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TEMPORARY EQUILIBRIUM WITH LEARNING: THE STABILITY
OF RANDOM WALK BELIEFS

Shurojit Chatterji

ABSTRACT

This paper examines the stability of deterministic steady-states with a one dimensional
state-variable and a smooth, recursive updating rule. It is shown that the only possibly stable
steady states are those associated with random walk beliefs, provided there is motion on a
center manifold, which is the case when a key parameter is non-zero. In the extant literature,
there is no motion on the center manifold (the parameter is zero), a consequence of the specific
assumption that the expected value of the state variable next period determines its current
value. The stability properties are seen to be robust with respect to small misspecifications

in the agents fixed perception of the steady state.
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This paper continues the local stability analysis of deterministic steady states
[1,2 and 3] in a set up where the state variable is one dimensional and where the
agents learning process is summarised by a smooth, recursive updating rule.

In the formulation of this and the earlier papers, agents beliefs about the dy-
namics are summarised by a stochastic linear model. The agents are assumed to
recognize the steady state whose stability is being assessed. The agent’s model is
thus specified in deviations of the state variable from its steady state value. The
agents learn about the parameter (denoted §) which they believe governs the dy-
namics outside the steady state by updating the parameter estimates using a smooth
recursive rule. Given this structure, the dynamical system with learning has a unit
eigenvalue at the steady state. Thus there exists a center manifold associated with
the steady state, which must be considered while evaluating the local stability of the
steady state.

Previous studies [1,2 and 3] have analysed stability under the specific assumption
that the expected value of the state variable next period determines its current value,
an assumption which puts restrictions on the underlying microeconomic structure.
Under this assumption, there exists a manifold of equilibria of the learning system
corresponding to the steady state being considered, and the partial derivative with
respect to [, denoted b, of the map that determines the current value of the state
variable as a function of the past values of the state variable and the § estimates, is 0.
This manifold of equilibria coincides with the center manifold referred to above, and
this has an important effect on the stability, namely, that since the center manifold
is a set of equilibria, there is no motion on the center manifold. There one gets
the intuitively appealing result that if the agents use sufficiently low values of |3|
(corresponding to the belief that the steady state is locally stable), one gets local
stability and if, on the contrary, agents use high estimates (corresponding to beliefs
that the system may be divergent), then one gets local instability.

This paper demonstrates that a very different picture emerges when this assump-

tion is removed. Specifically, in Section 2, I develop the local stability analysis under




the assumption that the key partial derivative b is non zero. I present in Appendix
A a utility maximising model based on an overlapping generations economy to il-
lustrate that non zero values of b arise robustly. Under this assumption, there is
motion on the center manifold, and this drives the stability result summarised in
Proposition 2.1. The proposition proves that the only possibly stable steady state is
one where the agents use the 8 value 1. This follows from the analysis that shows
that motion on the center manifold is locally convergent if and only if 3 =1 at the
steady state. Local stability now requires that the remaining eigenvalue of the sys-
tem at the steady state have modulus less than one. This condition is satisfied if the
effect of expectations on the economy at the steady state corresponding to § =1 is
small enough. On the other hand, if expectations matter significantly, this remaining
eigenvalue exceeds 1 in modulus and one gets local instability. To summarize, the
only steady states that are locally stable for a robust specification of economies are
those where (i) agents beliefs at the steady state follow a random walk and (ii) where
the effect of expectations on the economy at the steady state is not too large.

In contrast to the earlier results [1,2 and 3], where one got stability for an open set
of | 3] estimates, allowing for the general possibility of motion on the center manifold
gives a very different qualitative picture. The restriction on agents beliefs required
for stability implied by the result of this paper is more severe. The earlier stability
results required agents to believe sufficiently strongly that the steady state value of
the system was stable, whereas here I show that for stability one requires ‘singular
beliefs’— that at the steady state (where the B estimate is 1), agents believe that
all possible values of the state variable, and not just the known steady state value,
be possible equilibria of the system. Note that values of the state variable other
than the steady state value are not rest points of the learning system and that for
small perturbations of the state variable from its steady state value (and/or of the
B estimates from 1), there are dynamics induced by learning, which, provided the
influence of expectations is not too large, converge to the steady state where the

estimate is 1.




It remains to be seen to what extent the result of this and the earlier papers
referred to above hold when agents are no longer subjectively certain about the
steady state of the system, and try to learn it by reformulating their regression model
so as to include an intercept term as well. A complete analysis of this more general
situation is quite complex and is not attempted here. However, some preliminary
observations that are of relevance are noted in Appendix B. First, Lemma B.1 states
that one may get convergence to the random walk model even if the agents fixed
perception of the steady state differs (unlike the case studied in Section 2) from the
steady state value associated with the random walk model, provided the difference
is small enough. This shows that the stability results obtained in Section 2 are
robust with respect to small misspecifications in the agents (fixed) perception of the
steady state, and points towards the subsequent analysis of stability when agents
learn about the steady state as well. Lemma B.2 describes the similarity in the
structure of the stability issue in this new framework with the one studied in Section
2. Here too, the dynamics with learning possesses a unit eigenvalue, which requires
one to consider a one dimensional center manifold in evaluating the local stability of
the random walk model. When the expected value of the state variable next period
determines its current value, this center manifold coincides with a set of equilibria,
whose stability properties are easily deduced. For the more general case, one has to
carry out a center manifold reduction to ascertain the stability issue as in Section 2,

but this is not attempted here.

1 The Model

1A Expectation Formation :
Agent’s beliefs about the dynamics will be assumed to be summarised by a model

of the form (as in [1,2 and 3])

Ti41 = P + €41 (1.1)

where ¢; is a white noise process with bounded support and a continuous density.




The model (1.1) has been expressed in deviations of the state-variable from a
constant term, where the constant represents the agents perception of the steady-
state of the economic system. As in [1,2 and 3], the constant is never revised along
the learning process, only the § estimates are revised. The state variable is y; =
7 + z¢, where i is the perceived steady state (whose precise value is determined by
steady state considerations, [see Definition 2] for the analysis of section 2) and z;
the deviation from it. At time ¢, agents will be assumed to use information upto

t — 1 (as is standard in the literature) to generate their distribution of ys4;. Thus

Y41 =Y+ ﬂtz_lwt—l + Be-1€ + €41 (1.2)

Given the probability distribution of y;41 (where ;41 is bounded away from
zero) generated by (1.2), y; is determined from the temporary equilibrium map.
Agents now use the ‘realization’ z; to update their estimate of 8 by taking a convex

combination of f;_y and ﬁi—l— according to the rule (where m > 0)

2
mTy_q

ﬂt—l

- 1+ mxf_l

Tt

(1.3)

Bt +( )

1 + m:v?_l Ti—1
The rule (1.3) is smooth though the initial estimate of § may be determined by

initial conditions (lagged values of z) in a discontinous manner. Alternative smooth

updating rules are provided by Recursive Least Squares and Bayesian updating.!
1B Temporary Equilibrium Map and Steady States :

Existing literature has considered the formulation where y; depends on y;,,,
which is the expected value of the state variable next period conditional on infor-
mation through t-1. For the sake of illustration (but this is not necessary for the
analysis of Section 2), consider the more general formulation where y; depends on

E[yff;ll],a > 0, # 1 and where this dependence is summarised by the smooth

'In the case of Recursive Least Squares, the constant m in (1.3) needs to be updated over time.
This causes the updating rule to become two dimensional, which complicates the computations of

the subsequent analysis considerably, without changing the result qualitatively.




temporary equilibrium map defined implicitly as
T(ye ElyiH']) = 0 (14)

Appendix A presents an example of a simple pure exchange OLG economy with
money (where a is the coeflicient of relative risk aversion of the utility function
of the agents) that yields a formulation of the form (1.4). Assuming a = 2 gives
T(yt,¥5y1) = 0, which is the special case that has been considered in the literature
thus far [1,2,3 and 5]. This particular choice of o has a considerable simplifying
effect on the eventual analysis of the stability of deterministic steady states which
will be spelt out subsequently.

DEFINITION 1: The state variable with learning at time t is the vector
(v, (9, B:)) where y; is the original state variable and (g, 8;) the vector of beliefs
about the constant and the parameter 3.

DEFINITION 2: A steady state is a vector (§(8), (%, 3)) where the market clear-
ing steady state value of y coincides with the agents perceived steady state, i.e
y(B) = 7.

Thus, §(B) satisfies (from (1.2) and (1.4)) and the fact that z; = 0Vt

T(5(8), E[(5(B) + Bec + €41)* ') = 0 (1.5)

Since at a steady state z; = 0V%, it follows from (1.3) that 8 remains at BVi.
This verifies that steady states defined above are indeed equilibria of the dynamical

system defined by (1.2), (1.3) and (1.4).

1C: Local Dynamical System with Learning

The prinicipal purpose of the paper is to analyse the local stability of a steady
state (%(B), (4, 8)) where the dynamics are defined by (1.2),(1.3) and (1.4).

Let ny,n, be the partial derivatives of (1.4) w.r.t to its arguments respectively
evaluated at the steady state (§(B), (7, 3)). Assuming n; # 0, nq # 0 one gets a local

solution to (1.4) of the form
v = G(ElR) (1.6)

9




Using (1.2) in (1.6) and subtracting the constant term %(3) from both sides of

the equation, (1.6) is written in deviations as

Ty = F(xt—lyﬂt—-l) (1-7)

(1.7) is combined with (1.3) to define the local dynamical system with learning. The
local stability of equilibria of the form (0, 3) are to be assessed.

It is verified by direct inspection that the partial derivatives of (1.3) with respect
to z and B evaluated at (0,() are 0 and 1 respectively. The partial derivative of F

at (0,) with respect to z is denoted

a= :72‘_2@ ~ DE[(5(B) + Bev + e41) 257 (1.8)
and the partial derivative at the equilibrium with respect to 3 is denoted

b= e - DE[F(B) + Beu + )"l (1.9)

Given these derivatives, one obtains:

(1.10) . . . . . The eigenvalues of the Jacobian of the system (1.3), (1.7)
evaluated at an equilibrium (0,3) are \; = a and Ay = 1. Thus there exists a one
dimensional center manifold corresponding to the unit root which must be consid-

ered while evaluating the local asymptotic stability of (0, 3).

One can now examine the consequence of the assumption that is common to
earlier studies [1,2 and 3], namely that Ey;y,] enters the temporary equilibrium
map in (1.6), i.e a = 2. In that case b = 0 and also 0 = F(0, 8)V3, which illustrates
that there is a whole one dimensional manifold of equilibria of the form (0, 3). This
set of equilibria in fact coincides with the center manifold. Thus there is no motion
on the center manifold, since it is a set of equilibria. Stability of an element of
the equilibrium set is now determined by the modulus of the remaining eigenvalue
A1 = a [3, section 4]. One can verify from the formula of a above that one gets

la] < 1 (and hence local stability) when 3 is small enough and conversely |a| > 1

10




(local instability) for sufficiently large 8 values. The conclusion of the discussion is
that the 8 estimates affect stability issue only through their effect on A;. This is the
simplifying effect of setting a = 2, since it suppresses the possibility of motion on
the center manifold; but this motion must be carefully taken into account for cases
where b # 0.

In the next section I analyse the local stability of equilibria of the form (0, ()
for the general case b # 0 without reference to the specific microeconomic structure

underlying the equilibrium whose stability is being assessed.

2 Stability

Consider the dynamical system

Tig1 = F(ﬂft,ﬂt) (2-1)
_ By mm? F(fﬂt, ﬁt)
Pra = 1+ ma? * (1 + mxf) Ty (2.2)

where F is smooth and m > 0, which possesses (0, 3) as an equilibrium.
The principal proposition of the paper is the following characterisation of a lo-

cally stable equilibrium:

Proposition 2.1:Let (0,3) be an equilibrium of (2.1)-(2.2) such that b # 0 where
b= Fé(O,,B) and a # 0, a # 1 where a = F;(D,B) Then (0, B) is locally asymptoti-
cally stable if and only if the following conditions hold:

(1)B=1

(2) |a| < 1. This condition is satisfied if |72|, which measures the effect of ezpecta-
tions on the economy, is small enough and is violated if the effect of expectations on

the economy is large enough.

Proof: To analyse the local stability of (0, ﬁ), one has to carry out a center manifold
reduction, which requires that the system be transformed so that the equilibrium is

translated to (0,0) and the linear part is in Block Diagonal form.
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Observe that (2.2) can be written as:

P41 = Be + ﬁz—z?[—ﬂt:c? + 2 F(ze,Be)] - v o e (2.2”)
Replacing F by its Taylor series at (0, 3) and using (2.2°) one gets

(zt+1):((i)+(a b)(ijt)+R(i’t,Bt)
s ) \5) o)\
where R(%, f;) = et} + diify + ef} + Ol(1, 1))
tyMt) — _ R N X
= [-22(B + Bi) + 3:(ads + bB: + O[(%+, Br)?])]

,1+ma‘:?

and where (&, Bt) are deviations of (z, ) from (0,3). The particular form of (2.2") ;
!

is such that one need not Taylor expand to separate the linear part from the higher
order terms. One could of course use the Taylor expansion and conduct the exercise

in an identical manner as below. (The only difference would be that in (2.8) below,

one would replace T(w) by m).

Rearranging, one obtains:

.’it+1 _ a b fit n Cfi% + dj)tﬁt + C,Btz + O[(é}t,ﬁt)‘g]
Beta 0 1 By ﬁ[—ff?(ﬁ + By) + &4(ad + bB: + O[(41, 5:)])]
which is of the form
I‘t+1 = BI‘t + C(Ft) !
where
z a b
r= . | and B = .
B 0 1
I know make the coordinate change I' = PZ so as to bring B into the block

diagonal form. The columns of P are composed of the eigenvectors of B. These are

(1,0) and (p,1) where p = % Thus one gets

Zyy1 = PT'BPZ, + P7YC(PZ,)] (2.3)

w

( Vel ) _ ( a 0 > ( vy ) . ( (v, we) — pg(ve, wy) ) (2.4)
Wit 01 wy q(vy, wy)
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Letting Z = ( ) and using (2.3) one finally gets:




where
r(v,w) = c[v+ pw]? + d[v + pw]w + ew? + O[(v,w)?] and
4(0,0) = prrspl=l + puP(B + w) + [v + pwl(aly + pu] + bw + clv + pul? +
d[v + pw]w + ew? + O[(v, w)?])]-

The system (2.4) is finally in a form such that one can apply center manifold
theory to it, from which one has:
(i) [4, Theorem 2.1.4] There exists a local center manifold v = h(w),h(0) =
0, Dh(0) = 0 s.t the dynamics on the center manifold for w small are governed

by
wegr = J(we) = wi + g(h(wr), we) (2.5)
(ii) [4, 2.1.58] h(w) satisfies:
N[h(w)] = k(w + ¢(h(w), w)) — al(w) — g(h(w),w) = 0 (2.6)

where g = 7 — pq.
(iii) Finally [4, Theorem 2.1.6], one can in fact assess the stability of 0 under (2.5)

by assuming
h(w) = kw? + lwd + O(w4) (2.7)

and using (2.6) to identify k,l. For the present proof, it will become clear that

knowledge of k is in fact sufficient to determine the stability of (2.5) for small w.
Inserting (2.7) in (2.5), one gets

J(w) = w+T(w)(kw? + 1w + O(w*) 4+ pw)?[— (8 + w)] + T(w)(kw? + lw* + O(w*) +

pw)[a(kw? + w3 + O(w?) + pw) + bw + c(kw? + lw® + O(w?) + pw)? + d(kw? + lw® +

O(w?) + pw)w + ew? + O(w’)]

where

T(w) =

1+m[kw2+lwgl+0(w4)+pw]2 > 0 a,nd ZZmT(UJ) =m as w — 0.
Rearranging, one gets

J(w) = w + T(w)[-p*B + ap? + bpJw? + T(w)[-2pkB — p* + 2apk + bk + cp® + dp* +

13




eplw® + T(w)O(w*)

which simplifies to:
J(w) = w + T(w)p*(1 - B)w? + T(w)[S(k)]w® + O(w?) (2.8)

where

S(k) = [—-2pkp — p* + 2apk + bk + cp® + dp? + ep).

The stability of 0 under (2.5) is identical to the stability of 0 under (2.8). Two
cases need to be considered separately.
Case 1: When § # 1, the quadratic term T(w)p*(1 — B)w? governs the dynamics for

w small. Hence there is no stability.

Case 11: When f = 1, the quadratic term vanishes and one is left with
J(w) = w+ T(w)[S(k)]Jw® + O(w*) (2.9)

The sign of S(k) is crucial in determining stability since T'(w) > 0. Thus one needs
to identify & from (2.6). To do so, differentiate (2.6) twice to obtain

N = W{w + q(h(w), w))[1 + Dau + Dgu () + H(w + g(h(w), w)) D[1 + Dau +
Do (w)] = ah(w) = Dy (h(w), w)h"(10) = K(w)[Dgns+ Dok ()] — () D —
D gy (h(w),w) = 0.

Using the fact that 2(0) = 0, »'(0) = 0 and Dg,(0,0) = 0, one gets

r"(0) = M

D = Dryy — pD Gy

D74,(0,0) = 2[cp® + pd + €]

Dgun(0,0) = 2p?[1 ~ B].

Finally, k = h"(o) =2 ;“p;He and thus

S(k) = [(cp?® + dp + e)(Z2BE222EE | py — p2], which reduces to —p?.
Thus (2.9) becomes

J(w) = w + T(w)[-p*w* + O(w?) (2.10)
and one gets stability for small w.

14




Thus the dynamics on the center manifold are locally stable iff 3 = 1 which proves
part (a) of the proposition. The local stability of (0,0) under (2.4) now depends on
the eigenvalue A; = a. When |a| < 1 one gets stability and when |a| > 1, instability.
The influence of expectations on the parameter a is obvious from the formula of a.&
Remark 2.1: Given the existence of an eigenvalue that equals one in the system
being considered, and the assumption that b # 0, a necessary condition for local

asymptotic stability is that the reduced dynamics on the invariant center manifold

be locally convergent. This obtains iff # = 1; i.e. the only possibly stable steady

states are those where the configuration of beliefs follows a random walk, since with

B =1, the agents model (1.1) becomes

Tep1 = Tt + €441 (2.11)

Thus for small deviations of z from 0 and small perturbations of the parameter
estimates from 1, the learning dynamics converge to z = 0 and 3 = 1, provided the
influence of expectations on the economy at the steady state is small enough.

Remark 2.2: T clarify here that one may get the stability of random walk beliefs in
the earlier formulations [1,2 and 3], provided the influence of expectations is small
enough. However, local stability in that framework only guarantees that for small
perturbations, the system with learning converges to (0,3) where § is some value
close to 1. One cannot guarantee that agents will learn exactly the 3 value 1, but only
that the parameter estimates will converge to some value close to it. But the same
would be true for any 3 value provided the influence of expectations is small enough.
In particular the dynamics may converge to the steady state with the limiting belief
about the parameter satisfying || > 1, a potentially contradictory result since with
the limiting 5 estimates agents would expect the system to diverge from the steady
state. This is excluded in the present formulation, since as shown above, the 3 value

1 is singled out uniquely by considerations of local stability.
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3 Conclusion

To conclude, the result presented in this paper refers to the formulation wherein
agents recognize the steady-state of the system and learn about the parameter which
governs the dynamics outside the steady state using a smooth updating rule. The
only possibly stable steady states are those associated with random walk beliefs
(Proposition 2.1). The analysis pertains to cases where a key parameter is non
zero and the result is in sharp contrast to the earlier stability results (Remarks
2.1 and 2.2). It is observed in Appendix B (Lemma B.1) that the stability result is

robust with respect to small misspecifications of the steady staté in the agents model.

Lemma B.2 indicates the possibility (without analysing the system completely) of

obtaining similar results for the random walk model in a more general set up where

agents try to learn the steady state as well.

4 Appendix A

I present a specification of an OLG set up that yields a temporary equilibrium map
of the form (1.4).

Consider a pure exchange overlapping generations economy with two period lived
agents, one perishable good each time period and money. At time t, trade takes place
between one young and one old agent.

The utility function of a young agent born at time t is:

Uletyeq1) = Eli:_;— + %;:%:,a >0,a# 1.

The agents have an endowment of w in the first period of their life and nothing
in the second. There are M units of money in the economy. Let k denote —A}

The young agents are assumed to maximise expected utility and the their demand
function is
e = puolpe + (peElpST )=

From market clearing, one obtains the following temporary equilibrium map

16




which is in implicit form:
Bl = (@)
pefl - 5]°
One can verify that given E[p‘:;ll], there exists a unique temporary equilibrium at
each date satisfying p; > kVt. The above temporary equilibrium map is of the form
(1.4).

Steady states of the form (5(8), (3(B), B)) satisfy:
E[(5(B) + Bet + €41)>71] = 5(5—)[1110-}_)(_;;)']-;-

When a = 2, p(8) is in fact independent of 3 and coincides with the Golden Rule
price which equals 2k%.

For other values of «, () varies with 3. For instance, if « = 3, p(8) and 3

satisfy the relation:
2B +1) = BB (=t~ 1) (1.2
‘ (B(8) - k)®
Let & be the value of 5(3) which solves the above relation for the minimum possible
value of the left hand side, which is 02. Then for all real 3, there exists 5(3) € (k, k)
satisfying (4.2). The existence of steady states can similarly be demonstrated for

other values of o as well, by imposing a lower bound on E[p?{f] and using the

continuity of the right hand side of (4.1).

5 Appendix B

[5.A] I first examine the possibility of convergence to random walk beliefs when the
equilibrium value of the state variable (y; = y*V¢) does not coincide with 7, the
perceived steady state, which is held fixed in the agents model.

So consider a fixed value of 7, and now to identify the equilibrium, I keep S fixed

at 1, so that agents beliefs are represented by the random walk model:

Yeg1 =Y+ Ti1 + €+ € (5.1)

or
Yeg1 = Yt—1 + € + €41 (5.2)

17




Using the temporary equilibrium map (1.4), the equilibrium value of y is the

solution (assumed to exist) to

T(y,El(y+ &+ €41)* 1) =0 (5.3)

The solution is denoted y* and coincides with F(1), which is the solution to (1.5)
with 8 = 1.

The difference with the cases examined in sections 1 and 2 above is that y* = (1)
~ is not necessarily equal to §. In deviations, one gets z* = y* — . The ratio x—;‘;i
at the equilibrium z* equals 1 V¢. Given the rule (1.3), since at the equilibrium
agents use f = 1, there is no updating and thus (z*,1) is indeed an equilibrium

of the system (5.4)-(5.5) below, where F™* is obtained from (1.6) (using (1.2)) and

subtracting the constant #:

Ty = F(24-1,B8e-1) (5.4)
Be-1 mzi_y | F*(zi-1,Bi-1)
5.5
By 1+ mz?__l + (1 + mz?_l) Ti-1 ( )

where F™* is the solution to the temporary equilibrium map when expressed in de-
viations from %. The system (5.4)-(5.5) with § # %(1) will be referred to as the
misspecified system to represent the fact that equilibrium value of the state vari-
able does not coincide with the agents perceived steady state. In case the perceived
steady state § equals the equilibrium level (1), the equilibrum deviation 2* = 0,
F* becomes F' and one is back to the formulation of sections 1 and 2, where the
equilibrium whose stability is being assessed is (0,1). The system is then referred to
as the correctly specified system.

I show below that one may indeed get convergence to the random walk model un-
der the misspecified system (5.4)-(5.5) as well, i.e (z*, 1) may be locally stable under
the learning dynamics. The proposition below asserts that in fact, the misspecified
system inherits the stability properties of the correctly specified system, provided

the misspecification z* is small.

Lemma B.1: Let (0,1) be locally asymptotically stable (unstable) under (2.1)-(2.2),

18




i.ela|l < (>)1. Then(z*,1) is also locally stable (unstable) under (5.4)-(5.5) provided

the degree of misspecification |z*| = |y* — | is small enough.

Proof: The partial derivatives of F* with respect to = and 8 evaluated at (z*,1)
are denoted a(z*) = a and b(z*). The partial derivatives of (3.5) with respect to z

and B evaluated at (z*,1) are 7?1;[:;_,%] and ltﬁ%‘z:)f‘ . Let A1(z*) and Ay(z*) be the

eigenvalues of (3.4)-(3.5) at (z*,1). By continuity, the partial derivatives and hence
the eigenvalues, converge to those of the correctly specified system at (0,1) as the
misspecification goes to 0. Thus A;(z*) — @ and Ay(2*) — 1.Thus if |a| > 1, one is
bound to get instability for z* small. When |a| < 1, one will get stability provided
A2(z*) < 1 for z* small. The characteristic polynomial at (z*,1) defines a parabola
with its asymptotic branches going up. To verify that 0 < Az(2*) < 1 for 2* small,
it therefore suffices to show that the characteristic polynomial evaluated at A = 1
becomes positive for z* small enough. The value of the characteristic polynomial
thus evaluated simplifies to ¢ = %, which is positive provided |a| < 1, and
one gets local stability. B

The above proposition demonstrates that the stability results for the random walk
model obtained in Section 2 are in fact robust with respect to small misspecifications
of the constant term from the steady state value of the state variable.

The interpretation of the robustness implied by Lemma B.1 is not immediate,
since the fact that the dynamics converge (in the stable case) to a steady state
which differs from the perceived one may appear to contradict the agents model.
One may expect that, given that the learning dynamics do converge, the agents in
the limit of the learning process recognize the misspecification in their prior estimate
of the steady state and incorporate the persitent one sided deviation z* to obtain
a correct specification of the steady state. 2 The new configuration of beliefs will
now be described by (y*,1) and this will indeed be a locally stable configuration as
discussed above.

However, the convergence possibility described in Lemma B.1 does seem to point

2T owe this point to an anonymous referee.
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towards an enquiry of the possibility of convergence to the random walk model in a
set up where agents are no longer certain about the steady state, and try to learn
the 8 parameter and the steady state by reformulating their model so as to include
an intercept term.

[5.B] I therefore now examine the possibility of convergence to random walk
beliefs in the case where agents try to learn the steady state as well by reformulating
their regression model so as to include an intercept term.

The model used by the agents is now:
Yee1 =7 + By + €1 (5.6)

Since agents iterate twice on the model, one gets the distribution of ;41 using

Yir1 = Vic1 + Vo181 + BEqvi—1 + Bi-16 + €141 (5.7)

One gets the random walk model when agents believe that v = 0 and 8 = 1. The
issue is to assess whether starting with initial parameter estimates (beliefs) close
to these, the learning dynamics converge to an equilibrium corresponding to these
particular estimates.

To formulate the issue, I revert to the temporary equilibrium map (1.6), which

using (5.7) is rewritten as:
ye = W(y-1,%-1, Be-1) (5.8)

When agents form expectations according to random walk beliefs, the steady
state value of y is, as in sections 1, and 5A, g(1) = y*.
The updating formula used to learn about v and S is almost identical to the

simplified version of least squares updating used by Woodford [5] and is given by:

-1

Vi1 Ye 1 Mlt 1
- ( + N1 (Y41 — (1e + Beye)]
ﬁi-i- 1 \ ﬁt ﬁ/flt 1W2t Yi
My _ My, yf oM} (5.9)
Mt Mz ug — Ma
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M, Moy are proxy estimates of the moments E(y), E(y?) respectively using past
observations (¥;_1,...). The only difference from Woodford’s specification [5, Section
2] is that I replace (¢ — 1) by some large (greater than 1) number N. For the
dynamics to be well defined for all ¢ it suffices (as observed by the author in [5]),
that the starting values (Mg, Myg) satisfy

The complete dynamical system is defined by (C.3)-(C.4). The state variable at
time t is (¢, e, Bt, M1, M2;) and the equilibria whose stability are to be assessed are
of the form (y*,0,1, Myg, M) satisfying (5.10). Under this condition, the dynamics
at an equilibrium are differentiable.

The following observation about the local dynamics is noted:

Lemma B.2: Consider an equilibrium of the form (y*,0,1, Myo, M) of the system
(5.8)-(5.9), satisfying (5.10). Then the following are true:

(a). The Jacobian of (y*,0,1, Mo, Mao) has an eigenvalue Ay = 1. Thus there ezists
a one dimensional center manifold associated with (y*,0,1, Myg, Mao), which must
be considered while evaluating stability.

(b). There ezist two eigenvalues 0 < Ay <1, 0 < A5 < 1.

(c). Now assume Mso > y*? and that Mg is close enough to y* (which is guaranteed
if the initial conditions [y_1,..,y_1] are close enough to y*). This ensures that (5.10)
is satisfied. Then if [%ﬂ, which measures the effect of expectations on the economy,
is small enough, there exist two eigenvalues Ay close to zero and, 0 < Az < 1.
Finally

(d). If a = 2, then the center manifold is a set of equilibria of (5.8)-(5.9). If
condition (c) is satisfied, there exists an open set of initial conditions V' containing
(y*,0,1, Mo, Mao) such that the learning trajectories generated within V stay in V

and converge to some element of the center manifold.

Remark B.1: The qualitative nature of the stability problem is very similar to the
case where agents learn just the 3 parameter as in Section 2. Here too there is a unit

eigenvalue and hence a one dimensional center manifold. As discussed in Remark
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2.2, when the expected value of the state variable enters the temporary equilibrium
map (i.e a = 2), local stability only guarantees that the dynamics converge to some
element of the center manifold close to the equilibrium being considered. For other
cases, there is the possibility of getting convergence to exactly random walk beliefs.
However, to formally demonstrate this, one has to implement a center manifold
reduction as in Section 2, which in the present case is quite complicated and is not
undertaken here.

Proof: The Jacobian evaluated at an equilibrium has the form

[ w, W, W 0 0

Ty RN : 0 0

By By Bgs 0 0

N1 0 0 1-N-! 0
oON"ly* 0 0 0 1-N"1)

There are thus two eigenvalues denoted Ay = A5 = 1 — N~1 which for N > 1 are
inside the unit circle. The remaining eigenvalues are the roots of the characteristic

polynomial associated with

w, W, Ws
SOV I (5.11)
lBy ﬁ“/ ﬂﬂ

where the entries are the appropriate partial derivatives. These are
Wg = S2(a — DE[(7(B) + Bec + e41)* (29" + &),

Wy = 2(a = DE[(F(B) + Be + er41)*722),

Wy = 722 (a — DE[(5(B) + Ber + e11)* 7%,

v6 = [N(Mao — Mip)]™ [ Mao — Mioy*|[Ws — v,

Yy = 14 [N (Mao — M) 7 [Mao — Mroy*][W, — 1],

Ty = [N (Mao — M{y)] "1 [Ma0 ~ Mroy*][Wy — 1],

B =1+ [N(Mao — Mig)] ™ [—Mio + y*][Ws — v°],

By = [N(Mao — M) [~ Mo + y*][W,, - 1],

By = [N(Mazo — M{p)] [~ Mo + y*][W, — 1].

Using these derivatives, one can evaluate the characteristic polynomial associated
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with (5.11) and confirm that A = 1 is an eigenvalue.

As an approximation to the case where the effect of expectations is small and
My is close enough y*, I evaluate the characteristic polynomial with |%§=| = 0, and
Mjo = y*. Thus the partials of W are set equal to 0, §, = By, = 0 and B3 = L.
With these values, the roots of the characteristic polynomial are 0, «, (which for
the present specification lies between 0 and 1) and 1. Thus by continuity, when the
effect of expectations is small enough and Mg is close enough to y*, Az is close to
0, A3 is between 0 and 1.

Finally, when a = 2, there exists a one dimensional manifold of equilibria, since
all v, values satisfying y*(1 — ) = 7 when combined with y*,(Mjo, M2o) are
equilibria of the learning system. The local stability now follows in an identical
fashion to the earlier case where agents did not learn the steady state [3, Section 4],

since all other eigenvalues have been shown to be inside the unit circle. |
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