UNIFIED TREATMENT OF THE PROBLEM OF EXISTENCE
OF MAXIMAL ELEMENTS IN BINARY RELATIONS.
A CHARACTERIZATION.
Juan-Vicente Llinares

WP-AD 95-17




UNIFIED TREATMENT OF THE PROBLEM OF EXISTENCE
OF MAXIMAL ELEMENTS IN BINARY RELATIONS.
A CHARACTERIZATION*
Juan-Vicente Llinares**

WP-AD 95-17

* T would like to express my gratitude to C.D. Horvath, J.E. Martinez Legaz, E. Indurain,
J.E. Peris, M.C. Sanchez and B. Subiza for their helpful comments. Any remaining errors are my
exclusive responsibility.

** J V. Llinares: University of Alicante.



Editor: Instituto Valenciano de
Investigaciones Econémicas, S.A.
Primera Edicién Julio 1995.

ISBN: 84-482-1073-5

Depésito Legal: V-2962-1995
Impreso por Copisteria Sanchis, S.L.,
Quart, 121-bajo, 46008-Valencia.
Impreso en Espana.




UNIFIED TREATMENT OF THE PROBLEM OF EXISTENCE OF
MAXIMAL ELEMENTS IN BINARY RELATIONS. A CHARACTERIZATION

Juan-Vicente LLinares

ABSTRACT

The aim of this paper is twofold. On the one hand to present by
means of a unique statement an existence result which covers both ways
(convexity and acyclicity) of analyzing the problem of existence of maximal
elements of non transitive binary relations. And on the other hand, to
introduce the concept of an abstract convexity structure, which we call
mc-spaces, that generalizes the notion of usual convexity. It is presented
as a powerful tool which allows many problems which have only been analyzed

(previously) under convexity conditions to be solved.
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1.- INTRODUCTION

The notion of preference relation or utility function is a basic
concept in economics, in particular in consumer theory. When a consumer is
faced with the problem of choosing a bundle of products, in the end he will
look for the bundle which maximizes his preference relation from those which
he can afford. The problem, then, of looking for sufficient conditions which
ensure the existence of maximal elements of a binary relation is one of the

most important problems in economic theory.

Continuity and convexity conditions on the upper and lower contour
sets  ( U(x) = {yeX| yPx} ; Ulx) = {yeX| xPy} ) or continuity and
transitivity conditions of the preference relation (P) are usually required.
Some of these, notably (the transitivity condition (Luce, 1956;

Starr, 1969)) have been criticized as being strongly unrealistic.

The purpose of dropping the transitivity condition (especially the
transitivity of the indifference) has involved the problem of existence of
maximal elements in two different and independent ways. On the one hand, in
considering weaker relations and on the other hand in considering conditions

instead of transitive ones.

If we relax the transitivity, acyclic binary relations (a binary

relation P is acyclic if xP x, xP x, ... , x P x, then not xP X )
1 2 2 3 n-1 n n 1

can be considered. In this line, there are several results that give us

sufficient conditions to obtain maximal elements such as Bergstrom (1975) or

Walker’s (1977) results. In the second approach, the results are mainly




based on convexity conditions on the set and on the upper contour sets
(U(x)). In this case, classical fixed point results (Brouwer, Browder, ... )
or non empty intersection results (Kanaster-Kuratowski-Mazurkiewicz type)
are usually applied to obtain most of the results, therefore convexity
conditions are required on some mapping and on the set where it is defined
(see Border, 1985). In this approach, we should mention the results obtained
by Fan (1961), Sonnenschein (1971), Yannelis and Prabhakar (1983),

Tian (1993), among others.

The aim of this paper is twofold. First of all to present a result
which covers both ways of analyzing the problem of existence of maximal
elements (convexity and acyclicity) by means of only one statement.
Therefore it will represent an unification of the different treatments of
the problem of existence of maximal elements in non ordered binary
relations. And secondly to remark that the notion of abstract convexity
(mc-spaces) which will be introduced, is presented as a powerful tool to
analyze not only the problem of existence of maximal elements, but also
other important problems in economic analysis which use the convexity
condition as a fundamental hipothesis of the model, such as the existence of

economic equilibrium.

In order to obtain the main result of the paper, we will consider

two different kinds of hypothesis: Topological conditions (used by many

authors, for example Sonnenschein (1971), Walker (1977), Tian (1993)), and a

Convexity Condition. This Convexity Condition coincides with the

irreflexivity-convexity condition wused by Sonnenschein (1971) or Yannelis
and Prabhakar (1983) when the usual convexity context is considered.

Furthermore it will be proved that any acyclic binary relation defined on a



topological space allow us to define a particular case of this mc-structure
which verifies our Convexity Condition. Therefore this Convexity Condition
defined in the context of mc-spaces will allow us to cover acyclicity and

convexity at the same time.

The paper is organized in the following way. In Section 2 an
abstract convexity structure (mc-spaces) is introduced containing as a
particular case the notion of usual convexity. A fixed point result in the
context of mc-spaces which generalizes Browder’s selection and fixed point
Theorem is given in Section 3. The main result which generalizes
Sonnenschein and Walker’s results, and their consequences are concentrated
on in Section 4. And finally an appendix with the proofs of the Theorems

closes the paper.




2.- ABSTRACT CONVEXITY

The notion of abstract convexity can be seen as a generalization
of the notion of usual convexity based on properties that convex sets have.

Hence, by an abstract convexity (Kay and Womble, 1971) on a set X we mean a

family € = <A1}1e1’ of subsets of X, stable under arbitrary intersections
(niEJAi e @, JcI) and which contains the empty and the total set (B, X € €).
The abstract convexity which will be introduced in this paper is
based on the idea of substituting the segment which joins any pair of points
(or the convex hull of a finite set of points) by an arc, path (or a set)
which plays their role. In particular the idea is to associate to any finite
family of points, a family of functions whose composition is continuous. The
image of this composition generates a set associated to the finite family of
points in the similar way in which the usual convex hull operator associates

a set to each finite family of points.

Formally the definition of mc-spaces is as follows:

Definition 1. A topological space X is an mc-space if for any nonempty
finite subset A={ a al,...,a} of X, there exists a family of elements
n
{ bo’ bl,...,b } in X and a family of functions,
n
A

P : X x [0,1]— X i= 0,1, ..., n

1

such that

1. Pé (x,0) = x, P (x, ) =b VxeX.




2. The following function

— X

given by

is a continuous function.
Henceforth, if X is an mc-space, we say that X has an mc-structure.

Remark 1. Note that if X is a convex subset of a topological vector space
and we consider functions P?(x,t) = (1-t) x + tai, then they define an
mec-structure on X. In this case, bi=ai , and functions P?(x,t) represent the
segment joining a, and x when te€[0,1]. Therefore mc-spaces are extensions of
convex sets. Moreover, the image of the composition GA([O,l]n) in this
particular case represents the wusual convex hull of A={a0,a1,...,a}

n

(C{A}) because

P* Prx,t ) =P (a,t )=t a + (I-t )a
n-1 n n-1 n-1 n-1 n

pA [PA [PA(X,I),‘E ],t ]=t a +(1-t )[t a +(1-t )a]
n-1 n-2 n-2 n-1 n-1 n-1 n

n-2 n-1 n

in general



where « are continuous functions depending on (to,...,t 1) such that
i n-

Yo =1.(In the previous expression, we have considered t =1 in order to
1 n

simplify it).

In general in this structure for any nonempty finite subset of X

(A = (ao, ... ,a)), for each element a € A and for each x € X, it is
n 1

possible to define a function P{‘[ flo, 11— X, {P‘_*[ (= P?(x,t))
11X 11X

satisfying that

A
P{x (0) = x and ) = b.
i[x] ilx] i
If pA is continuous, then it represents a path which joins x

i{x]

and b. Furthermore, if b is equal to a, P{\(X,iO,l]) represents a
1 1 1 1

continuous path which joins x and a_. These paths depend, in a sense, on the
1

points which are considered, as well as the finite subset A which contains

them. So, the nature of these paths can be very different.

Function GA can be interpreted as follows:

the point p* 1(b ,A ) =0p o represents a point of the
n-

n n-1 n-

path which joins b with b , p (p ,A J)=p is a
n n-1 n-2 " n-1 n-2 n-2

point of the path which joins p . with b » etc.
n- n-

10
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So if we want to ensure that the composition of functions P? is

continuous, we need to ask for the continuity of functions
P?[z] : [0, 11— X in any point "z" which belongs to the path joining bi+1

and p , with i = 0,...,n-2.
i+2

I + 2
Z ZII
/
/"M

\\

\
~ \ b
\\ ////’/ ’

FIGURE 2

Finally note that if t = 1, then any ‘cj such .that j>i, does not
1
affect the function GA (since P?(x,l) = bi vxeX). Moreover if tIl = 0O, then

b will not appear in this path.
1
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From an mec-structure it is always possible to define an abstract
convexity given by the family of sets which are stable under function GA. To

define this abstract convexity we need some previous concepts.

Definition 2. Let X be an mc-space and Z a subset of X. VA & X, A finite,

such that AnZ # g, AnZ = {ao,al,..,a }, we define the restriction of
n

function GAto Z as follows:

G o, 11" — X

Alz
G (1) =P.P' (P (@ 1t ).t)
Alz 0 n-1 n n n-1 0

A . . . .
where Pi are the functions associated to the elements a_in A which belong
1

to Z.

From this notion we define mc-sets (which are an extension of

convex sets) in the following way.

Definition 3. A subset Z of an mc-space X is an mc-set if and only if it is

verified
VYA € X, A finite, AnZ # © G

Notice the paralelism between usual convex sets and mc-sets: as
the image of function GA can be interpreted in some sense as the "convex
hull" of set A, then a subset Z will be an mc-set if it contains the "convex
hulls" of every finite subset of Z [GAIZ([O’“n)) in a similar way to that

of the usual convex case.

13




Since the family of mc-sets is stable under arbitrary
intersections, it defines an abstract convexity on X. In this case, we can

define an mc-hull operator (which is the extension of the convex hull

operator) as

C (A) = {Bl AcB, B is an mc-set}

mc

An example of a set where an mc-structure can be defined is the following:
Let C be a convex set and X a set such that there exists an homeomorphism
from X into C, h: X—> C. In this particular case it is possible to define
an mc-structure on X by means of function h as follows: For each

A = {ao,..,an) subset of X we define functions P{; as
1
A A -1
Pi: X x [0,1] — X; Pi(X,t) = h { (1-t)h(x) + th(ai) }

In this context a subset B of X is an mc-set if and only if h(B)

is a convex subset of C.

The examples presented correspond either to convex sets (Remark
1.) or to situations where an homeomorphism from these sets into convex sets
can be stated (Example above). The following example shows a non

contractible set (and therefore not homeomorphic to a convex set) where an

mc-structure can be defined:
Example 1. Let X ¢ R® be the following set,

X={xeR :0<a=1lxll =b,abeR}

14




Considering the complex representation,

for any nonempty finite subset A of X, functions P‘_x can be defined as
1

follows, VyeX

] i((-vax+tay)

P X x [0,1] —> X; PA(x,t) = ((l—t)p + tp |e
y y x v

A
P
, O61)

FIGURE 3




3.- A FIXED POINT RESULT

Fixed Point results are basic tools used to prove the existence of
solutions to several problems in economics (Border, 1985; Villar, 1992). In
particular, in this paper, we will use a fixed point result to prove the
existence of maximal elements in binary relations under some weak

conditions.

We will use the following Lemma in order to state the existence of
a continuous selection and fixed point to correspondences with open inverse

images in the context of mc-spaces.

Lemma 1: Let X be a compact Hausdorff topological mc-space andI': X —>> X a
nonempty valued correspondence such that if y € Ful(x), then there exists
some x‘€X such that y e intl '(x‘). Then there exists a nonempty finite

subset A of X, and a continuous function f:X —X which verifies:

i) Ax*eX such that x*¥ = f(x*).

ii) f(x) € G ([0,1™) VxeX.

AT )
(Proof in the appendix).

From the previous Lemma, the following theorem is immediately obtained. It

is an extension of Browder’s Theorem (1967), [see Border (1985)}.

Theorem 1: Let X be a compact Hausdorff topological mc-space and
I X ——>> X a correspondence with open inverse images and nonempty mc-set

values. Then T has a continuous selection and a fixed point.

16




Aa a consequence of this result we obtain Browder’s Theorem,

Theorem 2: [Browder, 1967; Yannelis and Prabhakar, 1983]. Let X be a compact
Hausdorff topological vector space and I': X ——> X a correspondence with

open inverse images and nonempty convex values. Then T’ has a continuous

selection and a fixed point.

17




4.- EXISTENCE OF MAXIMAL ELEMENTS

Next, we present an existence result of maximal elements in binary
relations (not necesarily representable by utility functions),  which
constitutes the union point of the two focuses previously commented. This
result, then, generalizes those which consider acyclic binary relations such
as Bergstrom (1975) and Walker (1977), as well as those which consider usual
convexity conditions as Fan (1961), Sonnenschein (1971),  Yannelis and
Prabhakar (1983), Tian (1993). In this context, an element x* is a maximal
element for a binary relation P if there is no other element in X which is
preferred to x* (that is, U(x*) = @, where U(:)is the correspondence defined

by means of the upper contour sets of a preference relation P).

In the result which is going to be presented, the conditions
considered are stated in a similar way to those of Sonnenschein but by

considering mc-spaces and mc-sets rather than usual convex sets.

The method used to prove this result is based on the fixed point
result (Lemma 1.) presented in the previous section. In this way, it Iis
pointed out that the fixed point technique covers these two different ways

of analyzing the problem(l) of the existence of maximal elements.

' In this line, Tian (1993) presents a result which considers the case of

acyclic relations, but only in the context of convex sets and topological
vector spaces. This result is also a consequence of our main Theorem which
will be presented as follows.

18



In order to obtain the main result, we consider two different kind

of conditions: Continuity and Convexity.

CONTINUITY CONDITION (T).

If y e U—I(X), then there exists some x‘ € X such that y e int U_l(x‘).

It could be argued in an analogous way, that by considering Tarafdar’s
condition (1992)(2) (which in this context is equivalent) same conclusion is

obtained.
Convexity Condition is the analogue in the wusual convex case to that

considered by Sonnenschein (1971), Yannelis and Prabhakar (1983) etc, but in

the context of mc-spaces which has been presented.

CONVEXITY CONDITION (C).

Let X be an mc-space, and let U(:) be a correspondence (upper contour sets).

Then, VxeX and vV AcX, A finite, ANU(x) # o it is verified

x¢G ([0,11™).

Alux)

z vxeX, U_l(x) contains an open subset O which fulfills the condition that
X

19



Let us notice that in the usual convex case, Convexity Condition
is as follows: functions Pf“ which define function GA are defined as segments
1
A

joining pairs of points, that is, P (x,t) = (I-t)x + ta , where
1 1

A=(a0,...,a } in this case it is verified that (see Remark 1.)
n

GA(t st ) = Za,oc with Yao=1 «az 0O
1

1

S0, GA([O,I]n)=C({aO,‘..,an})=C(A), therefore

x ¢ G (1o,11™ = Cla: aieAnU(x) )

AlUx)

for any finite subset A. Then the convexity condition in this case Iis
reduced to x ¢ C{U(x)} (vxeX) (which is the irreflexivity~convexity

considered by Sonnenschein (1971)}.

By making use of these conditions we present the main result on

the existence of maximal elements.

Theorem 3: Let X be a compact Hausdorff topological mc-space and let P be a
binary relation defined on X, verifying
T) Continuity Condition.

C) Convexity Condition.

Then the set of maximal elements, {x*: U(x*)=6}, is nonempty and
compact.

(Proof in the appendix).

20




As a consequence of this Theorem, we obtain Sonnenschein’s (1971)
and Walker’s (1977) results among others, by considering an appropiate
mc-structure. To obtain Sonnenschein’s result we consider the paths P? as
linear segments joining pairs of points, then the mc-structure coincides
with  the usual convexity and  the irreflexivity-convexity  condition
considered by Sonnenschein (Vx € X, x ¢ C(U(x)) is our Convexity Condition.
Theorem 4: [Sonnenschein, 1971]. Let X be a compact convex subsel of R" and
let P be a binary relation defined on X, such that it verifies the

Continuity Condition and VYx € X x g C(U(x)).

Then the set of maximal elements, {x*: U(x*)=@}, is nonempty and

compact.

The next Lemma shows how from an acyclic binary relation defined on a
topological space, it is possible to define an mc-structure on X such that
the upper contour sets verify the Convexity Condition, hence Walker’s

Theorem will be a particular case of Theorem 3.

Lemma 2: Let X be a topological space, and P an acyclic binary relation
defined on X. Then there exists an mc-structure on X such that Convexity
Condition is verified.

(Proof in the appendix).

From this lemma and Theorem 3. we obtain Bergstrom (1975) and Walker’s

(1977) results,

Theorem 5: [Bergstrom, 1975; Walker, 1977]. Let X be a topological space,

and let P be a binary relation on X, such that it verifies:

21




1. P is an acyclic binary relation.

2. Ux) are open sets ¥V x € X.

Then every compact subset of X has a P-maximal element.

So, it is worth remarking that Theorem 3. yields unified treatment
to analyze the existence problem of maximal elements in preference relations
when either acyclic binary relations or convexity conditions are considered.
Thus, this result allows us to gather most of the results obtained until now
by means of these two different ways under a unique statement which

generalizes and extends them.

Tian’s results (1993), are a particular case of Theorem 3. is that
their conditions (Transfer SS-convex) imply our Convexity condition by
considering an appropiate mc-structure. In this line, we can also obtain a
characterization result about the existence of maximal elements, that is, a

converse of the Theorem 3. also holds.

Theorem 6: Let X be a compact Hausdorff topological space and let P be a

binary relation defined on X, verifying the Continuity Condition.

Then the set of maximal elements, {x* U(x*)=@}, is nonempty and
compact if and only if X is an mc-space which fulfills the Convexity
Condition.

(Proof in the appendix)

The following example is based on the euclidean distance and shows

a simple situation of non acyclic and nonconvex preferences (non

22




contractible upper contour sets) in which Sonnenschein’s and Walker’s
results (Theorem 4. and 5.) cannot be applied. However this example Iis

covered by Theorem 3.

Example 2. Let X be the following subset of [Rz,

X = { (x,9)eR% 1=l(x,y)Il = 2 )

Let us consider the following subsets of X.

B = { (x,y)eR%: I(x,y)Il = 2, 0=zx=-2, y=0 }.

A = { (x,y)eR%: N(x,y)I = 2) \ B

The preference relation (P) is defined on X as follows:

Yb € B, ¥x € X\B b P x

Va € A, X € X\AUBU{y*} aP x

x*=(1.5,0), y*=(2,0) x* P y*

vx,y € XN\AUBU{x*,y*} x Py e lxli > lyl
x € {x*,y¥), Vz € X\{x*,y*} x Pz e x> Izl
x € {x*,y*}, ¥z € X\{x*,y*} z P x < lzll > ixl

This preference relation verifies every condition in Theorem 3. as is

shown inmediately below.

It is possible to define an mec-structure in which the upper contour
sets (U(x)) are mc-sets (semicircular rings in this case). This structure is

defined as in example 1.

23



In order to see that Convexity Condition of Theorem 3. is verified, note
that if x is different from x* and y* it is fulfilled obviously from the

definition of preference relation P. Since U(x*) . is an mc-set,

x*¢C_ (U(x*¥) = U(x*¥) 2 G ({o,11™).

Alux®

And y*ﬁECmC(U(y*)), because U(y*)=Bu{x*} and the mc-hull of this set does not

contain the point y* as it is shown in the following graph,

NIV B—

24



hence y*eC (U(y*)) 2 G (10,11™), and the Convexity Condition is also
mc

Al Ux*)

verified in this case.

Finally it is not difficult to see that continuity condition is
fulfilled and it can be concluded from Theorem 3. that the set of maximal

elements is nonempty.

Note that this is in fact a non acyclic binary relation because there
is a cycle y* P (1.75, 0) P x* P y* Therefore results for acyclic binary

relations can not be applied.

25




APPENDIX

Proof of Lemma 1. As TI'(x) # @, for each x € X, then for each x there exists
y € T(x), so x € I''(y). Thus, T My) : yeX} covers X, so from the

hipothesis
If yeTl _l(x), then there exists some x‘ € X such that y € int I‘wl(x‘)

we obtain {inﬂ"_l(y) : yeX} is an open cover of X. Since X is a compact set,
then there exists a finite subcover { int F“l(y) : i=0, ...,n } and a
1

continuous finite partition of unity subordinate to this subcovering,

W), v =0, Ty =1, y&>0s xe¢ intl"—l(yi)

1 1=
Let be J(x)={1i : wi(x) > 0 }, then we have
v, € MNx) Vvielx) (1)

If we take A = {yo,yl,...,y }; since X is an mc-space, then there
n
exist functions P/_A: Xx[0,1l— X, such that PI.A(X,O) = x and
1 i

Pl}(x,l) = b in such a way that GA:[O,I]n———> X is a continuous function.
1 1

26




a. Construction of the selection.

From the partition of wunity, we define the following family of

functions

o if wi(x) =0
t (x)= (i = 0,1,...,n-1)
! ¥ (x)
— n‘ if y(x)#0
) wj(x)

so, function f is defined as follows

(o] n-2{ n-1

PA[..PA [PA [Pi(yn,l),tn_l(x)J,tn_Z(x)],...,to(x)}

Note that if wn(x) = 0, and wn_l(x) > 0 , then tn—l(X) = 1, therefore

P* (b,t (x))=P" (b,) =b
1 n n-1 n-1 n

that is, b is not in the path defined by GA. By applying the same reasoning
n

repeatedly, if

27




then we have that t (x) = 0 and t 2(X) =1, so

n-1 n-

PE(PE (bt )t

n-2 n-1 n n

x) =P* (b,1) =b
-2 n-2 n

n-

Therefore to construct the selection f we only need points b such that
1

vy, € I'(x). Hence f(x) would be contained in the image of the G ([0,11™)

AlT )

f(x) e (10,11™)

GA | Tx)

b. Continuity of selection f.

Selection f can be written as the following composition f(x)=GA(f’7(\I/(X)))

where

V:X——> An: Y(x) = (wo(x),wl(x),...,\bn(x))

0 if z =0
1
z, i _
i'Ti(z) = i i z %0 (i=0,...,n-1)

n 1

z
Lz
J=1

TW(x)) = (t (x),t(x),....,t (x))
0 1 1

f(x) = G (T(¥(x)) = G (t (x),t(x),....t (x))
A A O 1 n-1

28




In order to prove the continuity of f=GA(E’7(\If)) at any point x, firstly we

are going to prove that GAoi’T: A —— X is a continuous function. If this
n

is true then the continuity of f would be inmediately obtained (since f is a

composition of continuous functions : GAo?T and V).

To analyze the continuity of function GAoﬁ at any point zeld it is
n

important to note that if z >0 then
n

Z.
T (z)=- -
i n

Yz

j=i

J

is a continuous function, since it is a quotient of the continuous function

whose denominator is not null.

In an other case, 7 (z) could not be continuous (when its denominator
1

is zero, that is when z are zero for all k = i, ... ,n-1).

In the first case, the continuity is not a problem: since GAof’T is a

composition of continuous functions and therefore continuous.

In the second case, we define

j=max {i : z > O}
1

29




then z =0, ..., z=0, hence

j*+1 n
g (z) =0, , J(z) =0 and J(z) =1
j+i n J
zZ. z.
because T (z) = J = S|
J Z4+ zZ +...+z z
J j+1 n J

Furthermore J (a=0,...,j) are continuous functions at z because their
a

n
denominators are nonzero, (z>0 and z = 0 V k#j, therefore sz > 0,
j
K=

a

vk=0,...,j)

By definition of GA , it is verified that

G (7 (2),..,9 (2),..,9 (2))=G (T (=2),..,1,0,..,0)=
A O j n-1 A O

PA[..PA [PA [PA(y ,1),0],0],..,1],...,?7 (z)]
(o] n-2 n-1 n°"n o]

and since P?(a,l] = b, V a € X, then the part of the function
J

P‘f(..PA (PA [PA[y ,1],?7 (z)},ﬂ (z)],..,l] =b
J n-2{ n-1 ni{’n n-1 n-2 J

and it is independent of the values of an_l(z), E’Tn“z(z), f/'jﬂ(z) that

is,

30




S0,

To simplify, we call T=(J (2),..,1) and a = (A ,...,A 1}, thus
0 j+1 n-1

- m i
GA(HO(Z),..,I,Aj+1,..,7\ ) = GA(T, A)  vaelo,11 (m=n-j-1).

n-1
In order to show that function GAOfT is continuous, we are going to

prove that(s)
Vz e A, YW € N(GAo?/'(z)) , 3V e N(z) : GAo?T(V’) < W
n

By applying that GAoi’T(z)=GA(T,?\) vAel0,11™ and that GA is a continuous

function, we have that

YW e NG (T, A)), 3V) x V. e NUT,A): G (VM x V) € W 2)
A T A T

A A

N(A) denotes the family of neighborhoods of A.
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Moreover, since the family of open neighborhoods V?\ when A e [0,1]"
is a covering of [O,l]m, which is a compact subset, we know that there

exists a finite recovering which will be denoted as follows

[(0,11"= vy {VM :i=1,...,p}

Hence, if we take V?i ,  Vi=l,..,p, and we consider

V.= n (VM visl,.p,
T T

then VT is a neighborhood of T. But by considering that

=7 (2),..,9. (2),1)
0 j-1

we can rewrite VM = VMX Lo VA.l where VM e N(T (z)),
T TO Tj Tk k

hence V_ = V_ x...xV where V_= n{ VM: i=1,..,py k =0, ...,J.
T TO Tj Tk Tk

Hence, VTk is a neighborhood of ETk(z) since it has been defined as a
finite intersection of neighborhoods of i?k(z). Moreover, these functions ka
are continuous at z Vk=0,...,j, so, neighborhoods Uk of z exist such that

JU)cV_ .
k k Tk
Finally, on the one hand, if we denote
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V= (Ut ko= 0,0

then V’ is a neighborhood of z, and it is verified that

YweV’', (T (w),.., T(w)) e V. x..x V_ = V_c VM Yi=l,..,p
0 ] TO Tj T T
On the other hand, the remaining indices (k=j+1,...,n) it is verified
that T (w), ..., I (w) e [0 = U (v, : i=l,...,p}, so there
j+1 n-1 Al
exists an index io such that
(STJ.H(W), oo 9n_1(W)) € Vi iy € 1,...,p}
Thus we can ensure that
(T (W), T (W), T (W), T (W) e V. x V. < VMO v
0 j 3+l -1 T Aio T Ai0

and since we have obtained, (2), that GA(V)T\ X V?\) < W VAe[O,l]m, we can

conclude that for any w € V' it is verified that

G (T (w),...,.7 (w),T_ (w),...,.9 (W)) cW
A O J j+1 n-1

c. Fixed point existence.

Consider now the function g = ¥od: A —— A , where lI>=GA<>7. Since V¥
n n
and ® are continuous, it is a continuous function from a convex compact set

into itself, so Brouwer’s Theorem can be applied and we have
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Iix €A : glx ) =x
o n o (o]

Therefore, ®(g(x )) = &(x ) and, thus f(d({x )) = &(x ), so if we call
o] 0o (e} (o]

x* = ®(x ) we have obtained that
o]

f(x*) = x*,

that is, f has a fixed point.

Q.E.D.

Proof of Theorem 3. Suppose U(x} # @, for each x € X, then from Lemma 1., we
deduce that there exists a continuous function f with a fixed point,

x*=f(x*), and that verifies that f(x¥)eG (10,11™), hence it is a

AlUx*)
contradiction with the Convexity Condition, therefore the set of maximal

elements is nonempty.

Furthermore, the set of maximal elements is a closed set because its
complement is open. This is proved as follows if w ¢ {x: UX) = @) then
Ulw) # @, therefore, there exists y € X: y € U(w), that is w € U-l(y)

and by the Continuity Condition there exists y° € X such that

w e intU(y’) ¢ Uy,

thus if z e intU_l(y’) then y’eU(z), that is, U(z)#@ thus
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w € intU—l(y’) < X-{x: Ulx)=o}

Consequently it is obtained that {x: U(x) = @} is a closed set

and thus compact.

Q.E.D.

Proof of Lemma 2. As P is an acyclic binary relation, then it is verified
that every finite subset A = (Xo, xl,...,x) ¢ X, has a maximal element
n

(with P being acyclic, maximal elements always exist in finite sets). Then

there is an element in A for example X, such that, U(xo) n A= o

It is possible to define the following mc-structure i=0,1,...,n

P Xx[0,1] ——X
1
P‘i‘(x,O) =x PAx,t) = x if  te(0,1]

i 0

where x is one of the maximal elements of the set A. Then, composition GA

is given by

GA:[o,U“ — X
G (t,.,t )= PA[ A [ AP LDt )t ) ,t]
0 n-1 o] n-2 n- n -1 n-2 0
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. A . I . .
since P (x ,1) = Xo in the end, composition GA will be a constant function
n n

equal to X,

G (t,.,t )=x Vto,...,t e [0,1]

We prove that this mc-structure verifies Convexity Condition, by

contradiction.

If it is supposed that there exists a finite nonempty subset A of X

such that AnU(x) # @ and which verifies

m
X € GAIU(X)([O,H )

by construction of function GA , X has to be a maximal element on A, that
is, AnU(x) = @ which is a contradiction because AnU(x) # @. Hence, if P is
an acyclic binary relation, then Convexity Condition in Theorem 3. is

verified.

Q.E.D.

Proof of Theorem 6. From Theorem 3. it only remains to prove that if the set
of maximal elements is nonempty, then X is an mc-space. Suppose the set of
maximal elements of a relation P defined on X is non-empty, and let x* be

one of the maximal elements, then we can define the following mc-structure

on X:
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For any non-empty finite subset A of X, A:(ao, .., 2
n
P X x [0, 1l-— X

such that

PA(X,t) = x telo,1) and Pé(x,l) = x*
1

i

then the composition GA:[O,I]n—’e X is

Hence X is an mc-space and furthermore it fulfills the Convexity Condition,
since otherwise, if there exists a finite subset @ # A C X, and there exists

an element x such that A n U(x) # o and

xeG (10,11
AU

Therefore, as G ([O,l]m) = x* we have that x = x* so,

Alux)

* m
x* e GAIU(x*)([O’H )

but U(x*)=@, so, AnU(x*)=2 which is a contradiction.

Q.E.D.
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