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Implementation of Stable Solutions to
Marriage Problems

José Alcalde

Abstract

This paper analyzes the possibility of implementing stable outcomes for
marriage markets. Our first result shows a contradiction between the use
of stable mechanisms and the hypotesis of agents’ behaviour considered in
the Nash equilibrium concept.

We analyze the possibility of implementing two sets of stable allocations,
by employing two types of mechanisms. The first mechanism is a “now-or-
never” choice process that permits us to implement in undominated Nash
equilibria the set of all the stable allocations.

The second choice process is the classic algorithm in matching theory, the
Gale-Shapley mechanism. A reversal property is observed in such a mech-
anism when agents act strategically. The use of a mechanism which selects
the best solution for one side of the market in the absence of strategic
behaviour yields the best stable solution for the agents on the other side
under dominance solvability.

Keyworks: Matching markets, Implementation, Stability.






1. Introduction

In this paper we study the possibility of designing mechanisms to implement
stable solutions for marriage markets. A market is given by two finite, disjoint
sets of agents and by the preferences of each agent over the individuals on the
other side of the market. A one-to-one matchingis an assignment of each agent on
one side on the market to at most one agent on the other side. Marriage markets
are those where outcomes are required to be one-to-one matchings. Among other
interesting interpretations, we can think of them as models of the relationship
between a set of workers looking for jobs and a set of firms, with one opening
each.

A matching is stable if it is individually rational and will not be disrupted by
coalitions (or partnerships) formed by one agent from each side of the market.
This natural requirement for solutions to market allocation problems can always
be satisfied: stable allocations always exist for marriage markets. In addition,
stability turns out to be equivalent to coalitional rationality: the set of stable
matchings for marriage markets coincides with the core of its associated marriage
game. For all these reasons, I am interested in allocational criteria that would
select stable matchings for any given market.

I focus on mechanisms, rather than on specific markets. I look for functions
that assign a matching to each possible market that can be formed by fixing the
agents on each side, and letting their preferences vary. These are called matching
mechanisms. We would like to find mechanisms that always select matchings
which are stable relative to the preferences of agents. But this dependence of
the outcome on the agents’ preferences gives rise to incentive problems. Agents
operating under a stable matching mechanism will typically be led to misrepresent
their preferences, and to manipulate the allocation to their advantage (Alcalde
and Barbera [2], Roth [13]). Since this strategic behaviour is unavoidable for
general domains of preferences, I try to find mechanisms leading agents to choose
strategies that result in stable matchings despite misrepresentation. In other
words, I look for mechanisms that implement stable matchings.

The paper presents two results in this direction. First, it introduces a mech-
anism that will implement the full correspondence of stable matchings in un-
dominated Nash equilibria. This mechanism could be attractive to a designer
unwilling to impose a specific stable outcome, but still seeking to guarantee sta-
bility as the consequence of the interaction among agents. The second result is
in a sense complementary to the first. Suppose now that the designer wants to
obtain one specific stable outcome: the one that is most favorable to one of the
sides of the market. I exhibit a mechanism that sophisticatedly implements the
men’s (or the women’s) optimal stable matching. Moreover, I get the surprising
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result that the designer who favors one side of the market by allowing it to attain
its optimum through sophisticated behaviour could in fact claim that the mech-
anism is intended to benefit just the other side! (if used straightforwardly, that
is without strategic misrepresentation).

It is important to stress that the present result cannot be obtained by ap-
plying well-known previous results on implementation. One cannot use Maskin’s
[9] theorem on Nash implementation, or Palfrey and Srivastava’s [12] results on
implementation by undominated Nash equilibria, because stable social choice cor-
respondences in marriage markets endow each player with veto power. Another
sufficient condition for implementability is separability, as used by Jackson et al.
[8]: again, it is not satisfied in our context.

An interesting feature on the mechanisms I present is that they constitute
reasonable proposals for effective design. Many of the mechanisms suggested in
the implementation literature are useful tools to show the possibility of imple-
menting some solution, but does hardly qualify as a set of rules that a designer
would be ready to actually propose for practical use. Although it is hard to pro-
vide a formal definition for a "reasonable” mechanism, I find several reasons why
the ones presented here should qualify. The messages required from agents are
simple and refer to their preferences (we could describe the procedures as direct
mechanisms). Agents are endowed with a finite number of strategies. This makes
the use of the present solution concepts more palatable than they would be under
more complex settings.

The existing literature in Matching Theory does not say much about full
implementation of stable allocations. Most of the authors have focused on the
study of the classical Gale-Shapley mechanism. Roth [14] studies this matching
rule and shows the stability of its undominated Nash equilibria. But he does
not make any other prediction on which outcomes can be reached. Gale and
Sotomayor [7] show that there is a specific strong equilibrium in the Gale-Shapley
rule which satisfies a reversal property. A similar result is obtained in Demange
and Gale [3] for the assignment problem. But those results do not ensure that
this property is satisfied by the outcome of every strong equilibrium. In fact, a
result ensuring this property for every strong equilibrium seems to be impossible.
This is because the core of every cooperative game can be implemented in strong
equilibria by means of a ”related” noncooperative game, as proved by Moulin
[11].

The result I present relative to the Gale-Shapley mechanism contributes in two
ways to a game-theoretical analysis of this rule. First, the equilibrium concept 1
employ is dominance solvability. This does not require coordination by a set of
agents, as in the strong equilibrium case. Second, the equilibrium is unique in
outcomes. This result permits us to make some predictions about what would
happen when the Gale-Shapley mechanism is used: As Moulin [11] said, ”at any
fixed profile, dominance solvability is a generalization of strategy-proofness.”

The rest of the paper is organized as follows. Section 2 presents the model
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and introduces some standard concepts of implementation. Section 3 presents
a preliminary result on the Nash equilibria of revelation games induced by sta-
ble matching games. Section 4 introduces a mechanism implementing the full
correspondence of stable matchings in undominated Nash equilibria. Section 5
analyzes the sophisticated equilibria of mechanisms whose straightforward result
would be to choose the stable matching which is optimal for one side, and proves
that this mechanism would actually implement the opposite side’s optimal stable
matching under this equilibrium concept. Section 6 concludes.

2. Preliminary definitions

Let M = {mq,...,m;,...,m,} be the set of men and W = {wy,...,wj,...,ws}
be the set of women. These set are kept fixed throughout the paper. Each m; in
M is endowed with a complete transitive asymmetric preference relation P(m;),
on WU {m;}. P(m;) will stand for the preferences of m; over all his possible
mates, including the possibility of remaining single. Similarly, each w; in W is
endowed with a complete transitive asymmetric preference relation P(w;) over
MU {w;}. We say that m; (resp. w;) is acceptable to w; under P(w;) (resp. m;,
P(m;)) if m; P(w;) w; (resp. w; P(m;) m;). An agent z who is not acceptable
to another y on the opposite side on the market is said unacceptable to her.

We denote by P(z) the set of all possible preferences for individual x in MUW.

Elements of P = 11[7’(m1)>< f] P(w;) are called preference profiles. We denote
=1 j=1

preference profiles by P. Given a preference profile P, we denote by P /P’(m;)
(resp. P/P’(w;)) the profile obtained from P by changing the preferences of man
m; (resp. woman w;) from P(m;) to P’(m;) (resp. P(w;), P’(w;)), and keeping
all other preferences unchanged.

An outcome for a marriage market {M , Wi ]3}, also called a matching, is a
function g which assigns to each agent on a side on the market at most one mate
who belongs to the opposite side. A matching g in which no agent prefers to
be unmatched rather than her mate is said individually rational. A pair whose
agents prefer to be matched together rather than to their mates by p is called a
blocking pair for this matching. Finally, a matching which is individually rational
and does not have any blocking pair is called stable.

Since the set of stable marriage markets coincides with the core of such a
“marriage game” for any preference profile, we want to analyze the possibility
of implementing stable matchings. That is, we are looking for decentralized
mechanisms yielding stable solutions under reasonable assumptions about the
strategic behaviour of agents. These rules will be presented as direct mechanisms,
in which any agent declares a preference relation, which may differ from its own
preferences. The application of the rule will select a matching for our market.



We analyze the possibility of implementing two solution concepts. First, the
correspondence of stable matchings; and, second, the M-optimal stable match-
ing (and, by symmetry between both sides on the market, the W-optimal stable
matching.) Two rules to be defined will be used to implement these solution con-
cepts, each one by means of an equilibrium concept: undominated Nash equilibria
and dominance solvability.

Let T'(p) = [cp; ﬁ P(m;) x ﬁ P(w;); 13] denote a matching game, where ¢,
=1 7=1

the matching rule, is a function that selects a matching for each marriage market
{M, W; 13'}; P(x) is the strategy space for agent x; and {M, W ]5} is a marriage
market.

A vector of strategies P’ is a Nash equilibrium for I when, given the strategies
of others, no agent can benefit from using another strategy.

A strategy P”(z) for agent z dominates another strategy P’(z) in the game
I'(¢) if the use of P”(z) always guarantees to him at least as utility as the use
of P’(z) do, and sometimes a higher utility level. P’(z) is called an undominated
strategy for z when there does not exist any other strategy dominating it. Finally,
a strategy which dominates any other strategy is called dominant.

A Nash equilibrium where each agent employs undominated strategies is called
an undominated Nash equilibrium (UNE).

Given a matching game I'(¢) = [go; .ﬁl P(m;) x ﬁ P(w;); P|, let T1(p) =

Jj=1
w; IT PY(m;) x 1 PY(w;); P| denote the subgame where each agent’s strategy
=1 7=1

set is modified in such a way that dominated strategies are removed from her
(original) strategy space. An iterative argument yields to define I'*(¢) as the
subgame where each agent’s dominated strategies on I'*~1(¢) have been removed
from her initial strategy set. We say that a matching mechanism ¢ is dominance

solvable whenever ¢( ﬁ "Pz(mi) X ﬁ Pz(wj)) is a singleton for some k.
=1 i=1

Let ¥ be a solution concept for marriage markets. We say that mechanism
¢ implements ¥ in (undominated) Nash equilibria if (i) for each (undominated)
Nash equilibrium, P’, @(P') satisfies property W, and (ii) for each matching p
satisfying this property, there exists an (undominated) Nash equilibrium P’ such
that o(P') = p.

Let ¥ be a solution concept for marriage markets. We say that mechanism
¢ sophisticatedly implements W if ¢ is dominance solvable and ¥ = 4,9(15’ ), the
(unique) outcome obtained from ¢’s dominance solvability.



3. Implementing the set of individually rational
matchings

This section motivates the need to be specific about the type of equilibrium
under which to study the strategic behaviour of agents. When rationality of
the economic agents is postulated, it is paradoxical to propose (or to reject) a
mechanism on the basis of properties which arise from the use of dominated
strategies. The key question is, then, what kind of properties are satisfied when
undominated strategies are employed by the agents.

Proposition 3.1 presents a quite negative result: any stable mechanism imple-
ments, in Nash equilibria, the correspondence of individually rational matchings.
Consider a matching where no worker was employed. It is always individually
rational. This is even true if, as in the original Gale and Shapley [6] model, every
worker prefers to be employed rather than unemployed and every firm also prefers
to cover each position rather than to have any vacancy. Thus Proposition 3.1
shows that Nash equilibria is a very weak equilibrium concept when stable rules
are employed.

Proposition 3.1. Let ¢ be a direct mechanism choosing a stable matching for
each marriage market. Then, for each market, ¢ implements in Nash equilibria
the correspondence of individually rational matchings.

Proof. Let {M , W 15} be a marriage market and ¢ a stable rule. It can be easily
checked that a matching which is not individually rational cannot be supported
by any Nash equilibrium.

On the other hand, we can see that each individually rational matching can
be supported by a Nash _equilibrium. Let x be an individually rational matching
for {M W P} Define P’ so that for each m; in M and w; in W

(1) wiP’(m)m; <= w; = p(m;), and
(2) mP(wj)w; = mi=p(w;)

The reader can easily check that u is the only stable matching for {M W, P },
and P’ is a Nash equilibrium for the game induced by ¢. §

The negative result presented in Proposition 3.1 is due to the combination of
two facts. One is that we always choose stable outcomes and the other is that we
require Nash behaviour for all agents. This weakness is disclosed by Example 3.2.




We present a marriage market and analyze a particular type of behaviour on the
part of the agents, when the M-optimal stable rule is employed. We study the set
of allocations that can be attained as the outcome for some Nash equilibrium in
undominated strategies. There is a stable allocation that cannot be obtained as
the outcome for any UNE. So, this example shows how the selection of a specific
stable mechanism influences the set of allocations it implements.

Example 3.2. Let {M, W; 15} be a marriage market, in which M = {my,mz},
W = {wy,w,} and agents preferences are defined as follows:

P(m1)= wp W My P(wl)z meg Mmip Wi

P(my) = wy wi my P(w;) = my my we

Let o™ (P') be the mechanism leading to the M-optimal stable matching for
{Mm,w; P}
In this example there are two stable matchings, but only one of these can be

the outcome associated with any UNE for [(,DM; lII P(m;) X Ifl P(w;); 13] We
A =1 7=1

can easily check it with the help of two well-known properties satisfied when this
mechanism applies:?

(i) for each m; in M, it is a dominant strategy of this game to declare his true
preferences, P(m;), and

(ii) for each w; in W, if P’(w;) is an undominated strategy, then the P(w;)-
maximal must be maximal under P’(w;).

Therefore, at any P’ UNE for this game, the payoff should satisfy that M (P! )
= 4/, where p/(mq) = w;y and p'(my) = wy. Because of the stability of x4 (where
p(m1) = wy and p(ms) = w,) with respect to {M, w; ]5}, we conclude that the
Gale-Shapley mechanism does not implement the full correspondence of stable
matchings.

Notice that this argument applies in a more general context, namely the set
of marriage markets satisfying the following two properties:

1The Gale-Shapley mechanism is presented in an algorithmic way: each man makes a pro-
posal to his most favored woman. Women who receive more than one proposal reject all but
their most favored man from among those which have made a proposal. Rejected men then
make a proposal to their most favored woman, who accepts it if she has not received better
proposals; and so on. This mechanism stops when no man is rejected by the woman he proposes
to.

For more details, the interested reader is addressed to the original article by Gale and Shapley
[6]. The book by Roth and Sotomayor [15] also contains some examples of the execution of the
algorithm.

?These properties are deduced in Gale and Sotomayor [T7].
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(i) there are, at least, two stable matchings for this market, and

(ii) there is an individually rational matching, in which any w; in W is matched
to her maximal element for her true preferences P(w;).

4. Implementing the correspondence of stable matchings

In this section, we introduce a mechanism that implements, for each marriage
market, the correspondence of its stable matchings. We know, from Proposition
3.1, that either this mechanism will select unstable matchings, or else we should
be using an equilibrium concept stronger than Nash’s. Our result is based on both
types of relaxation. We present a matching rule which can select unstable allo-
cations. But when agents employ undominated strategies, the Nash equilibrium
outcomes will be stable with respect to the agents’ true preferences.

The algorithm we propose is similar, in some aspects, to that of Gale and
Shapley [6]. Agents on one side on the market make the proposals, and those
who are on the other side evaluate them.

The optimal algorithms analyzed by these authors allow players to reject
proposals at any step and remain in the market. We propose a “now-or-never”
mechanism, where an agent who has received a proposal once cannot receive
subsequent proposals. In contrast with the Gale-Shapley optimal algorithms, our
mechanism implements the correspondence of stable matchings in undominated
Nash equilibria. (See Example 3.2.)

Definition 4.1. The mechanism @R associates the outcome of the following
algorithm to each marriage market {M , W, 15}3

Each agent m; in M makes a proposal to his mazimal element under P(m;).
Fach agent w; in W who receives any proposal is matched with her P(w;)-mazimal
element on the set of agents who propose to her and herself. Matched agents are
removed from the market. Each man remaining in the market make a proposal
to his most preferred mate between those remaining in the market. Women who
receive any proposal evaluate it as in the previous step and leave the market
matched with their mate, and so on. This algorithm stops when no woman receives
any proposal. Agents who are still unmatched, if any, are selfmatched.

3Alcalde [1] presents a more detailed version of this algorithm and illustrates the workings
of this mechanism by means of an example.
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Remark 1. Notice that, in general, when @!® applies to {M, W, 15}, we do not
obtain stable matchings for this market. In fact, efficiency cannot be guaranteed
either.

The remainder of the section analyzes some properties for the game form with
the payoff function generated by our algorithm. Propositions 4.2 and 4.5 charac-

terize the set of undominated strategies for the game [cpm; 1 P(m;) X I P(w;); ]5] .
=1 j=1

It is a dominant strategy for each agent in W to declare her true preferences.
Moreover, for each m; in M, a strategy P’(m;) is dominated for this game if, and
only if, the set of acceptable individuals for this strategy is the same as for his
true preferences P(m;).*

Proposition 4.2. At game [@'F; ]11 P(m;) x f[ P(w;); IBJ, it is a dominant
i=1 =1

strategy, for each w; in W, to state her true preferences, P(w;).

The proof of this proposition is straightforward. Observe that in the unique
step in which w; is matched, her mate is the maximal for the stated preferences
among the proposals she received.

Lemmas 4.3 and 4.4 will be useful to prove Proposition 4.5.

Lemma 4.3. Let m; € M. P’(m;) is a dominated strategy for m; at game
[@IR; ﬁ P(m;) x ﬁ P(w;); ]5] if there is some w; in W which is acceptable for
i=1 7=1

m; under P’(m;) but unacceptable under P(m;).

Lemma 4.4. Let m; € M. P’(m;) is a dominated strategy for m; at game
™ S ~

[apm; [T P(m;) x II P(w;); P| if there is some w; in W which is acceptable for
=1 7=1

m; under P(m;) but unacceptable under P’(m;).

Proposition 4.5. Suppose that {M > 2. At game lc,om; ﬁ P(m;) x ]§I P(w,); P,
=1 7=1

P’(m;) is an undominated strategy for m; € M if, and only if, the sets of accept-
able women for m; under P(m;) and P’(m;) coincide:

Yw; € W, w; P'(my)m; <= w;P(m;)m; (4.1)

4Throughout this paper, we will denote by P(z) the true preferences of agent z, and by
P’(z), P?(z), etc., we mean alternative preferences for agent z other than P(z).
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Proof. The necessity condition follows directly from Lemmas 4.3 and 4.4 above.
To prove sufficiency, consider two preferences for m;, P’(m;) and P?(m;). Suppose
that P’(m;) satisfies Condition (4.1) and is dominated by P?(m;). Without loss
of generality, suppose that PZ(m;) also satisfies (4.1). One can easily check that
the set of m;’s acceptable women under P(m;) has to have at least two elements.

Let w’ = argmax P?(m;) and suppose that agents other than m play strategies
{weWw}
P’(z), satisfying:

(i) w’ P’ (w’) my,
(i) 3 m’ in M\ {m;} s.t. Vw eW\ {w’} m; P’(w) w P’(w) m’,

(iii) w P’(m’) m’ and {w” € W :w” P%(m;) w} = {w” € W:w” P'(m;) w} U
{w’} for every w € W\w’ such that w P(m;) m;, and

(iv) Ym”e M\ {m;,m’}, m” P’(m”) w for all win W.

Let p’ = @!B(P'), and 2 = @R(P'/P%(m;)). In this case p?(m;) = m;. Since
P’(m;) # P*(m;), and {w € W : w P’(m;) m;} = {w € W : w P?(m;) m;} there
will be w €W such that

{w” € W: w” P’(m;) w} = {w” € W: w” P’(m’) w} U {w’} (4.2)
Then p’(m;) = maxp:(m,) {w € W: w satisfies (4.2)}. This fact contradicts the
domination of P’(m;) by P%(m;). #

Remark 2. When M is a singleton ¢'® coincides with ™. So, P(m;) should be
a dominant strategy for m;, as Dubins and Freedman [4] proved.

We can now introduce the main result for this section.

Theorem 4.6. The mechanism @!F implements the correspondence of stable
matchings in undominated Nash equilibria for each marriage market.

Proof. When M is a singleton, because of Proposition 4.2 and Remark 2, the
proof is trivial. Let’s consider #M > 2.

Let P’ be an undominated Nash equilibrium for this mechanism. Because of
Propositions 4.2 and 4.5, @IR(IS’) should be individually rational for {M, wW; ]5}

Then, if ™R(P’) is unstable for this market, there should be a pair (m;, w;)
blocking it. Since P’(w;) = P(w;), m; can improve his utility by playing a
strategy for which w; is the maximal element, which contradicts that P’ is an

undominated Nash equilibrium. ~
On the other hand, let x be a stable matching for {M, W P}. Consider the

strategy profile P’ satisfying:
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(i) P’(w;) = P(w,) for all w; in W,

(ii) for each m; in M, the sets of acceptable women under P’(w;) and P(w,)
coincide, and

(iii) for each m; in M such that p(m;) # m;, p(m;) is the P’(m;)-maximal ele-
ment.

It can straightforwardly be verified that P’ is a Nash equilibrium for o!® which
satisfies that @/F(P’) = . To conclude, remember that P’(z) is an undominated
strategy for any agent x because of Propositions 4.2 and 4.5. 1

5. Reversal properties of the Gale-Shapley mechanism

Example 3.2 shows a reversal property satisfied by the Gale-Shapley mechanism,
when agents behaviour is strategic. If the men’s (resp. women’s) optimal rule
applies, the agents’ strategic behaviour can lead us to obtain the women’s (resp.
men’s) optimal stable allocation. Following our example, we argued that this
previous argument can be straightforwardly extended to a family of marriage
markets. A natural question arises: When such mechanisms apply, could we ex-
pect similar properties in any market? More precisely, does there exist a natural
extension of the individual behaviour used in this example allowing us to gener-
alize this property? This section provides affirmative answers to these questions.

In Section 2, we presented dominance solvability as a natural extension to the
use of undominated strategies by the agents. Such a ”generalization” builds on
the assumption that all agents share the same beliefs. The main requirement of
dominance solvability is the uniqueness of the outcome when dominated strategies
are iteratively removed.

In this section we show that there exist dominance solvable mechanisms select-
ing stable outcomes. In particular, we present a mechanism which sophisticatedly
implements the men’s optimal matching as its outcome. The mechanism we ana-
lyze is very simple. Each agent, z, in the market declares her preferences, P’(z),
and the women’s optimal algorithm applies to the market {M W, P } Observe
that preference stated by the agents can be different to their true preferences.

Our results strengthen those presented in Thomson [16] about the reversal of
asymmetric allocations when agents’ behaviour is strategic. Results by Demange
and Gale [3], and by Gale and Sotomayor [7] are similar. W-optimal stable
matching can be obtained as the outcome of a family of strong equilibria for the
M-optimal stable matching game for each marriage market.

An important difference between these results and those I present is the equi-
librium concept employed. The strong equilibria they studied require a very high
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level of communication among the agents on one side on the market. Dominance
solvability, the solution concept I employ, does not requires such a collusive be-
haviour: this is a direct consequence of the uniqueness of the equilibria outcomes.
(See, for example, Moulin [10].) There is another qualitative difference: our re-
sult ensures that this reversion always occurs. This cannot be predicted from
Demange and Gale [3] result, nor from that by Gale and Sotomayor [7].

Theorem 5.1. Let ©" be the mechanism selecting the W-stable matching for
{M ,W; P’ }, for each preference profile P'. Then,

(i) % is dominance solvable, and

(ii) for each marriage market {M, W ﬁ}, ©" sophisticatedly implements its
M-optimal stable outcome.

The proof of this result is presented, in a constructive way, by Lemmas 5.2
to 5.5. The first one is a classical result in this literature, proved in Dubins
and Freedman [4]. Lemma 5.3 presents a condition that must be satisfied by
the preferences stated by agents in M in order to be undominated strategies for
the game related to ¢". Lemma 5.4 generalizes it and introduces the “iterative
argument” of dominance solvability. Finally, Lemma 5.5 establishes part (ii) of
our Theorem 5.1.

Lemma 5.2. (Dubins and Freedman [4].)
When mechanism " applies, it is a dominant strategy for any agent in W to
declare her true preferences.

Lemma 5.3. (Roth [14].)
Any strategy P’(m;) is dominated for agent m; in the game induced by " if the
maximal under P(m;) and P’(m;) do not coincide.

The set of undominated strategies for this mechanism, P! is the set of pref-
erence profiles such that

(i) for all w; in W, P’(w;) = P(w;), and,
(i) maximal elements for P’(m;) and P(m;) coincide for each m; in M.

In a recursive way we define, for each k > 2, P* as the set of profiles in
P*-1such that, for each m; in M Condition (k-1) holds:

Yw; € W, w; P’(m;) max WE=(m;) implies w; ¢ WF(m;) (k-1)

where WF=1(m;) = {x € WU {m}: ¥ (]5’) = z for some P’ in Pk-1 }

15




Lemma 5.4. If P’(m;) is an undominated strategy for agent m; in the game
[tpW; PE-1; f’] then P’(m;) would satisfy Condition (k):

Yw; € W, w; P’(m;) lgr(la;g W¥(m;) implies w; ¢ WF(m;) (k)

Proof. To prove the lemma, suppose that P’(m;) does not satisfy Condition (k).
Then, there should be w; in W¥(m,), such that

(1) mi P’(w;) wj, and,
(ii) w* P(m;) w; and w; P’(m;) w*, where w* = maxp(n,) W*(m;).

.Let P%(m;) be a strategy for m satisfying Condition (k-1), such that
(a) for each w? w3 in W*(m;) \ {w’“’} w? P%(m;) w® < w? P'(m;) w*
(b) for each w in W¥(m;) \ {wk} w* P?(m;) w

the reader can check that P?(m;) dominates P’(m;). i

By the constructive definition of Pk we know that, for any 1 < k' < k,
P* C Pk. Moreover, if we denote by pupr(m;) the M-optimal mate for m;, there
should be a value k(m;) such that

(1) w* = pp(m;) for all k > k(m;), and,

(i) w¥(me) = 1 # oae(m).
This result is a direct consequence of the latticial structure of the set of stable

matchings. ~ ~
Let ko = max k(m;). Each preference profile P’ in P* should satisfy:

mi€
(i) the M-optimal stable matchings for {M, W ]3} and {M, Wi 15’} coincide,
(ii) P’(w;) = P(wj;) for each w; in W, and,
(iii) For each m; in M, if pp(m;) P(m;) w; and w; P’(m;) par(m;), then there
is no matching u, stable for {M, w; 15} such that p(m;) = w;.

We can easily check that P* is non-empty. In fact, P, the profile of true prefer-
ences for the agents, belongs to Pko,

Lemma 5.5. When mechanism ¢" applies, P’(m;) is an undominated strategy
for agent m; satisfying condition (ko) if, and only if, for every preference profile

P’ in P* and for each matching p, stable for {M, W; ﬁ'}, p(m;) = pipe(ms), the
M-optimal stable matching for {M, W; ﬁ}
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A proof of this lemma can be straightforwardly made by using the latticial
structure of the stable matchings.

The proof for Theorem 5.1 follows from Lemma 5.5, concluding dominance
solvability for ".

6. Final comments

In this paper we analyzed some possible escapes to the negative results by Al-
calde and Barbera [2] and Roth [13] for truthful revelation in matching markets.
The potentially harmful effects of manipulation in stable mechanisms have been
studied, and we can show that some of its most obvious negative consequences
(like the lack of Pareto optimality or stability) may or may not occur, depending
on the type of equilibrium concept and the mechanism under use. We studied
the strategic behaviour of agents faced with two different mechanisms.

First, we provided a mechanism that is similar to the classical Gale-Shapley
algorithm, but in which no deferred acceptance is allowed. The second mechanism
we analyze is the Gale-Shapley matching algorithm, whose strategic properties
have been studied by different authors for alternative equilibrium concepts.

Requiring the use of undominated strategies by the agents guarantees us the
stability of the equilibrium outcomes for both mechanisms. In fact, the results of
Theorems 4.6 and 5.1 remain also valid when the equilibrium concept we employ
is that of Farquharson’s [5] sophisticated equilibria.

Since we can state the validity of Theorems 4.6 and 5.1 for the case of so-
phisticated equilibria, we can now compare the mechanisms introduced in the
paper. In the Gale-Shapley mechanism, the agents on one side of the market
(those who receive the proposals) have the possibility of receiving proposals at
any step of the algorithm. The analysis of strategic behaviour by the agents leads
to a unique sophisticated equilibrium outcome. On the other hand, in the F
mechanism once an offer is made, there is no chance to receive further proposals
in later stages of the procedure. This leads to the possibility of several outcomes
being supported as sophisticated equilibria.

This last observation allows us to compare both mechanisms from a “fairness”
point of view. Indeed, consider a decision maker who must decide on a mechanism
to be used for matching decisions in some job market. Suppose that this agent
must select between the Gale-Shapley mechanism and the @!® rule. The use
of the first mechanism implies a clear support to one side of the market and,
consequently an unfavorable treatment to the other side. When ¢!F is employed
this problem disappears.

There seems to be an inverse relation between the size of the set of stable
outcomes supported by sophisticated equilibria and the number of steps in which
an agent who receives proposals can reject them and remain in the market for
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a mechanism & la Gale-Shapley. With some restriction in this ability to receive
offers, as in the @ mechanism, the size of the set of outcomes supported by
sophisticated equilibria increases.
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