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EXISTENCE OF MAXIMAL ELEMENTS IN A BINARY RELATION
RELAXING THE CONVEXITY CONDITION

Juan-Vicente LLinares

ABSTRACT

In this paper we relax the convexity condition in some classical
results on the existence of maximal elements in binary relations in order to
generalize them. To do this, we replace the linear segments in the usual
convexity with a family of previously fixed paths joining up each two
points. From these paths, we introduce a family of sets which generalizes
the usual convex sets, and in this context we extend Sonnenschein’s theorem
on the existence of maximal elements and Browder’s theorem on the existence

of continuous selection and fixed point to correspondences.
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0. INTRODUCTION.

When an agent is faced with the problem of choosing a bundle of
products, in the end, he will look for the bundle which maximizes his
preference relation from those which he can afford. If we consider that
preference relations can be represented by continuous utility functions,
then the existence of maximal elements on compact subsets is ensured (by
applying Weierstrass’ theorem). Considering utility functions is very
restrictive, mainly because transitivity of the indifference is an
assumption much criticized as being strongly unrealistic (see Luce (1956),
Starr (1969), etc). It is for this reason that the problem of the existence
of maximal elements in non transitive binary relations is a very intersting

one.

There are two different and independent approaches to be used in
showing nonemptyness of the set of maximal elements without assuming
transitivity of preferences. On the one hand acyclicity conditions instead
of transitivity ones are considered (Bergstrom, 1975; Walker, 1977, see
Border, 1985) and on the other, binary relations which verify some convexity
conditions on the contour sets are used. In this line there are some known
results, such as those of Fan’s Lemma (see Border (1985)), Sonnenschein

(1971), Yannelis and Prabhakar (1983).

Although convexity assumption can sometimes be justified as a "natural”
requirement, many authors have criticized this assumption from both the

experimental and formal point of view. Starr (1969) criticizes the



requirement of convex preferences since "it postulates away all forms of
indivisibility and a class of relations which one might call
anticomplementarity (those in which there are two different goods and the
simultaneous use of both of them yields less satisfaction to the consumer

than would the use of one of them)".

In this paper we present a new point of view in order to weaken the
notion of convexity. In particular, we introduce a generalized convexity
structure called K-convex continuous structure which is based on the idea of
replacing the linear segments which appear in the usual convexity with a
family of previously fixed paths. From these paths we define a family of
sets (called K-convex sets) which generalizes the notion of usual convex
sets (in a natural way, a subset A will be K-convex if the path joining up
each two points in A is contained in A), and in this framework we obtain the
results. Furthermore, in this case neither a vectorial structure nor a
finite dimension on the spaces are necessary. So our results will cover

situations without convexity and/or with non finite dimensionality.

The paper is organized as follows, in Section I we introduce the
K-convex continuous structure. By using this structure, in Section II we
present a result on the existence of maximal elements in binary relations
which generalizes Sonnenschein’s Theorem. To obtain this generalization we
use a Lemma which extends Browder’s selection and fixed point Theorem to the
context of K-convex spaces. We finish this Section by showing an example in
which our results can be applied (and Sonnenschein’s and other
aforementioned results can not). The proofs are presented in a final

appendix.




I. K-CONVEX SPACES.

Definition I.1. Let X be a topological space; a K-convex continuous

structure on X is defined by a continuous function

K:XxXx[0,1}]—— X

such that

K(x,y,0) = x and K(x,y,1) =y vV X,y € X.
Under these conditions, we call the pair (X, K) a K-convex space.

Remark. Note that for any pair of points x, y in a K-convex space X, we can
define the function, K :[0,1— X; K (1) = K(x,y,t) such that K is
Xy Xy Xy
continuous and K (0) = x, K (1) = y. So function K can be interpreted as
Xy Xy Xy
a continuous path joining x and y. Furthermore, it is verified that if we
consider points which are close together (x’ close to X, y’° close to y),

then the path which joins x and y and the path which joins x’' and y’ are

also close together.

In a K-convex space, we can consider a family of subsets of X which
represents the generalization of convex sets, which are exactly those which

are stable under function K.

Definition 1.2. We say that a non-empty subset A of a K-convex space X, is a

K-convex set if

vx,y € A K(x,y,[0,1]) € A.




This means that, for any pair of points in A, the path which joins them
up, K(x,y,[0,11), is contained in A. Moreover, it is not difficult to prove
that the arbitrary intersection of K-convex sets is also a K-convex set,

which in turn makes it possible to define the extension of the notion of

convex hull.

Definition 1.3. For any subset A of a K-convex space X, we will give

the name K-convex hull of A, to the K-convex set given by:
CK(A) = n {B: A € B, B K-convex set}.

It is obvious that in a convex set X it is always possible to define a

K-convex continuous structure by using the function
K(x,y,t) = (1-t)x + ty.

In this case the K-convex sets coincide with the convex subsets of X, and

the K-convex hull of any subset A ¢ X is the usual convex hull.

Another example whereby a K-convex continuous structure can be defined in a
natural way is given by star-shaped sets; a subset X of a linear space is

called a star-shaped set if there is some a € X (the center of the star)

such that
tx + {I-t)a € X V x € X, Yt € [0,1]

In this case, function K can be defined by

(1-2t)x + 2ta t € [0, O’5]
(2-2t)a + (2t-1)y t e [0’5, 1]

K(x,y,t) =



A necessary condition for a set A to be a K-convex set is that it contain

the center of the star.

Another example is given by the sets which are homeomorph to a convex

set; if h: X —— C is the homeomorphism, then we can define
K(x,y,t) = h-l[(l-t)h(x) . th(y)).

In this case a subset B is a K-convex set if and only if h(B) is a convex

subset of C.

The next proposition states the conditions which have to be required in
order that it be possible for a K-convex continuous structure to be defined

on a set X. For this, we will need the notion of contractible set, which is

defined as follows:

Definition I.4. A topological space X is contractible if there is a point x*
in X and a continuous function H:Xx[0,1] ——X such that for each x in X it

is verified H(x,1) = x* and H(x,0) = x.

Proposition I.I. Let X be a subset of a topological space, then it is
possible to define a K-convex continuous structure on X if and only if X is
a contractible set.

(Proof in the appendix).

It is important to note that although the contractibility condition and

the condition of having a K-convex continuous structure are equivalent, this




does not mean that the K-convex subsets of X coincide with the contractible
subsets. This is due to the fact that the family of contractible sets is not
stable under arbitrary intersections, while the family of K-convex sets
verifies this property. Hence the family of K-convex sets defined by
function K is given by some of the contractible subsets of X (since it is
true that any K-convex set is contractible). For instance, in the example of
star-shaped sets, the K-convex sets coincide with the contractible ones

containing the center of the star.

II. EXISTENCE OF MAXIMAL ELEMENTS.

In this section we are going to present a generalization of
Sonnenschein‘s Theorem when convexity is dropped, and K-convexity, (which is

a weaker condition) is assumed.

From a binary relation P defined on X, the upper and lower contour sets

of an element x € X are defined as usual:

Ux) ={ye X:yPx}

Ulx) ={y e X: x P y.

An element x* € X is maximal for a binary relation P if there is no other

element which is preferred to it, that is, if U(x¥) = @.

10



To prove the extension of Sonnenschein’s theorem, we will make use of
the following Lemma which is the generalization of Browder’s Theorem on the
existence of a continuous selection and a fixed point to correspondences

with open inverse images in the context of K-convex spaces.

Lemma II.1. Let X be a compact Hausdorff topological space with a K-convex

continuous structure and let U: X ——>> X be a nonempty valued correspondence

such that,

if ye Ulx), 3x e X with y € intUu™(x").

Then there exists a continuous function f:X —> X which verifies:

i) 3 x* € X such that x* = f(x*).
ii) f(x) € CK(U(x)) vxeX.

(Proof in the appendix).

The next result is the extension of Sonnenschein’s Theorem (1971) as
well as Yannnelis and Prabhakar’s result (1983) on the existence of maximal

elements in the context of K-convex spaces.

Theorem II.2. Let X be a compact Hausdorff topological space with a

K-convex continuous structure. Let P be a binary relation on X satisfying:

1. x ¢ CK(U(X)) for all x € X.

2.If yeUlx), 3x €X with y e intU"(x).

Then the set of maximal elements {x* : U(x*) = @} is nonempty and compact.

11



Proof.

If Ux) # 2 V x € X, then from Lemma II.1, we deduce that there exists a
continuous function f with a fixed point, which verifies f(x) € CK(U(X)); in
particular, x* = f(x¥*) e CK(U(X*)) which is a contradiction with L
Therefore, the set of maximals is nonempty.

We can prove that the set {x* : U(x*) = @} is closed, by seeing that its

complement is open. If w ¢ {x* : U(x*) = @} then U(w) # @. Let y € Ulw);

therefore w € U—l(y) and by hypothesis there is some y’ € X such that
el
w € intU (y’)

S0 intU_l(y’) is an open set which contains w. To prove that it is contained
in X/4{x* : Ux*) = @}, let z € intU_l(y’); then y° € U(z) and U(z) # @.
Consequently it is obtained that the set of maximals is closed and

therefore compact.

Notice that in the previous Theorem, we did not impose any condition on
the dimensionality or linearity of the reference space. So, as a consequence

of this result we obtain:

Corollary II.3. [Sonnenschein, 1971]. Let X be a compact convex subset of R"

and let P be a binary relation defined on X, such that:

1. ¥x € X x ¢ C(U(x)).

2.If yeUlx), 3x € X with y e intU(x).

12



Then the set of maximal elements {x* : U(x*) = @} is nonempty and compact.

And in the context of infinite dimensional spaces,

Corollary I1.4. [Yannelis and Prabhakar, 1983]. Let X be a compact convex
subset of a linear topological space and let U: X——» X be a correspondence

which verifies:
1. ¥xeX x ¢ C(U(x)).

2. ¥xeX U (x) is an open set in X.
Then the set of maximal elements {x* : U(x*) = @} is nonempty.

Furthermore, as a consequence of Lemma II.l, we obtain the
generalization of Fan (1961), and Browder’s (1968) Theorems on the existence
of continuous selection and fixed point to convex valued correspondences.
Theorem II.5. Let X be a compact Hausdorff topological space with a K-convex
continuous structure and let U: X——»> X be a correspondence with nonempty
K-convex values such that,

if ye Ulx), 3 x’ € X with y € intU(x").
Then U has a continuous selection f:X —X , and a fixed point:
f(x) e U(x) VYV x e X and

J x* € X : x* € U(x*).

13



Proof.
By applying Lemma II.1, there exists a continuous function f such that

f(x) e CK(U(X)) V x € X, and x* € X exists such that x* = f(x*). As U has

K-convex values, then CK(U(X)) = U(x) V x € X, which completes the proof.

From the previous Theorem, the following is inmediately obtained

Corollary II.6. [Browder, 1968]. Let C be a nonempty compact convex subset
of a topological vector space. Let I''C—>» C be a nonempty convex valued
correspondence with open inverse images. Then I' has a continuous selection

and a fixed point.

To finish we will show an example where Sonnenschein (1971) or Yannelis
and Prabhakar’s (1983) results of existence of maximal elements cannot be
applied and in which the existence of maximal elements can be obtained

by applying Theorem II.2.
Example. Let X be the following subset of [Rz,

X = { (x,y) € R%: Ix,y)ll =1, y20 )
and consider the K-convex continuous structure defined by

K:XxXx[0,1] — X

K(X,y,t) = ((l_t)px + tpy] ei((l-t)ax+tocy)

14



where x = p el ** , Yy =p e ™ is the complex representation of the elements
x y

in the plane

K(x,y,1)

N\
S

J—

GRAPHIC 1.

Let us consider now the following subsets of X:
3

{ (xy) e R: lx,y)l =1, x <0, y>0 )

>
1]

((xy) eR: Ixy)l =1, x=0, y=0 )

w
I

The preference relation P is defined on X as follows:

Vb € B, Vx € X\B bPx

Va € A, x € X\AUBU{y*} aPx

x*=(-1/2,0), y*=(-1,0) x* P y*

Vx,y € X\ AUBU{x*,y*} X Py o lxll > lyl

15



x € {x*,y%}, Vz € X\{x*y*} X Pz « lxl >zl

x € {x*,y*%}, Vz € X\{x*,y*} zPx < Izl > Ixl

In order to see that condition 1 of Theorem II.2 is verified, note that

if x is different from x* and y* it is obviously fulfilled from the

definition of the preference relation P. Since U(x*) is a K-convex set,

x* ¢ CK(U(X*)) = U(x*). And, y* ¢ CK(U(y*)), because U(y*) = B v {x*} and

the K-convex hull of this set does not contain the point y*

GRAPHIC 2.

Finally it is not difficult to see that condition 2 is also verified

and it can be concluded, from Theorem II.2 that a maximal element exists.

Note that this is in fact a non acyclic binary relation, and as such

results for acyclic binary relations can not be applied.

16




APPENDIX.

Proof Proposition I.1
Let K be the function which defines the K-convex continuous structure.

For any fixed a € X, the following function can be considered,

H :Xx[0, 1] — X ; H(x,t) = K(x,a,t)

It is a continuous function since K is continuous and furthermore it

verifies that H(x, 0) = x , H(x, 1) = a, so X is a contractible set.

Conversely, if X is a contractible set then there exists a continuous
function H which satisfies the previous assumptions, and from which it is

possible to define the following function K,

H(x,2t) t € [0, 0.5]
K(x,y,t) =
H(y,2-2t) t e [0.5, 1]

which defines a K-convex continuous structure on X.
Proof of Lemma II.1
As U(x) # @, for each x € X, then there is y € U(x), so x € U_l(y). Thus,

{U-l(y) : ye X} covers X and from hypothesis we obtain that

{intU-l(y) : y € X} is an open cover of X. Since X is a compact set, then

17




there is a finite subcover { int U‘l(y,) : i=0, ...,n } and a continuous
1

finite partition of unity subordinate to this subcovering,

@y", p =0, Ty =1, Y& >0> x¢ intu™(y)

i i=0 i

If we define J(x) = {i: ¢y(x) >0 )}, theny € Ux) Vie J(x) and
1

i

CK({y1 c1e Jx)) € CK(U(X))

As CK((y_1 . i e J(x)}) is a K-convex set, we can ensure that for every
v, i € J(x) and any point p in CK((yi : i e J(x)}), the path which joins

them up will be contained in CK({y. : i e J(x)}). So, from these arcs, the
1

selection of the correspondence is obtained by composing them.

a. Construction of the continuous selection f.

From the finite partition of unity, we define the following family of

functions,
o if y(x) =0
t (x)=+ i=0,1,...,n-1
' v (x)
if y(x)=0
n 1
Y wj (x)

18




If we call h =y , then both h ~and y _ belong to U(x) (whenever
n-1 n n-1 n-1
Y (x) > 0, Yy (x) > 0); therefore the path K(h ,y ,[0,1]) joining these
n n-1 n-1""n-1
points ( which we call gn_l) is contained in CK({yi : i e J(x)}) since it is

a K-convex set. By computing g ) at t 1(x), we obtain the point
n- n-

and by construction hn , € CK({y. : i € J(x)}). By repeating the argument
.t 1
with the path which joins h and y (which we will call g ) and
n-2 n-2 n-2

computing it in t 2(x), we obtain,
ne

hn-3 = gn—z (tn—z(X)) = K( hn-z’ yn—z’ tn~z(X))'

We repeat this reasoning until we obtain the element ho which will be linked

to Y, by means of the path g, Finally we define

f(x) = go( wo(x)) = K( hy, ¥ to(x))

that is,

f(x) = K{K {K[K(yn’yn—l’tn-1(X))’yn-z’tn—z(X))’yn—s’tn—s(X)]”'}

19
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As a result of the way in which f is defined, it is immediate that
f(x) e CK((yi i e J(x)}), VYx € X, since the '"relevant" paths are contained
in CK({yi : i e J(x)}) I[notice that if !/Ji(x) = 0 for some i, then we have

that ti(x) = 0, so
K(h, y, t(x)) =K(h,y, 0 =h
i i i i i i

and y will not appear in the construction of function f; hence to construct
i

selection f we only use the points ‘A such that i € J(x)].

b. Continuity of selection f.

Selection f can be rewritten as the following composition
F(x)=K(T (¥(x)))

where K: [0,1]" — X is defined by
K(to""tn-x)=K [ K [K (yn,yn_l,tn_IJ ’yn-z’tn-z] ] ,yo,to]

lI/:X-———-éAn

¥(x) = (l/lo(x),!ﬂl(x),m,!/ln(X))

and
J:h — R"
0] if zi =0
z. _
fTi(z) = i i z 20 i=0,...,n-1
n i
Yz

21



In order to prove the continuity of f at any point x, we shall first

prove that KeJ : A —>s X is a continuous function. If this is true then
n

the continuity of f will be obtained inmediately (since f is a composition

of continuous functions, KoJ and ¥).

To analyze the continuity of function KoJ at any point z € A it is
n

important to note that if z > O then

J (z)= — i=0,1,...,n-1

are continuous functions, since they are quotients of continuous functions

whose denominators are not zero.

In the other case, ?1(2) could not be continuous (when its denominator

is zero, that is, when z are zero for all k = i, ... ,n).

In the first case, the continuity is immediate since Ko is a

composition of continuous functions and therefore continuous.

In the second case, if we define

j=max{i:zi>0}

I
o
N
1
o
j=n
]
jos]
O
@

then 2z, e
j+1 n

22




Furthermore J (r = O,...,j) are continuous functions at 2z because
r
their denominators are not zero. As a result of the way in which function K

Has been defined, it is verified that

R(T (2),..,9 (2),..,9 (2) = K(T (2),..,1,0,..,0) =
0 J n-1 4]

=K [ K (K [yn,yn_l,O] ,yn_z,O] oYy 1] ,] ,yo,ffo(z)]

and since K(a,b,1) = b, V a € X, then

K [ K (K (yn,yn_l,ﬂn_l(z)] ,yn_z,ﬂn_z(z)] . .yj,l] =7,

and it is independent of the values of ﬂn (z), § (2), ..., T (z); that

-1 n-2 j*1

is,

K[..K{K[yn,yn__l,;\n_l] syn_z)hn—-z]"-yj’ l] = yj

VA, oA, | € [0,1]

n-1 j+

so, VA , ..., A, e [0,1]
1 1

n- j+

KT (2),..,9 (2),...9 (2)) = K (2),..,1,0,..,0) =
0 j n-1 [¢]

= K(sro(z),..,1, A, e A )

j*1 n-1
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In order to simplify the notation, we denote T = (E’TO(Z),..,I) and

A=@Q ,.,A ) thus K@ (2),.,L,A ,.., A ) =K(T,A) vaelo,11™
j*1 n-1 (o} j+1 n-1
(m=n-j-1).
In order to obtain that function KoJ is continuous, we will prove
that(l)

Vzed,VWe N(KoJ(z)) , 3 V' € N(z) such that KoJ(V’) € W

By applying that KoJ(z) = K(T,A) Vael0,1]™ and that K is a continuous

function, we have that

e N((T,A): K(V: x V.) €W [l

VW e N(R(T, 1), BV? ¥V .

A

Moreover, since the family of open neighborhoods V?\ when A e [0,1]" is a

covering of [O,l]m, which is a compact subset, we know that there exists a

finite subcovering
[0,11"= v (v, : i=l,...,p}
Ai

Hence, if we take V>T\l , Vi=l,..,p, and we consider

Ai .
VT =n {VT . Vi=l,..,p},

N(A) denotes the family of neighborhoods of A.

24




then VT is a neighborhood of T = (?To(z),..,ffj_l(z),l) and we can rewrite

vV = v Lx v where vM e N(T (z)),
T Tk K

As VTk is a neighborhood of E’Tk(z), since it has been defined as a finite

intersection of neighborhoods of ka(z), and functions ka are continuous at

z, ¥V k = 0,...,j, there are neighborhoods Uk of z such that E’I'k(Uk) C VTk .
Finally, if we denote
V' = n(Uk : k =0,...,Jr

then V' is a neighborhood of z, and it is verified that

’ o — [
VwelV, (ffo(w),.., Jj(w)) € VTO XoroX VTj = VT cV vi=l,..,p

For the rest of the indexes (k=j+l,...,n) it is verified that

m — . J==
T, W), s T (W) € [0117 = U, :i=L....p)

so there is an index io such that

(7 (w), ..., f'fn_l(W)) eV

i1 R 10 e {1,...,p}

Ai0

25




Thus we can ensure that

(i’To(W),.‘,i’7j(w),57j+l(w),..,an_l(W)) € VT X V?tio cV x V

and from [1], we can conclude that for any w € V’
KT (w),...9 w),T._ (w),...9 (W) cW
0 j j*1 n-1

so function f is continuous.
c. Fixed point existence.
Consider now the function g = V¥ o Ko J: A — A . Since ¥ and KoT
n n

are continuous, it is a continuous function from a convex compact set into

itself; so Brouwer’s Theorem can be applied and we have
Ix eldh : glx)=x
(o] n o o

Therefore, Eoﬂ(g(xo)] = Eo?(xo) and, if we call x* = IZO?T(XO), we

obtain that Eosro(woiosn(xo)= Eosr(xo)
f(x*) = x*,

that is, f has a fixed point which is also a fixed point to the

correspondence.
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