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THE THEORY OF IMPLEMENTATION WHEN THE PLANNER IS A PLAYER

Sandeep Baliga, Luis Corchén and Tomas Sjostrom

ABSTRACT

In this paper we study a situation were the planner cannot commit to a
mechanism and the outcome function is substituted by the planner herself. We
assume 1) agents have complete information and play simultaneously; and 2)
given the messages announced by the agents, the planner reacts in an optimal
way given her beliefs. This transforms the implementation problem into a
signaling game. We derive necessary and sufficient conditions for interactive
implementation under different restrictions on the planner’s
out-of -equilibrium beliefs. We compare our results to standard results on Nash

implementation.
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Equilibrium Refinements.







1. Introduction

Suppose there are a certain number of agents who share some information.
This information is called the preference profile, type or state. An outside
party, the Principal (also called designer and planner), wants to elicit the
information from the agents in order to implement an outcome that is optimal
for her in each possible state (the social choice rule). In the standard
approach to this problem, known as implementation, the Principal can design
a mechanism, i.e. a message space and an outcome function mapping messages
profiles into allocations. Once such a task has been accomplished the
implementation problem becomes completely mechanical. Agents learn the state
of nature, send the corresponding equilibrium message and duly receive a
certain allocation. In fact, the task of the mechanism can be performed by a
machine or by a mindless servant.

With the development of the theory of implementation came an
appreciation of certain unsatisfactory aspects on which the theory relied:
in order to get rid of unwanted equilibria, certain message profiles led to
allocations that, no matter what state occurred, were never optimal. Under
the assumption that the designer can commit to the mechanism, and also
prevent ex post renegotiation among agents, such allocations are credible.
However, such assumptions are not universally regarded as satisfactory, so
it is desirable to explore the consequences of assuming otherwise.

Maskin and Moore (1987) relaxed the assumption that agents cannot
renegotiate the outcome given to them by the mechanism. They assumed the
existence of an exogenously given renegotiation function which selected
Pareto efficient and individually rational allocations. The question of

whether the planner can know the renegotiation function is difficult. Baliga




(1994) has shown that if the planner does not know the renegotiation
function, then implementation with renegotiation in the sense of Maskin and
Moore is extremely difficult. In the exchange economy, it is possible to
solve this problem if the planner can commit to destroying goods ex post
(Sjostrom (1994)). But again the assumption that the planner can commit to
the outcome function is critical, since destroying goods will presumably not
be optimal in any state.

In this paper our approach is in the spirit of Becker (1974). If the
Principal is a (benevolent) player in the game, "incredible threats" are
ruled out, as the Principal at each node of the game tree must maximize his
expected payoff, given his beliefs. Becker considered a moral hazard model,
however, where the Principal had perfect information (see also Ray (1993)).
In our model the Principal is uninformed of the true state (adverse
selection), so messages can convey information from the agents to the
Principal.

Chakravorty, Corchon and Wilkie (1992) consider an adverse selection
model where the mechanism is run by a real person who is in charge of
delivering the allocation once the messages have been announced. They assume
the person in charge is a benevolent (but mindless) "keeper" and not a
player: she is neither allowed to figure out the equilibrium strategies of
the agents nor to make inferences from the messages sent by the agents.
Therefore, she is always uninformed. But she must keep in the spirit of the
mechanism and therefore under no circumstances can she pick an allocation
that is not in the range of the social choice rule.

In our paper, the Principal is a full-fledged player, and thus she
stands on equal footing with respect to agents in terms of rationality (but,

of course, not in terms of information). Thus, in equilibrium she holds



correct beliefs about strategies (i.e. the mapping from types to messages).
Contrary to the credible implementation approach, the outcome function is
replaced by the Principal’s optimal response to messages. The result is a
cheap talk game where agents are the senders and the planner is the
receiver. The notion of a mechanism (with its connotations of a mechanical
interaction between agents and the ©planner) is substituted by a
communication network. In the model we will present in this paper this does
not differ from the standard message space but we prefer to call it a
communication network as messages convey information to the planner and, in
general, the planner can also send messages to the agents. Our theory is a
theory of interactive implementation where the planner discovers the agent’s
equilibrium strategies, makes inferences from what agents say and might send
them messages in an attempt to influence their behavior.

We take the simplest possible situation and consider a two stage game
where agents play simultaneously in the first stage (i.e. they announce a
message profile) and the planner reacts in the second (and last) stage. The
planner is assumed to maximize her expected utility at the second stage,
given her preferences and her beliefs.

With at least three agents, there always exists a truth-telling perfect
Bayesian equilibrium (PBE). Since the planner is just one more player she
knows the equilibrium strategies. So suppose everyone tells the truth in
each state. Then, if an individual deviates, the planner can ignore his
deviation and just implement the outcome that is optimal for the preference
profile that is announced by the other two or more agents. Indeed, in any
separating equilibrium where agents send a different message in each state,
all the private information is released to the planner who can then

implement an optimal outcome.




However, as this is a cheap talk game, there will exist "babbling"
perfect Bayesian equilibria where messages do not convey any (or only
partial) information. Since we insist on full implementation, i.e. all
equilibria should be optimal for the planner, some refinement is needed. We
use a version of Farrell’s neologism proof equilibrium, which we call FGP
(Farrell-Grossman-Perry) equilibrium (following Maskin and Tirole (1992)).
The corresponding notion of implementation is interactive implementation in
FGP equilibrium.

We define a necessary and sufficient condition for interactive
implementation in FGP equilibrium. We relate this condition to the standard
notion of implementation in the sense of Maskin (1977). In Maskin’s model,
the social optimum is given by a social choice rule. We interpret the social
choice rule as representing the utility maximizing outcomes for the planner.
Of course, there may be many preference orderings for the planner that are
compatible with the same social choice rule, since the social choice rule is
only concerned with the top-ranked elements in each state. We show that even
if a social choice rule ¢ is Nash implementable in the usual sense,(Z) there
may not exist any preference ordering for the planner that is compatible
with ¢ and which makes interactive implementation of ¢ possible. This should
not be surprising, since in interactive implementation the planner cannot
make incredible threats, and the occurrence of "bad" outcomes out of
equilibrium can be crucial in Maskin’s model. More surprisingly, if ¢ is
locally Maskin monotonic, a condition slightly stronger than Maskin

monotonicity, then there always exists some preference ordering for the

2
In the exchange economy, this is equivalent to the well-known condition of

Maskin monotonicity.



planner that is compatible with ¢ and which makes interactive implementation
of ¢ possible.

The restriction of credibility in the planner’s choice of outcome might
seem to make implementation harder, but there are actually social choice
rules that can be interactively implemented but cannot be Nash-implemented
in the standard sense. This is because when the planner is a player, his
response to a given set of messages can depend on the actual equilibrium
being played. Let us give an intuition for this in terms of Maskin’s (1977)
model. In Maskin’s mechanism, if the agents send a false message 6 when the
true state is 68’, and outcome ae¢(6) is about to be chosen, then agent i can
“object" by demanding an outcome a’ such that a’ is (strictly) preferred to
a when the true state is 6’ but not when it is 6. (This is "rule 2" of
Maskin’s mechanism.) It is also necessary to stop the agent from objecting
when the true state is really announced. Essentially, this implies that the
6 and O’ indifference curves through a must cross. ® Yith interactive
implementation, on the other hand, the planner’s reaction to the objection
can depend on which equilibrium is actually played. If the equilibrium is
truthful, objections by a single agent can be disregarded. Therefore there
is no requirement that indifference curves must cross.

In view of this result, it may be asked what would happen if the
planner can commit to the outcome function, but can participate as a player
by sending messages. In this case the fact that the planner "knows"
equilibrium strategies leads to fairly dramatic results: in contrast to the

standard model, even cardinal rules such as the utilitarian criterion can be

3
Note that it does not matter to this argument if there were other states
except 6° where a’ would be preferred to a. With interactive implementation,

however, such considerations are crucial.



implemented ! ( See Baliga, Palfrey and Sjdstrom (1995))

2. Two Examples

2.1 A didactic example

In order to show how our ideas work, we will consider a famous problem in
implementation theory: King Solomon’s dilemma (see Moore (1992)). Two
perfectly informed agents (Anna and Betsy) lay claim to the motherhood of
the same child. King Solomon (the planner) has to decide to whom to award
the baby. There are two possible states of nature, denoted by « and B. In
state o (resp. B) Anna (resp. Betsy) is the mother. There are four possible
allocations: a (the baby is given to Anna), b (the baby is given to Betsy),
¢ (the child is cut in half) and d (death all around). The ordinal

preferences of Anna, Betsy and Solomon are assumed to be as follows:

STATE « STATE B
Preferences of: Solomon Anna Betsy Solomon  Anna Betsy
a a b b a b
d b c d c a
c c
b d d a d

We will assume that the communication network consists of a message
space for each woman: Mi= ® x {L,H} where ® = {«, B} and L(ow) or H(igh)
indicates the tone of voice. Once the mothers have spoken, King Solomon
(after all a feudal monarch at a time when democracy was unimaginable) takes

an irrevocable decision on the allocation.
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Solomon’s preferences are such that in state « he prefers a to d to ¢
to b. On a cardinal scale, a is only slightly better than d and c, but he

cannot suffer b. This is explained by the fact that Solomon likes to be

)

right but hates the possibility that the populace gossips(4 that Anna and

Betsy made a fool out of him. So, if the messages do not reveal the true
state, rather than risking handing over the baby to the wrong person, he
prefers the harsh outcome pour encourager les autres. If the true state is
B, the situation is similar and Solomon prefers b to d to ¢ to a.

If Solomon could disentangle the messages sent by Anna and Betsy and to
acquire knowledge about the true state he would like to implement the
following social choice rule, ¢(): ¢(a) = a, ¢(B) = b. However, if after the
mothers have spoken, he is not able to discern the truth he orders the

"compromise" allocation d that maximizes his expected utility conditional on

) Formally, the extended

the belief that the true state is either « or B.(S
social choice rule F, which specifies the optimal outcome also in cases
where Solomon does not know the true state, is defined by: F(a)=a, F(B)=b,
F({«,B})=d.

Let us consider the perfect Bayesian equilibria of this game. Consider

a separating equilibrium first. If both Anna and Betsy adopt a truth-telling

strategy, Solomon knows it(s? Since he also knows the message sent by then,

4
The British monarchy demonstrates the destructive nature of gossip on the
authority of the head of state.

5
Formally, Selomon has priors p(X)>0 and p(B)>0 for the two states. The

compromise d maximizes his expected utility given these priors.

6
of course, the reason why King Solomon  Kknows the strategies is not his

legendary wisdom, but the fact that he is assumed to be a player (both
things may be equivalent).
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to pick the right choice is a trivial matter for him. Any deviation from
Anna or Betsy only can be meant to fool Solomon and we know what to expect
from this! Indeed, 1if Solomon allocates the priors after any zero
probability message and therefore implements d, truth-telling 1is an
equilibrium. Of course, any other equilibrium where at least one agent
separates also reveals the true state to Solomon.

However, there are also non-optimal "babbling" equilibria. In such
equilibria, for any message, Solomon’s posteriors are identical to his
priors, so no deviation from Anna or Betsy is going to make any difference.
The equilibrium outcome is d. For instance, suppose Anna and Betsy always
announce («,L) and (B,L), respectively. As Solomon gets no information from
these strategies, his priors go through and he implements d. Suppose now
Anna "objects" by announcing (e«,H). This amounts to the speech: "Please
implement a and not d as the state is truly «". Formally, an objection is a
zero probability message under the equilibrium strategies. To make sure that
objections are always available, we include auxiliary messages such as high
or low tone of voice. Nevertheless, if babbling means sending each message
with positive probability, objections are impossible. Therefore, we rule out
mixed strategies.

Unfortunately, Anna’s objection is not reliable. Solomon may retort as
follows: "Since the outcome that awaits you is d, it is always in your
interest to try to fool me!. Therefore I can not be sure that your speech
does not convey more lies. I am sorry". Similarly, if Betsy objects to the
above pooling strategies, this also is not a reliable objection: whether or
not Betsy 1is the true mother, she would like a or b to be implemented
instead of d. An FGP equilibrium is defined to be an equilibrium which is

free from reliable objections (a precise definition will be presented
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later). Consequently, the babbling equilibrium is an FGP equilibrium, and
Solomon’s preferred outcome cannot be interactively implemented in FGP
equilibrium.7

Let us now go forward in time to a kinder, fairer, post-revolutionary
era. Democracy is now the form of government in the ancient world and
Solomon though still wise and still rich is wheeled out for state ceremonies
only. No longer can he order anyone’s death: capital punishment has been
abolished by the radical government and there is no question of letting
Solomon have any such independent power. Anna and Betsy are arguing over the
motherhood of the child and Carla, their confidant, also knows the truth but
is indifferent over a and b. Solomon is still sensitive about maintaining
his reputation and preventing gossip, and, as he cannot implement d or ¢, he
now prefers to give the two women a lot of money, outcome m, and allocate
the baby randomly between Anna and Betsy if he is not sure of the true
state. While this makes all the women very happy, the true mother still

prefers to have her child:

STATE « STATE B
Preferences of: Solomon Anna Betsy Carla Solomon Anna Betsy Carla
a a m m b m b m
m b a,b m a m a,b
b a a b a

The extended social choice rule in this case is F(a)=a, F(B)=b,

F(a,B)=m. The social choice rule ¢ defined by ¢(a)=a, ¢(B)=b is

More precisely, we have shown that these message spaces do not work. It is

clear that no other message space will work either.
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Nash-implementable in the standard sense.

Again, all the women announce « or B simultaneously in a high or low
tone of voice, and then Solomon implements an outcome. Truthtelling can be
turned into an equilibrium by assuming that Solomon will disregard
individual deviation. There are also "babbling" equilibria where m is
implemented and Solomon believes the priors no matter what message is sent.
However, there 1is a difference: reliable objections to the babbling
equilibria are available to the women. For example, suppose Anna, Betsy and
Carla announce («,L), (B,L), («,L) respectively in all states. Then,
Solomon’s best response is to implement m. Suppose Betsy deviates and
announces (f8,H). If B is indeed the true state she definitely prefers the
socially optimal outcome b to m. However, if Anna is the true mother then
Betsy prefers m to b and would have no incentive to make the objection.
Therefore, her objection is reliable. In such a way all babbling equilibria
can be knocked out. Thus, Solomon can interactively implement the extended

social choice rule F in FGP equilibria.

2.2 An economic example

There are several economic settings where our assumption that the
planner cannot commit to an outcome function has force. Suppose there is an
authority relationship between a Principal such as the head of a firm or the
government and the set of agents such as workers or regulated firms
respectively. The Principal then has the authority to choose any outcome
she wants and the agents do not have the power of recourse to some outside
authority if the Principal reneges on the mechanism. An alternative setting

is one where although contracts can be written, the messages sent by the
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agents are unverifiable so that the agents have no legal recourse if the

Principal reneges on the outcome function.

To give a more explicit example, suppose there are nz3 firms which are
regulated by the government. Each firm i faces a demand curve pi=a—bqi in
its own market and has a constant marginal cost cie{cL,cH}, where a > CH >
CL' A state here is a list 6={cl,cz,...,cn}. Assume 6 is common knowledge
among the firms but the government does not know 6. The government’s
objective is to choose quantity 9 in each market 1 to maximize surplus

U(ql,...,qn,cl,...,cn) = Zi (aqi —bq?/Z _Ciqi)
The prior probability that the state is cL in market i is re(0,1) and

that it is ¢, is (1-r) and priors are i.i.d. in the other firms. Firm i’s

H
payoff is the profit (pi—ci)qi. This model then fits ours framework if we
assume the government cannot commit to a mechanism. Similar models have been

studied in the regulation literature (Laffont and Tirole (1988)). We return

to this example after we have stated our results.

3. The Model

There are n =z 3 agents. Let I be the set of agents. The set of feasible
outcomes is denoted by A. Let ® be the set of possible states of the world,
assumed to be finite. The prior probability of state 6 occurring is Py and
we assume p, > 0 for all 6eB. Let Q be the set of all subsets of B©. Weak
preferences of agent i in state 6 are given by the ordering Ri(e). Thus, for
a, b e A, aRi(e)b means agent i (weakly) prefers outcome a to outcome b in
state 8. Let Pi(e) represent strict preferences and Ii(e) indifference. The

lower contour set for agent i at allocation a and state 6 is Li(a, 8)={b € A
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/ aRi(e)b}. We assume throughout that the true state 6 is common knowledge
among the agents.

At this point, most of the literature on mechanism design defines a
concept of social welfare, a social choice rule (SCR), a mapping from states
to outcomes. In our setting, the planner is just another player.
Accordingly, she must have an objective function, an action set, a strategy
etc. Jjust like a standard player in a game. The outcomes that are at the
top of the planner’s objective function for some particular state can be
thought of as the optimal outcomes identified by a social choice rule. The
planner differs from all the other agents in the game in one fundamental
respect: the state is common knowledge to them but not to the planner. If
the agents are not using strategies that release their private information
in all states, the planner will have non-degenerate beliefs after observing
some messages. She will have to choose a best response even though she is
not sure of the state. In this respect, the usual concept of a social
choice rule has to be "extended" to cover the cases where the planner has
non-degenerate beliefs.

If allocation a is chosen in state 6, the payoff to the planner is U(a,
0). We suppose the planner behaves as an expected utility maximizer. Let
p(6 | m) be the posterior probability conditional on the planner receiving
some "message" m from the agents. Let T<® be the set of states where
message m is sent. (We are ruling out mixed strategies.) Then, after message
m the posterior probabilities are given by p{ 6 | m) = 0 if 6¢T, and

p(etm)=pe/p(T), where p(T) = £ if 6€T. Conditional on receiving this

peT Po’

message m, the planner’s expected utility from alternative aeA is

L (pg/P(T)) U(a,8)
6 e€T

The extended social choice rule F is the "best response" correspondence

16




for the planner, defined for each subset TS® as follows:

F(T) = argmax { T (pe/p(T)) U(a, e) : aeA } (1)
6 € T

Thus, after receiving the message m, the maximization of expected
utility yields a set of optimal outcomes F(T), where T is the set of
possible states given m. If T={6} is a singleton, then we write F({6})=F(0)
for convenience. We can define a SCR ¢F by ¢F(9)=F(e) for all 6. Then ¢F is
the restriction of F. Conversely, if F is an extended SCR and ¢:8>A is a
standard SCR such that ¢(8)=F(8) for all ©e® then F is compatible with ¢.

The planner’s preference ordering is the basic data which induces the
extended social choice rule. However, we find it convenient to couch the
discussion directly in terms of the more general concept of implementation
of extended social choice rules. The generalization is only marginal. In the
appendix, we show that under some weak assumptions, for any extended social
choice rule F defined on the subsets of ©, there is some preference ordering
for the planner that rationalizes it (i.e. such that (1) holds).

Finally we recall the following definition. If aRib implies aRib, then
R; is a monotonic transformation of Ri at a. The social choice rule ¢ is
(Maskin) monotonic if, whenever ae€$(R) and for all i R; is a monotonic

transformation of Ri at a, then ae¢(R’).

4. Interactive Implementation

The communication network is M = xX M., where M.l =8 X AX Qi(s?

ier

Thus, each

8
We can consider more general message spaces but nothing is lost by

focusing our attention on the ones we consider.
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i i .
player reports a state 6°<8, and outcome a €A and a "nuisance message" q €

R
Qi' A generic message is denoted Dby m, = (Gl,al,q ). Let
= i i : M.,
m_. (ml,...mi_l,mi+1,...,mn). A strategy for player i is a map My e — i
where ui(G) is the message sent in state 0. Let
u_i(6)=(u1(6),...,ui_l(e),ui+1(8),...,un(G)). A strategy for the planner is

a function a: M — A, where a{m) is the allocation chosen when the message
is m.

Suppose the agents use strategies p. The range of p, i.e. the set of
messages that are sent for some state, is denoted p(®) = {me M : m = pu(6)
for some 8 € 8}. For any m € M, p_l(m) = {6 € @ : u(B) = m} is the set of
states where agents send message m. Similarly, u:;(m_i]i{e € 0 : u_i(e) =
m_;}. If p(@)=m for all 6€T<O, we write m=u(T). Similarly if p_,(6)=m_, for

all 6€T<B, then m_i=u_i(T),

Definition 1. (u*, a*) is a perfect Bayesian equilibrium if
(1) for each 6 € ® and each i, a*(u*(e))Ri(e)a*(ufi(e), mi) for all m, € Mi’
(2) for each m € px(8), ax(m) € F((w) L(m)),

(3) for each m € M\u*(8), there exists T £ © such that ax(m) € F(T).

Part (1) of Definition 1 states that, given the anticipated response
from the planner, each agent sends a message that maximizes his payoff. Part
(2) of Definition 1 requires that, for each message m that is sent in
equilibrium, the planner chooses what is best for her, conditional on the

correct belief that the true state must belong to (u*)_l(m).

The PBE is separating if (u*)—l(m] is a singleton for all mep*(®). In

this case the planner inverts p* and is fully informed in equilibrium. A PBE
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which is not separating is pooling. In a pooling PBE some "compromise" must
be chosen by the planner whenever mep*(8) is such that (u*)-l(m) is not a

singleton, for the planner will not be fully informed.

Part (3) of the Definition 1 requires that if m is a message which is
not sent in equilibrium, then there exists some belief for the planner, say
the state belongs to the set T, such that the planner’s response is optimal
conditional on this belief. However, as Farrell and others have argued, the
planner might plausibly infer something from out-of-equilibrium messages. We
introduce restrictions on the planner’s off the equilibrium path beliefs
that capture this idea. ? It is important to note that we are concerned with
the case where there are at least three senders of messages. Therefore, if
one agent makes a surprise announcement, the planner may be able to infer

some information from the other agents’ messages.

Definition 2. Let (u¥*,a*) be a PBE. Suppose ufj(e’) = m_,, (6’,a’,q’) € Mi
but (m_i,(e’,a’,q’)) ¢ u*¥(®). Then (8’,a’,q’) is an objection to (u*,a*,m_i)

by player 1.

Definition 3. Let (u¥,a*) be a PBE, and ufi(e’) = m_,. An objection
(8’,a’,q’) to (u*,a*,m_i) is reliable for player i if there exists a set
T’ c(u*) " (u*(6” ) such that

(1) 8’€T’,

(2) a*(u*(8’))eF(T’ ),

9

As in Farrell’s model, we could allow players to send messages which are
sets of types: "I am in the set T & ©". However, it will be clear that for
our purposes the two formulations are equivalent.
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(3) a’eF(T’)
(4) if 6€T’, then a’Pi(e)a*(u*(G’)) and
(5) if 0e(u*)” (u*(8” )\T”, then a*(u*(e’ )R (8)a’.

A PBE is an FGP-equilibrium if no player has a reliable objection.

Remark Requirement (2) of Definition 3 implies that reliable objections
can only be made in states where some pooling occurs, for if

(u*)_l(u*(e'))={8’}, then by definition of PBE, «a*(u*(8’))eF(6’).

A reliable objection amounts to the following speech: "The other agents
have told you m_i=ufi(6’), I'm supposed to say u;(e’) and you are supposed
to pick a*(u*(6’)) but I object: the state is truly 6’ and you should pick
a’. Your knowledge of strategies allows you to infer that the true state is
in (u*)—l(u*(e’)). There exists a set T’c(u*)_l(p*(e’)), with 6’€T’,
a’eF(T’) and oa*(u*(8’))¢F(T’), and with a’Pi(B) a*(u*(e’)) if and only if
6€T’. Since I'm trying to convince you to choose a’ you can believe that the
state is in T’, so you should indeed pick a’."

We say that f is a selection from F, and write f € F, if f is a

single-valued function such that f(T) € F(T) for all T € 6.

Definition 4. The extended social choice rule F is (interactively)
implemented in FGP-equilibrium, if:
(i) for each selection f € F, there exists an FGP equilibrium (u,o) such
that

a(pn(e))=f(6) for all 6, and

(ii) if (p,a) is an FGP-equilibrium, then for all 6, oa(u(8)) € F(8).

20




Remark We assume that if an objection convinces the planner that the
state is @', and if F(8’) is not a singleton, then the objecting agent can
tell the planner which outcome a’'e€F(68’) to pick, perhaps as a reward for
informing the planner of the true state. (The planner is indifferent among
the outcomes in F(8’) by definition, and it is in her interest to encourage
agents to object in order to knock out ©pooling equilibria.) A
straightforward modification would be to define a "safe" reliable objection
to be one where all elements in F(8’) make the objecting agent better off.

Similarly to Definition 4, one can define interactive implementation in
PBE (with no restrictions on out-of-equilibrium beliefs). However, the
following result shows that, due to the existence of ‘"babbling" PBE,

interactive implementation in PBE is (almost) impossible.

Theorem 1. Let F be an extended social choice rule. If F is interactively

implementable in PBE, there exists an outcome a such that a € F(8), Y6 € G@.

Proof: Let I Mi be a communication network that implements F interactively
ien

in PBE. Let all agents send the message profile m independent of the state

of the world. For any message, the planner’s prior goes through and she

implements some a € F(®8). These strategies and posteriors form a pooling

PBE, and since F is implemented, we must conclude that aeF(6), V6 € 8. QED

5. A Necessary and Sufficient Condition for Interactive Implementation in

FGP Equilibria

Consider the following definition:
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Definition 5. An extended social choice rule F is reliably monotonic if the

following holds. If for any TS®, there is beF(T) such that b ¢ n F(t), then

teT
there exists iel, T’cT and ae€F(T’) such that:
(i) if 6€eT’ then aPi(B)b
(ii) if @eT\T’, then bRi(e)a
Theorem 2. An extended social choice rule F is Iimplementable in FGP
equilibrium if and only if it is reliably monotonic.
Proof: Necessity Suppose F is interactively implementable in FGP

equilibrium. Let X Mi be the message space of the mechanism that implements
i€1

F, where Mi=®xAin. Suppose there is a set T<®, beF(T) but b ¢ n F(t). Let
teT

fe F be such that f(T)=b.

Consider the following strategies (u*,a*). For each i, there is ﬁi such
that u§(t)=ﬁi if and only if teT. If tgT, then for all i, u?(t)={t,.,.h
That is, agent i reveals the state truthfully if it is not in T; if it is in
T he always submits ﬁi. If mi=u§(t) for te¢T and all i#j, then a*(m)=f(t). If

mi=ﬁi for all i#j, then «*(m)=f(T)=b. For all other m, «*(m) is arbitrary.

Since F 1is implemented and bg n F(t), (u*,a*) is not an FGP
teT

equilibrium. If te¢T, then unilateral deviations are ignored by the planner,
hence no deviation is profitable. Therefore, some agent 1 must have a
reliable objection at some state 8’e€T. That is, there exists a reliable
objection (8’,a’,q’) to (u*,a*,ﬁ_i). By definition, p*(8’)=m. Then there
exists T’ ¢ (u*)—l(ﬁ)=T such that 8°€T’, beF(T’), a’eF(T’) and the following

holds: if 6€T’, then a’Pi(e)b, and if 6€T\T’, then bRi(G)a’. Thus, F is
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reliably monotonic. This proves necessity.

Sufficiency: Let the message space for player i be Mi=@xAX{1,2,...,]®[+1L
Truthtelling can be supported as an FGP-equilibrium by letting the planner
disregard unilateral deviations. Thus, we only need to show that there are
no non-optimal equilibria.

Suppose there exists a non-optimal FGP equilibrium (p,«) such that for
some 0%e®, «(u(6*))=bgF(6*). Let m=p(6*) and T={6:u(8)=m}. By definition of

PBE, beF(T). Also, b ¢ n F(t) since bgF(6*). Since F is reliably monotonic,
teT

there exists iel, T’'cT and a€F(T’) such that: if €T’ then aPi(e)b, and if
6e€T\T’, then bRi(G)a. Let 6€T’. Consider m;={e,a,z} ¢ pu*(8). Then, m; is a
reliable objection to (u,a,ﬁ_i). Then (p,«) 1is not an FGP equilibrium,

contradiction. This proves sufficiency. QED

Recall our economic example (B). If the government knows the cost in
market i is i it will choose a quantity qi=(a—ci)/b such that price Py
equals marginal cost Ci' If it is unsure of the cost function of firm i, it
will choose a quantity such that price equals the expected marginal cost
rcH+(1—r)cL. We now show that the implied extended social choice rule F is

reliably monotonic if and only if

r z (a-cH)/(cH—cL) (2)

Consider any set T<® which is not a singleton. Then, there exists
8,0’eT and a firm i such that ci=cL under 6 and c;=Cy under 6°. If
(ql,...,qn)eF(T) then qi=rqH+(1—r)qL so that the low cost firm makes a

profit and the high cost firm makes a loss. Clearly the only objection firm

i has an incentive to make is that its cost is high. If it can convince the
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planner, it will be asked to produce - This is always preferred to
rqH+(1—r)qL by the high cost firm. It can be checked that the low cost firm
prefers rqH+(1—r)qL to g if and only if (2) holds. Thus, if {2) holds the
set T’ as required by definition 5 can consist of all the states in T where
the cost for firm i is high. Conversely, if (2) does not hold no such set T’

exists. Thus, (2) is equivalent to reliable monotonicity.
6. Comparison of Interactive Implementation and Standard Nash Implementation

We first give two examples showing that interactive implementation in
FGP equilibrium is in general neither easier nor more difficult than
standard Nash implementation. We suppose there are three consumers and three
commodities, and two states 6’ and 6’’. However, the third consumer is only
interested in the consumption of the third good and no other consumer has
endowments of this commodity nor do they derive any utility from consuming
the third good. We assume that in any (extended) SCR under consideration the
third consumer consumes just her initial endowments so we in effect have a
two-good, two consumer world. Although the examples are concerned with
extended social choice rules, it follows from Proposition 1 in the appendix
that in each case there exists a nice utility function for the planner that

rationalizes it, i.e. such that (1) holds.

Example 1. An extended SCR F which is not interactively implementable in FGP
equilibria, even though the restriction ¢F is Nash-implementable.

Suppose ¢F is the Walrasian correspondence. In Figure 1 we have
pictured the competitive equilibria for the states 8’ and 8’’'. We know that

in this case ¢F is Nash implementable. However because of the position of
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the "compromise" a=F({6’,6’’}), F is not reliably monotonic.

Example 2. An extended SCR F which is interactively implementable in FGP
equilibrium, but ¢F is not Nash implementable.

Figure 2 shows the Walrasian correspondence for states 8’ and 6’’. In
this case this correspondence does not satisfies monotonicity and thus it is
not Nash implementable. However if the compromise ;=F({6’,9”}) is in the

right place (as it happens in Figure 2) then F is reliably monotonic.

It should be clear that the reason why Maskin monotonicity and no veto
power are neither necessary nor sufficient for implementation in FGP
equilibria is that the compromise may be in the wrong place. Therefore,
given a Maskin monotonic social choice function, we may wonder whether there
exists some preferences for the planner which are compatible with the social
choice function and allows interactive implementable in FGP equilibria. The
answer 1is no, since our next example exhibits a Maskin monotonic social
choice function such that no extended social rule compatible with it can be

interactively implemented in FGP equilibria.

Example 3. A Maskin-monotonic social choice rule ¢ such that, if F is any
extended social choice rule which is compatible with ¢, then F cannot be

interactively implemented in FGP equilibria.

Consider a three person exchange economy with two goods. The social

endowment of good i is w, . There are four states, @={61,82,63,64}. The
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preferences of player 3 are fixed at R3(8)=R3 for all 6. The preferences of
player 1 are R1(91)=R1(92)=R1 and R1(93)=R1(64)= Ri. The preferences of
player 2 are R2(81)=R2(63)=R2 and R2(92)=R2(94)= Ré. Let ¢ be single valued
and let a=¢(61),b=¢(62),c=¢(83), d=¢(64) be four distinct outcomes. Suppose
in all four cases player 3 gets some small amount €>0 of each good. Let
xi=(xil,x12) denote the amount of goods 1 and 2 consumed by agent i at
allocation x. The preferences of player 1 are given in figure 3, where the
dotted (resp. solid) line represents an Ri (resp. Rl) indifference curve.

The preferences of player 2 are given in figure 4. Ri and Ré are actually

isomorphic, and also R1 and RZ' 10

Clearly ¢ is monotonic. Now let F be any extended social choice rule

compatible with ¢. We claim F cannot be interactively implemented in FGP
equilibria.

Let d be the greatest amount of good 1 consumed by any player at

11221
any of the outcomes a,b,c,d, and let a12=d22 denote the greatest amount of
good 2 consumed by any player at any of the outcomes a,b,c,d. Let K1 and K2
be numbers such that d11 < K1 < wl and a12 < K2 < w2. Let the shaded area

C1=A1UB1 in figure 3 be the union of the sets A1={x1: Xllswl—Kl and X125K2}

and Bl={x1: X115K1 and leSwZ—KZ}. Let C2=A2uB2 in figure 4 be similarly
defined.

Now we draw the indifference curves for player 1 in such a way that if
an indifference curve for preferences R1 passes through the area Cl’ then it

coincides throughout the consumption set with an indifference curve for

preferences Ri. Similarly, if an indifference curves for preferences RZ

10
Both player 1 and player 2 are always indifferent between a,b,c, and d but
the example can be perturbed so that this indifference goes away.
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passes through the area CZ’ then it coincides throughout player 2’s

’

consumption set with an indifference curve for preferences R2

Let G, and H1 be the shaded areas in figure 3 given by:

1
G1={z: if xeA and X, =2, then aPlx and xRia}
H1={z: if xeA and x1=z, then aPix and lea}
Let G2 and H2 be similar for player 2.

It is clear that we can draw the indifference curves in such a way that
if z=(21,22)eG1 (where z; is the consumption of good i) then 21>w1-K1 and
22>K2. Similarly, if z=(zl,22)eG2 then 21>w1-K1 and 22>K2. Similar

statements hold for H1 and H2.

Suppose F is reliably monotonic and let eeF(®). Since e ¢ n F(t),
te®

there exists iel, T’c® and geF(T’) such that:
(i) if 6e€T’ then gPi(e)e
(ii) if e¢T’, then eRi(e)g.
There are four possibilities, call them I,II,III,IV. If i=1 then either
(1) T ={61,62} so gPle and eng, or (II) T ={63,94} S0 gPle and eng.

Similarly, there are two possibilities (III and IV) for the case i=2.

Consider first possibility I, where T’={61,62}. Since g ¢ n F(t),
teT’

applying the definition of reliable monotonicity we find: there is 6’€T’ and
yeF(8’) such that:
(1) yPZ(e’)g

(ii) if eeT’\{6’}, then gRZ(G)y

Again there are two possibilities to consider: (Ia) 8’=61 or (Ib) 8’=62.

(Ia) If 8’=81 then RZ(B’)=R2 and F(6' )=a. From (i) and (ii) it follows

that aPzg and gRZa. Thus, g, must be in area G2 in figure 4. Then 851 >
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- - to th
w, K1 and 855 > KZ, SO 844 < K1 and 815 < w, KZ' Thus, g, belongs to e

area BlcC of figure 3. By construction, if an indifference curve for

1

preferences R1 passes through this area, then it coincides throughout the
consumption set with an indifference curve for preferences Ri. However, this

contradicts gP.,e and eRig.

1
(Ib) This case is completely symmetric to (Ia).
Thus, possibility I leads to a contradiction. The remaining
possibilities II, III, IV lead to similar contradictions. Thus, although ¢
is Maskin monotonic and hence Nash-implementable, if F is any extended

social choice rule which is compatible with ¢ then F is not reliably

monotonic, hence F cannot be interactively implemented in FGP equilibria.

However, a slightly stronger condition than Maskin monotonicity, local
Maskin monotonicity, does guarantee that there exists some extended social
choice rule F, which is compatible with ¢, and which can be interactively
implemented in FGP equilibria. The Walrasian correspondence is locally
monotonic whenever the competitive equilibria occur in the interior of the
feasible set. In Example 1, then, there must exist some ¢ such that if
F({6’,8’’})=c, then F is interactively implementable in FGP equilibria.

We consider a special kind of environment. The feasible set A is a
subset of Euclidean space with the usual Euclidean metric. Preferences are
continuous and strictly convex. We also restrict attention to social choice

functions.
Definition 6. (Shenker (1994)) A social choice rule ¢ is locally Maskin

monotonic if for any 6 and any set of open neighborhoods Ni around ae¢(8),

ae¢p(6’ ) whenever aRi(e)x = aRi(e’)x for all allocations xeNi and all i.
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Notice that the SCR analyzed in Example 3 is not locally Maskin

monotonic.

Theorem 3. If a social choice function ¢ is locally Maskin monotonic, then
there exists an extended social choice function F, which is compatible with
¢, and which can be interactively implemented in FGP equilibria.

Proof Since ©® is finite, we have ®={61,e .,GK} for K < o. Let ¢ be

oo
locally Maskin monotonic. We need to define F(T) for all TS@ in such a way
that F is compatible with ¢ and reliably monotonic. Note that, trivially,
F(T) can be said to be defined for all T such that eieT for some i=0, since
there is no such i.

Now suppose for some N such that 1=N=K, we have defined F(T) for all T
such that BieT for some i=N-1. If N > 1, define T(N—l)s{el,ez,...,eN_l}. If
N=1 then T(N-1)=2. We will proceed to define F(T) for all TS®\T(N-1) such
that eNeT. (After this has been done, we have defined F(T) for all T such
that GieT for some i=N, and it is clear how this process can be continued.)

Consider eN and ay = ¢(6N). Suppose, for some k such that 1=k=K-N+2,
F(T) has been defined for all TSB\T(N-1) such that (a) 6,€T, and (b) |T] =
k. (This requirement is vacuously satisfied if k=K-N+2 since in this case
there is no TESOB\T(N-1) that satisfies (a) and (b).) Also, suppose for all
TSONT(N-1) satisfying (a) and (b), either F(T)=n6€TF(6) or there exists
i(T)eN and non-empty sets B(T) and N(T) satisfying:

(1) T=B(T)UN(T)
(2) 6,€B(T)

N

(3) if 6eB(T), then a Pi

N (8)F(T)

(T)
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(4) if 8eN(T), then F(T)Pi(T)

Now consider TSO\T(N-1) such that 6.€T and [T| = k-1. We need to

(G)aN.

define F(T). If aN=neeTF(9), then F(T)EaN. Suppose aN¢F(6 ) for some 6’€T.

Then there exists a player i{(T) such that Ri(T)(e’) is not a locally Maskin
monotonic transformation of Ri(T)(eN) at ay- In this case (by continuity of

preferences) there exists an outcome x arbitrarily close to ay such that

(GN)X, xP.

1(T)(9 )aN, and there is no 6 such that aNIi(T)(e)x. Then,

a\Ps (1)
set F(T)=x.

Let B(T)={0eT: aNP (6)x}#2 and N(T)=T\B(T)={6€T: xPi(T)(B)aN}¢Z. If

i(T)

there exists one or several T’ with |T'| = k such that B(T’)=T, then we
choose x=F(T)=F(B(T’)) sufficiently close to ay so that (using (3) and (4)

above) the following holds:

(3’) If 6e€B(T’), then XPi (8)F(T’)

(T’)

(4’) if 6eN(T’), then F(T’)Pi (9)x.

(T")
Choose F(T) this way for all TS®\T(N-1) such that eNeT and |T| = k-1.

Then (1)-(4) will hold for all TSO\T(N-1) such that GNET and |T|zk-1. Thus,

we may continue this way to define F(T) for all TS®\T(N-1) such that GNeT.
The following is clear from this procedure. Take any TSB\T(N-1)

containing 6 Then, either F(T)=n96TF(9)=aN. Or, there exists a player

N
i(T)el and non-empty sets B(T) and N(T) such that:

(1*) T=B(T)UN(T)

(2*) GNEB(T)
(3*) If 6eB(T), then F(B(T))Pi(T)(G)F(T)
(4*) If 6eN(T), then F(T)Pi(T)(G)F(B(T)).

After this procedure we have defined F(T) for all T such that BieT for
some i=N. Thus, we may continue to define F(T) for all T<@.

The result of this procedure is the following. Take any TSB®. Let N be
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the smallest integer such that eNeT. Then, either F(T)=n9€TF(9)=aN. Or,

there exists a player i(T)el and non-empty sets B(T) and N(T) such that

(1*)-(4*) hold.

We claim that F is reliably monotonic. Suppose there exists a set T and
6*cF(T) such that F(T)=F(6*). Let N be the smallest integer such that GNET.
Then, since F(T)#neeTF(G), there exists a player i(T)el and non-empty sets
B(T) (containing eN) and N(T) such that (1*)-(4*) hold. This is equivalent

to F being reliably monotonic. Moreover, F is clearly compatible with ¢. QED

Remark Notice from our construction that it is always possible to choose
outcomes for all sets T, T’ <@ so that F(T)=F(T") iff
F(T)=F(T )=nteTF(t)=nt’eT’F(t ). Therefore, by Proposition 2 1in the
appendix, there exists a utility function for the planner that implies such

an extended social choice rule.
7. Conclusion

This paper has defined a new notion of interactive implementation and
investigated the types of social choice rules that can be interactively
implemented. Our analysis suggests that at least the following questions
are of interest:

(1) There may be other restrictions on beliefs "off the equilibrium path"
worth analyzing;

(2) Since messages in our model are cheap talk, it is necessary to postulate
that the planner understands the "language" which the agents speak. On the

other hand, if messages were costly to send, standard refinements such as
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stability could be more powerful;

(3) Allowing for other types of interaction (i.e. having the planner move
at the same time as the agents or many times) between the planner and agents
may alter the set of extended social choice rules that can be interactively
implemented in an interesting manner;

(4) The set of extended social choice rules that can be interactively
implemented when there is incomplete information among the agents remains to
be characterized; and

(5) The principal may be able to commit to an outcome function in some
minimal way. For example, the principal may commit not to change the outcome
from a to b if he is indifferent between a and b. Or, alternatively, he will

not change from a to b if the expected gain is smaller than some £ > O.

Appendix

In this appendix we show that extended social choice rules discussed in
the paper can be derived from an underlying preference ordering for the
planner.

First consider the exchange economy with two goods and two consumers,
and no free disposal. An outcome is a pair (ai, az) € Rf indicating the
consumption of consumer 1 of commodities 1 and 2. By no free disposal, the
bundle allocated to consumer 2 can be inferred from (al, az). We will assume
that there are two states of the world denoted by 6’ and 68'’. Let F(8’)=a’,
F(e’’)=a’’, F(e’,e”)E;. Consider the following condition:

(R) iq € R® such that q; > g a’ and q; < qa’’

~

It is clear that (R) is satisfied unless a, a’ and a’’ are lined up

with a not in between a’ and a’’. In particular, (R) holds for Examples 1

and 2.
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Proposition 1. If a’, a’’ and ; satisfy (R) then:

a) There exists a utility function of the planner such that U(8’, a’) >
U(e’, a) Va#a’ and U(€e’’, a’’) > U(e’’, a) VYa#a’’. Moreover U(6’,.) and
U(e’’,.) are strictly concave in a.

b) There is a prior Pg such that

;=argmax { pe,U(e’,a) + pe,,U(e”,a) : a€d '}

-

i.e. a maximizes the planner expected utility when beliefs are the prior

beliefs, p9,+pe,,=1.

Proof Construct U() such that a maximizes U(6’, a) subject to q a =z q a and

~ N

a € A, and a maximizes U(8’’, a) subject to g a = qa and a € A. It is clear

that U() can be taken as required in a) above. Now notice that q is a
separating hyperplane of the most preferred sets according to the
preferences of the planner in states 68’ and 8’’. Therefore ; is undominated
in the sense that there is no a € A such that U(8’, a) = U(8’, ; ) and
u(e’’, a) =z u(e’’, ;) with one inequality strict. By a standard result, the
strict concavity of U(6’,.) and U(@’’,.) implies that there are non
negative weights (p, 1 - p) such that ; maximizes pU(8’',a) + (1-p)U(B’’,a).

QED

Now consider the general environment and at least three agents.
Clearly, 1if we are given some standard SCR ¢, say the Walrasian
correspondence, then we can easily find a utility function U for the planner
that rationalizes it (set U(a,8)=1 if ae¢(6), U(a,B)=0 otherwise.) Suppose
we are given a (single valued) function F defined on the set of all subsets

of ® and taking values in A, and also we are given a prior probability
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distribution p. We show that there exists a utility function U for the
planner such that (1) holds for the given priors if F satisfies:
a=F(T)=F(T’) if and only if then a=nt€TF(t)=nt,eT,F(t ). This condition can

clearly be satisfied by the construction in the proof of Theorem 3.

Proposition 2. Let F be an extended social choice function and Pg a prior
probability distribution on ©. Suppose for all sets T,T’SB and all a€A,
a=F(T)=F(T’) iff a=nteTF(t)=nt’eT’F(t ). Then, there exists a utility
function U(a,8) such that for all T<G:

F(T) = argmax { r (pe/p(T)) U(a, 6) : aeA } (1)
6 € T

Proof We shall construct a utility function U(a,8) such that (1) holds for
all T<O.

Consider any (x,6). There are two possibilities.

(a) There exists T<® such that x=F(T) and 6€T. Let k be the smallest number
such that there exists T’ such that x=F(T’) and 6€T’ and |T’|=k. Then
U(x,8)=|8|-k.

(b) Any other case: set U(x,08)=-K, where K>0 will be determined later.

We claim that for K sufficiently large, (1) holds for all T<®. This is
clearly true if T is a singleton. Consider next T<® such that |T|>1. Then,
if K is sufficiently large, the only candidate for the planners utility
maximizing choice conditional on the state being in T is x such that x=F(T’)
for some T’ such that TS<T'. To show this, we use the following result.

Claim. Let x be such that there does not exist T’ such that TET’ and
x=F{(T’ ). Then, there is 0T such that U(x,6)=-K.

Proof of claim. By the construction of U we need to show: there is 6€T
such that there does not exist T’ such that x=F(T’) and 6€T’.

In order to obtain a contradiction, suppose for each 6€T there is TGSG
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such that x=F(Te) and QeTG. But x=F(Te)=F(T6,) for 6,68’€T (where 6#8°)

implies by the hypothesis of the proposition that n F(t)=n_, F(t’)=x.
tETe t ETG,

Therefore, x=F(6) for all 6eT*=u and by definition TST*. Let 6eT.

eeTTe

Then x=n___F(t)=F(8) which, by the hypothesis of the proposition implies

teT
that x=F(8)=F(T). This contradicts the assumption that there is no T’, T<T’,

such that x=F(T’). This proves the claim.

Since pe>0 for all 6, the claim implies that for K large enough, it is
not optimal to choose x when the state is in T and 6e€T is a possibility.
Thus, the only candidate for the planners utility maximizing choice
conditional on the state being in T is x such that x=F(T’) for some T’ such
that TS€T’. It remains to show that actually x=F(T).

Suppose TcT’ and F(T’)=x'#x= F(T). We claim U(x,8) > U(x’,08) for all
6€T. Suppose this is not the case for some 6¢T. Then by our construction

there must exist T’’ such that [T | =|T| and x’=F(T’’) and 6e€T’’. Thus,

x"=F(T’)=F(T’’) which implies x =nt,€T,F(t )=nt,,eT,,F(t ). " But TcT’.
Therefore, x’=nt€TF(t)=nt,,ET,,F(t”). By the hypothesis of the proposition
this implies x’=F(T)=F(T’’), contradicting F(T)=x#x’=F(T’’). This

contradiction establishes: U(x,6) > U(x’,0) for all 6eT. Then x=F(T) is
indeed the planner’s (unique) utility maximizing choice conditional on the

state being in T. QED
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