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TEMPORARY EQUILIBRIUM DYNAMICS WITH BAYESIAN
LEARNING

Shurojit Chatterji

ABSTRACT

This paper examines the stability of deterministic steady-states in a class of economies
where the state-variable is one dimensional and where agents use Bayesian techniques
to form expectations. The dynamics with learning are locally convergent if the prior
mean is close to a stable perfect foresight root having modulus less than 1 and if the
prior beliefs are held with enough confidence. The dynamics are however divergent if

the prior mean or the variance of the prior distribution is sufficiently large.
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INTRODUCTION

This paper addresses the stability of deterministic steady-states in a class
of economies where the state-variable is one dimensional and where the expec-
tation formation process is based on Bayesian learning.

The study is carried out using a linear approximation to the Temporary
Equilibrium Map at the steady-state. The economy evolves as a three dimen-
sional discrete dynamical system which, under the assumptions made on the
underlying microeconomic structure, possesses a two dimensional manifold of
equilibria corresponding to the steady-state.

The findings of the paper are that the dynamics with Bayesian learning are
locally convergent if (i) the prior mean is close to a stable perfect foresight root
which has modulus less than one, and (ii) if the beliefs are held with enough
confidence, that is, the prior variance is small enough. On the other hand, the
learning dynamics are divergent whenever the prior mean or the prior variance
is sufficiently large.

Section 1 presents the model. Section 2 describes the dynamics and briefly

puts the results in perspective. Section 3 contains the proofs.

1 Tue MODEL

The framework is identical to the ones used in [1] and [2] to study the lo-
cal dynamics with learning around an isolated steady-state of a deterministic
economy. The primitive is the Temporary Equilibrium Map F, the solution to
which determines the current equilibrium state z;, assumed to be a real num-
ber, as a function of the past equilibrium z,_y, and z{,,, the forecast for the
next period made at ¢ using information upto ¢ — 1. The utility-maximisation

problem of the agents is assumed to be such that it suffices to use the expected




value of the state-variable in computing demands. Though agents believe that
others may have different forecasts, for simplicity one assumes that all have
the same forecast.

The map F is assumed to be well-defined and continously-differentiable
in the vicinity of the steady-state under consideration. The steady-state is
translated to be 0. The study is conducted using the linear approximation to

I at the steady-state. Thus the relevant map becomes
()1:Ut_1 + I)()ill't + a£§+l =0 (11)

where by, by and @ are the partial derivatives of F with respect to z;_y, z; and
z¢,, evaluated at the steady-state. One needs to assume that by and a are
different from 0.

The expectation formation process is specified as follows. Agents are Bayesians
who use models of the form z; = fBa;_1 + ¢ to predict deviations from the
steady-state, which they are assumed to know is 0. Agents are however un-
certain about the adjustment rate £ that they believe governs the dynamics
outside the steady-state. They have a prior distribution on g ~ N(u—1,07_;)
at the start of any period ¢. They believe that the €’s are Normally distributed
with mean 0 and variance o2. These are assumed to be i.i.d. and independent
of 4.

Given any model, the agents form their forecasts by iterating twice on
their model. Current values of the state-variable are not allowed to influence
the forecast. This procedure is identical to the one used in [2] and removes
complications that may arise when the current value of the state-variable and
the forecasted value influence each other. Thus given z;_q,

251 = BlB(Brir + &) + €er1] = wima(piy + 074)
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2 THE DYNAMICS

Given zo and z§, z; is determined using the market clearing function (1.1).

Thus,
(bl + a(ol)g + ﬂg))wO (21)
0

Agents use the ‘realization’ z; to update the parameters of their prior dis-

r1 = —

tribution using Bayes rule. The updated priors are used in conjunction with

z; to forecast z3, and the economy evolves as the dynamical system

Ty = — (b1 + (1(0'%_1 + ,U,?_]))th_.l (22)
bo
o= o2 - ol_1%7 4 (— bi + a0} + ﬂ?—l)) (2.3)
ot olal,y ol +oba}, o '
2.2
ol = __UW‘L"i_z__ (2.4)

o2+ ol xi 4
The dynamical system described by (2.2), (2.3) and (2.4) is defined on the set
® = {(z,p,0)]z € Ryp € Ry > 0}. A set of equilibria of the system is the
set SO = {(z,p,0)|lt =0,u € R,0 > 0}.

A feature of the dynamics is that as the economy evolves, the agents become
progressively certain about their beliefs, and if they become completely certain,
they cease to update the means of their priors. In the case where the agents
are completely certain about their beliefs, i.e. o2 = 0, one identifies perfect-
foresight paths as ones where _#-, the adjustment rate observed in the z-
component of the dynamics, coincides with the adjustment rate the agents are
certain about. These are thus the solutions to

_ (bl_ﬂ‘i‘l) —u (2.5)

l)o

I assume that the above quadratic has two real roots, referred to as the perfect
foresight roots, that are different from each other. The root of smaller modulus

is denoted A* and the other A*. Assume that a and by have opposite signs for




the remainder of the paper. This ensures that A* > 0. The excluded case can
be treated analogously.

Proposition 1 states that one gets stable learning dynamics if the initial
mean is close to [A*] < 1, provided that the beliefs are held with enough

confidence.

Proposition 1 : Assume that a # 0, by # 0 have opposite signs and thal
the two perfect foresight roots are distinet and real with A* < A* and |X°| < 1.
Consider an initial state (o, fto,00) and the corresponding sequence (4, fit, 0t)
generated by the dynamics with Bayesian learning.

For any fized > 0, the dynamics with Bayesian learning generates con-
vergent trajectories with (x4, ps, 1) — (0,2,0) if |xo] < Z, provided that the
initial mean o is close enough to \* and that the beliefs are held with enough

confidence, i.e. og s small enough.
J «

Proposition 2 states that the learning dynamics are unstable whenever the
initial mean o is large enough (and has the same sign as A*), or when the

initial variance o2 is sufficiently large.

Proposition 2 : Assume that a # 0, by # 0 have opposite signs. Choose
M > 0 no less than the two perfect foresight roots (if they are real) such that
QM) > 1 where Q(X*) = —(Q‘I;LA&) Consider an initial state (xo, pto, 00) with
zo # 0, and the corresponding sequence (x4, jue, 01) generated by the dynamics

with Bayesian learning. Then

(i) If pro > A*, the sequence p is nondecreasing, while the sequence || is

increasing and diverges to infinity.

1 ere exists a unique o(A*,zq) > 0 such that a great wnitial subjective
i) Th st ; A% 0 h that a great initial subjecti

uncertainty, i.e. ao > &(\*, o), implies gy > X* and zy # 0, independently of




the initial mean po. In that case too the sequence |x¢| diverges to infinity.

These results are now compared to the results of Grandmont and Laroque
[2]. A case the authors examine is the stability of the steady-state when expec-
tations are formed using least squares techniques. The dynamics are disconti-
nous at the steady-state. Every neighborhood of the steady-state contains an
open set for which the learning dynamics diverge. When [A°] < 1, every neigh-
borhood also contains an open set for which the learning dynamics converge to
the steady-state. These sets infact form cones in the space of initial conditions
with the steady-state as the vertex. By contrast, the dynamics with Bayesian
learning are differentiable! at the steady-state, and local stability obtains under
the conditions of proposition 1.

On the other hand, the central point emphasized in [2}, namely that the
learning dynamics tend to be divergent (with differentiable and non-differentiable
learning schemes such as the least squares learning schemes, propositions 1 and
2.1, [2]) unless the range of regularities agents extract from past data are re-
stricted, comes out clearly in the instance of Bayesian learning, and takes the
form of the restrictions needed on the prior beliefs to prevent instability and
guarantee convergence. In this respect the results of [2] and this paper are
similar?. From the updating rule (2.3) it is clear that the larger the prior
variance, the more prepared are the agents to modify and adapt their prior
means in accordance with the behaviour of the economic system. One may
thus conclude that the more the agents are willing to interact with the system
and learn from it, the more likely is the system to diverge.

The divergence to infinity seen under the conditions of proposition 2 should
be interpreted as the local divergence of the state-variable from the steady-
state, since, as observed in [2], nonlinearities inherent in the Temporary Equi-
librium Map, once explicitly incorporated into the dynamics, may keep the

locally divergent trajectories globally bounded.
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3 PROOFS

Let Q(p) = —(b—"'gT““z—), Qo(p) = Q2p) — (%) and m(o,z) = 32{57;7 If z; = x,
e = p, o2 = o? then the dynamical system to be studied is formulated as

follows:
(3.1) Tyl — QU(H)J}'
(3.2) prerr = m(o, z)p + [1 — m(o,z)] (1)

(3.3) 02,y = m(o,x)0?

Under the assumptions, the map €2 has two real fixed points A* < A*. Since
aby < 0, the parabola representing Q has its asymptotic branches going up
and A\* > 0. Since £, is obtained from 2 by a vertical upward translation of
—-(%), it is easily verified by direct inspection that it also has two fixed points
Ne(o) < X%(o) when 0 < 0 < 0" = B—u—;—Al When o increases from 0 to o,
As(0) increases while A*(o) decreases. The two fixed points coalesce at o = o™

and vanish when o > o* (Fig. 1).

To prove proposition 1, one assumes A* = 2(A*) has modulus less than 1.

Then by continuity

(3.4) Thereexist 0 < k < 1,6 > 0 and M < A < Xy < M suchthat |Q,(p)| < k
and M (0) < Ay < A¥(0) Vg, o satisfying 0 < o < ¢ and M < g < A

The next step is to construct an invariant set W for the dynamics. Let
g(x, 1, o) be the right hand side of (3.2). If oz = 0 then m(o,z) =1 and g is
identically equal to x. For fixed o # 0 and z # 0, the right hand side of (3.2),
considered as a function of u, is a convex combination, with positive weights,
of i and Q, (p). It is therefore represented by an upward sloping parabola that

has the same fixed points, i.e. A\*(¢) and A*(¢), as §,. Again by continuity,
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(3.5) Given Z > 0 and Ay, )\, as above, one can choose é in (3.4) small enough
so that for all 0 < |z| < Z, 0 < 0 < § and Ay < p < Ay, ¢ is an increasing
function of u, with p < g(x, p, ) when u < A*(0), p = g(z, p, o) for p = X*(o)

and g > g(z,p,0) when g > A¥(0).

The picture one then gets when z # 0, o # 0 is illustrated in Fig. 2. When

o =0 or z = 0, the parabola degenerates into the 45° line, since then g = p.

Let W be the set of states (x,p,0) satisfying 0 < |z| < z, Ay < p <
X; and 0 < o < §, where @, Ay, Ay and & have been fixed as in (3.4) and
(3.5). Consider an initial condition (o, fto, 00) in W. If g = 0, the sequence
(z¢, pur, 0¢) generated by (3.1), (3.2), (3.3) stays constant: it thus staysin W and
converges trivially. If og = 0, the sequence (j, o) stays constant while |z,| <
k|zo| with k < 1: thus the sequence (x¢, fir, 0¢) staysin W and converges, since
|z;| < k|zi—1] goes to 0. If 2o # 0 and o # 0, then the next iterate (1, i1, 01)
satisfies |21] < k|zo|, 0 < 0y < 09 and from Fig. 2, either po < g1 < A*(00) or
A*(09) < w1 < po, which implies in particular that M < pt1 < Ag. Thus in this
case as well the sequence of iterates (z, yt, 04) stays in W. If at some point
z; = 0, one gets convergence trivially as above. It remains to consider the case
when z; # 0 Vt. Then o, forms a decreasing sequence of positive numbers which
converges to some & > 0. The sequence z; satisfies |z;| < k|z:—1| and thus goes
to 0. Consider now the p; sequence. Either it satisfies p;—1 < pr < A*(04-1) Vt,
in which case it is monotonically increasing and thus converges to some . Or
else A*(0y—1) < pe < pe—q for some ¢. Since the sequence \*(oy) is decreasing,
the sequence p, is then decreasing for 7 > ¢, and thus bound to converge in
that case too to some i > A*. The case A\* < 0 can be treated similarly. ]

For the proof of proposition 2 assume again that ¢ and by have opposite

signs. Choose A* > 0 no less than the two fixed points of Q (if they exist , but
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this is not necessary for the proof), such that Q(A*) > 1. Then by definition,

one has Q(u) > 1, Q(u) > p, and Q(p) is increasing, whenever p > A*.
Consider now an initial state (2o, o, 00) with zo # 0, and the sequence

(24, ps, 01) generated by (3.1), (3.2), (3.3). In all cases the sequence oy is non

increasing and thus converges to some ¢ > 0.

(i) Assume first that the initial mean is large, so that o > A*. Then from (3.1)
and the fact that Q,(x) > Q(u), when po > A%, one has |z1] > Q(po)|zo| with
Q(po) > 1. From (3.2) one gets py > m(oo, zo)po + [1 — m(oo, 20)]2(po) 2 to-

By induction, the sequence g, is nondecreasing and
|ze] 2 Q(pe—1)lwi-1] = Qpeo)|we-.
Since Q(uo) > 1, the sequence |z,;| diverges to infinity.

(ii) Assume now that the initial variance of is large. Specifically, it is verified
by direct inspection that for fixed z # 0 and o # 0, the minimum value of the

right hand side g(z, u, o) of (3.2), with respect to p is achieved for

b .
o= E?(nTL—OES < 0, with m = m(o, z).

and that it is then equal to

(3.6) 22 1 (1 —m)Q(o)

4a(1-m)

The minimum (3.6) varies from —co to +oo (it is actually increasing when-
ever (o) > 0) when o increases from 0 to infinity. There exists thus a unique
a(A*,z) > 0 defined as the largest o for which (3.6) is equal to A*. The graph

of ¢ for that particular value of ¢ is illustrated in Fig. 3.

For any o > &(\*, z), one has g(z, g, 0) > \* Vu by construction. Furthur-



more, the minimum (3.6) is less than Q(c) = Q,(0) < Qu(p) Vp. Thus if
o > ()%, ), one also gets Q,(p) > A* > 0 Vu. In particular, if the initial
state satisfies 2o # 0, 0o > o(\*, z0), one gets pg > A* and |z1] > A*{zo| > 0,
independently of the initial mean uo. From ¢ = 1 on, one is back to case (i),
and the dynamics with Bayesian learning thus diverge. Here too the case where

a and by have the same sign is treated similarly. n
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Footnotes

1. Tt is easily verified that the Jacobian of the system evaluated at an
equilibrium has two eigenvalues equal to 1. The local stability and instabil-
ity results then follow from the technique of ‘center manifolds’(Grandmont [3],
Theorem B.5.3) and the results remain valid with nonlinear Temporary Equi-
librium Maps under appropriate differentiability assumptions. I am grateful
to an anonymous referee for emphasizing this point. This technique however
applies only to initial conditions lying sufficiently close to the equilibrium man-
ifold S9. This paper adopts a more direct technique of proof which illustrates
that trajectories generated by initial conditions arbitrarily far from S° in the
z component may nevertheless converge to S° provided the prior mean and
variance are appropriately placed, and thus provides some global information
about the stable space. Such a method may be applicable to the study of the
global dynamics with a nonlinear Temporary Equilibrium Map. It remains to
be seen to what extent the introduction of economically relevant nonlinearities
preserves or enhances the global structure of the stable space seen here.
2. The results of [2] encompass (p. 264, [2]) the case of least squares learning
where the estimate is constrained to lie in a prespecified interval [fiy, fiz] which
may be interpreted as a ‘prior’, which however is not revised over time as in
this paper. Indeed then (i) if the prior [fi1, fi2] is centered around [X°*| < 1
and is small, convergence results for all initial conditions and if (ii) the prior is
large (fiz > A%, Q(jiz) > 1), then there is divergence for an open set of initial
conditions. The convergence of least squares learning in a stochastic framework

is examined in [4].
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