we see that there exists a function g3(A) with the 1equired properties

We may now combine observations [I]-[III]. The point is to recognize that all these
thiee hold, then it must be the case that

PMGA*NF N EY) > g(\), (27)

for some function g(\) that is independent of T and with the property that g(A\) — 1 as
A—1

To complete the proof of (23), we unravel what the event G* N F* N E* implies for
the values of 1 and «, which, it will be 1ecalled, are the fractions of (D, D)'s and (T, D}’s
respectively during the dates T, T + 1,.. ,T(\0)+ T

Let # denote the fraction of (D, C)’s during this period Note, first, that g+~ < 1
while under the event F*, x > ey Combining these two observations, we may conclude
that ;£ < 1 — ex. This shows that (21) must hold under the events E* and F*,

Next, note that under the event G*, v < L—?IE , which is, of course, (22)

The observations in the last two paragraphs, coupled with (27), establish (23), and
the proof of the Subclaim is complete.

Suppose, then, that the conditional event described by (23) does in fact occur  Let
us find a lower bound on the change in plaver 1's aspirations as a result of this event
Recall that ary; = Aay + (1 = M)y, where 7y is the pavoff at date ¢, so that

arpr —or = (1= A7 — (28]
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Recalling that ay <6 +afor ¢t =0,1,...T(A,b) — 1 (i.e, the event W5 does not occur),
we see that the RHS of (28) is bounded below by (1 — A)[6 — (6 — @)] when the action
(D, C) is played, by —(1 — X)a when the action (D, D) is played, and by —(1 — X)(§ +a)
when the action (C, D) is played. Using (21) and (22), we may therefore compute the
total rightward drift over T'(\, b) periods as

TAD) (L = A0 - (6 —a)l[l —v — ] — pa — (6 + a)}

d (6+a)d
> T(LB)(1 - {6 - (6 — N IS O Sl vk
> TR (8- (6= a) (ex -~ 15— ) —al1 —ex) - 2
> TR - N2 59
p— 3 K — 07
using (12) and (17). We conclude, then, that under the event Z,
arpp) 2 0+ a, (29)
while, by the constiuction of T'(}, b),
Broy 26 +0 (30)
From (29) and (30), it follows right away that
Prob*(S*(ar, Br) € N, ~ Wa, ~ W1) > g()), (31)

where () was introduced in (27) '
By combining (20) and (31), and defining ¢(A) = min{g(A).g()\)}, we obtain { 19)
Recalling (19), we may conclude that
Prob™(S*(ar, Ar) € N, ~ W1) > g(A) (32)

for some function g(A), independent of 7', such that g(A) — 1 as A — 1. This completes
the proof of the Claim

To complete the proof of the lemma, observe, noting carefully the definition of W
that

Prob*{(ar, Br, st) — (0,0, (C,C)|(er, Br) € N, ~ W1}

TAD+T
> Y ProbM(or, Brosi) = (0,0,(C,C))|(as. Bs) € (a1}
5=T
Prob*((as, Bs) € I(a,b)|(ar, Br) € N, ~ Wi} (33)

Using Lemma 1, we may conclude that there exists a function ¢'(\) independent of S,
with ¢’(A) — 1 as A — 1, such that

PIOb)\{(QMIBI:SC) - (Uw g, (C’C>>‘(O~S:BS> € [(”’b)} Z (,//{\’\3
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Using this observation in (33), we see that

Prob*{(ay, B, 51) = (0,0, (C,C))|(ar, Br) € N,~ W1}
T(AD)+T

> ¢'(\) > ProbM(as,fs) € I(a,b)|(ar, Br) € N, ~ W1},
5=T

and now using (32),
Prob*{(ey, B, s¢) — (0,0, (C,C)|(ar, Br) € N, ~ Wi} > ¢'(M)g(N), (34)

the RHS of which converges to one as A — 1, uniformly in T Combining (18) and (34),
the proof of the lemma is complete.

LEMMA 4 Let a and b be positive numbers satisfying a < min{6,b}. For any e > O there
emists A3 € (0,1) such that:
Prob*ar < a|Ji] < ¢ (35)

for any A € (A3, 1), any event J; which 1s a subset of the event that {ay > b. 5, < 0}, and
any pawr of dates t,T" satisfying T >t

Proof. Suppose that the conditional event described in (35) occurs Pick Az to satisfy
[p(a)]T(’\%b‘”a) < €, where b* = min{b,6} > a Take any A € (A3,1) and any ¢,7 > ¢
Define intervening dates / and m as follows: [ is the last date k between ¢ and 7" such
that ap > 0", and m is the first date k when o < a Clearly, m — [ > T()\,b" — a), and
a < ap < b* for all intervening dates. Note also that if 5; < 6 then G < 8 for all k >,
since ¢ is the highest attainable payoff in the game

We claim that the action pair (C, D) must have been played successively between |
and m — 1 Fiist, note that (C, D) must have been plaved at date /: anv other action
pair could not have lowered plaver 1’s aspiration below b* at I +1. Now a;., < &, while
Bri1 < 0: so player 2 is satisfied at 1, while 1 is disappointed Hence onlv player 1 has
an incentive to switch: (C, D) or (D, D) must be plaved at I +1 If plaver 1 does switch
toa D at I+ 1, [sihe will obtain a pavoff of §, gieater than his/her aspiration. Player 2
may or may not switch thereafter, but irrespective of this, player 1 will obtain a pavoft
of at least ¢, and so must stick with D at least until m, since his/her aspiration is less
than ¢ until then. Moreover, her aspiration must go up successively from ! + 1 onwards,
so her aspiration cannot fall below a at m Hence (C, D) must be repeated at / + 1 The
same argument can then be applied successively to all dates [ + 2. m =1

Hence player 1 must have persisted with C between dates [ and m despite being
disappointed by at least a at every date. The probability of this event is therefore at
most [p(a)]™ ! < ¢ Since this bound is independent of I and m, the lemma follows
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LEMMA 5 For any €* > 0, there exists Ay € (0,1) such that
Prob{(at, B, s¢) — (6,6, (D, D))o, Bo) > (0,0)} < € (36)
forall A € (X4, 1)

Proof. Under the event F' = {oy, B¢, 5¢) — (6,6, (D, D)}, there must exist a date 7" such
that Oy < 64 2b, where b is as given in Lemma 3 . Since fy > o, there exists A < 1 such
that fo1 any X € (A, 1), there must exist a first date k such that B € (6 + 20,0 — 2b)
We assert that by permuting the two players if necessary, it must also be true that there
exists a first date k in which simultaneously B € (6 +2b,0 — 2b) and oy < o —a, where
a is also given by Lemma 3. Let Ej denote this event

Take ¢ = §3~ and Ay = max{;\, A1, A2, Az}, where Ag, A3 are as given in Lemmas 3
and 4 respectively, corresponding to this € and a,b, and A is as given in Lemma 1
corresponding to this ¢ and I(a,2b). Taking any A € ()4, 1) and anv & as defined above:

Prob?

(F|Ek, (0, Bo) > (o,0))

= Prob*(Flax < § —a, B € (64 2b,0 — 2b))Prob* (o < 6 — a|Ey. (g, Bo) > (0, 0))
+ Prob*(F(ax, Bi) € N)Prob*(6 —a < ax < 6 + a|Ey. (co. 8) > (6.0))

+ Prob*(Fl6+a < ap <o —a,b+2b < f <o — 2b)Prob®(F|Ex. (ap, fo) > (0,0)),

where IV is defined in Lemma 3. The fiist term on the RHS of this expression is bounded
above by
Prob*(ay < & — a|Ex, (aq, fo) = (0,0))

Since the event we are conditioning on is a subset of the event {ag > 6 8y < #}. Lemma

4 implies that this teim is less than % The second term is bounded above by

Prob*(Fl{a, Gr) € N),

which 1s less than L by virtue of Lemma 3. Finally, the third termi is bounded above by

Prob™(F|(ak, k) € I(a, 2b))

€*

which 1s also less than % by Lemma 1. Hence the sum of these terms is less than €*,

thereby completing the proof
We are finally in a position to complete the

Proof of Theorem 1. Using Propositions 1 and 4, it suffices to show that in the
‘untiembled’ process, the probability of transiting from the (C, C) pss following a single
tremble to any of the other three pss’s converges to zero, while the probabilityv of a reverse
transition is bounded away fiom zero, as A — 1
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Suppose we start from the (C, D) pss, and player 1’s aspiration experiences an upward
triemble by =z > 0, to take the aspiration vector to (z,6) . Now apply Lemma 3 (with
b= % and a = %) to infer that the probability of converging back to the (C, D) pss,
converges to zero as A — 1. Moreover, the same Lemma also implies that (i) starting
with the (C, D) pss followed with one tremble, the probability of converging to the (D, C)
pss also converges to zero (since By = 0 > §¢), and (il) the same is true for the probability
of converging to the (C, D) pss or (D, C) pss, when we start with either the (D, D) pss
or (C,C) pss and subject aspirations of one plaver to a single tremble This establishes
that as A — 1, the weight placed by II* on either the (C, D) pss or (D, C) pss must
converge to zero

Hence as A — 1, the sum of the weights placed on the (C, C) pss and the (D, D) pss
will converge to 1

Now suppose we start from the (D, D) pss, and player 2’s aspiration experiences an
upward tremble from 6 to § + x, while player 1’s aspiration remains at § The argument
of Lemma 3 can then be applied (selecting a value of b smaller than 7) to infer that fiom
this state, the probability of the untrembled process converging to the (€. (") pss is close
to 1, for A sufficiently close to 1.

Finally, Lemma 5 shows that the probability of transiting to the (D, D) pss following
application of one tremble to the (C,C) pss, converges to 0 as A — 1 This completes
the proof.
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