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MARKET LEARNING AND PRICE-DISPERSION

M. Dolores Alepuz & Amparo Urbano

ABSTRACT

This paper analyzes how learning considerations may influence the
pricing behavior of a duopoly facing demand uncertainty. We consider a
symmetric duopoly game with product differentiation where firms have
imperfect information about some parameters of the market demands. Firm

learn about these parameters by observing market sales in the two markets.

The central body of this paper consists in showing the conditions under
which there exists price dispersion at the equilibrium in pure strategies. In
particular, when both -product substitutes- f irms experiment in each of the
two markets and they have the same ability to make market signals more
informative, they will price-disperse as an attempt to increase the
informative content of these signals. In this way, a '"sampling effect" may

arise as the outcome of market learning behavior.
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1.- INTRODUCTION

The purpose of this analysis is to characterize equilibrium in markets
for consumer goods in which firms set their own prices and they operate under
some uncertain environment. Particular attention will be paid to the
conditions required for an equilibrium to involve price-dispersion, i.e. the

state when some firms charges different prices than others.

Stimulated primarily by Stigler (1961), many economists have devoted
considerable effort towards the goal of developing and formalizing the
analysis of markets which operate with imperfect information. In this
framework, we consider the problem of sellers’ behaviour and the joint
determination of the price distribution. Once the problem is formulated in
this fashion, one important question arises. Under what conditions will
equilibrium consist of non-trivial distribution of prices, as opposed .to the

clasical unique price?.

One difficulty in developing the analysis is that once the problem of
information is introduced, one must face the fact that there are many types
of markets, varyng according to the structures of information flow, the
homogeneity of the product, etc.... The interaction of these factors and
others ig involved in determining price dispersion, and it is not so obvious
which factors and interactions should be singled out as the building blocks
of a model. As a start, it is natural to take both one particular market and
information flow structures as given, and to derive an equilibrium for that

market,



In particular, we focus on uncertain environments where firms devote
much effort to the adquisition of information to increase their market
profitébility. In this paper we study an aspect of this gathering of
information, and the induced firms’ behavior, known as experimentation. By
experimenting firms change their present actions to vary the amount of
information available to the future. We are particularly interested in
analyzing how symmetric experimental firms’ behavior may give rise to

different equilibrium prices.

We propose to examine this question in the context of a two stage game,
and under price competition. Thus, we consider a non homogeneous product
duopoly where firms face demands that may have both the slope parameter and
the product substitution parameter unknown to both of them. In particular,
they can be one of two possible values. And, in addition there are random
noise terms in both markets, that mask the true value of these parameters.
Each firm is assumed to have prior beliefs about them that are common and

common knowledge.

In period one each firm chooses a price. Then, sales are realized in
both markets. We assume that firms observe these market sales as well as both
firms’ prices. This information is used to wupdate prior beliefs, yielding
posterior beliefs that will be used in the second period. Since both firms
use the same vector signal -namely the two markets’ sales realizations- to
revise beliefs, any attempt to make this signal more informative must take in
account both the effect of such action on the rival’s updating and the effect

of the rival’s actions on the own updating.



Experimentation has been throughly analyzed for single agent decision
problems. Mirman, Samuelson and Urbano (1993a, henceforth MSU), for example,
recently characterized the incentives to experiment for the single agent
case. They study monopoly models with an uncertain demand function containing
a parameter (with two possible values) wich is unknown to the monopolist. In
this case all observations lead to partial learning about the true value of
unknown parameter. The monopoly makes output decisions in the first period of
a two period horizon model. Each output decision implies two possible price
distributions. Observations of the price leads to Bayesian updating about the

unknown parameter.

However less is known about the outcome of market experimentation in a
multi-agent context. This is so because in this case we may find out a
variety of learning behavior that depends on the kind of uncertainty that
firms face that, in turn, affects the specific market signals that they want
to make more informative; this determines each firm rivals’ learning actions
and hence each firm’s experimental behavior. Most of the existing literature
on this topic (for instance, Alepuz and Urbano, 1991, 1992, 1993, henceforth
AU) concentrates on showing the learning behavior of duopolistic firms that
face (symmetric and/or not symmetric) market demands with just an unknwon
demand parameter. In these situations each firm conducts its own
experimentation in either its own market or in the rival’s market and there
is no room for experimentation by both firms in each of the two markets. In
these models firms never price-disperse as a result of their learning

behavior.



But if the demand uncertainty is such that it pushes firms to experiment
in both their own and the rivals’ markets, then the learning outcome will
depend on the different ability of firms to change the informative content of
market signals and there is an open room for price dispersion to appear as

the consequence of firms experimental behavior.

We model our duopoly game as a game of imperfect information and
characterize the first period equilibrium solutions. Our main concern is to
show under which conditions information about the demand unknown parameters
is acquired more effectively if firms experiment by setting different prices.
That is if they price-disperse. Our results show that when firms ability to
make market signals more informative is the same for both of them in each
market and they are product substitutes, they will price-disperse as an
attempt to increase the informative content of these signals. In this way, a
"sampling" effect may arise as the global outcome of market learning

behavior.

Other explanations of price dispersion have been developed, most of
them based on search costs. However, most of the search models of
price—-dispersion need to assume some asymmetry in the amount of information
available to the buyers. For example, many models contain some form of ex
ante heterogeneity: see Reinganum (1979) (different production costs), Salop
and Stiglitz (1976). But, as Burdett and Judd (i983) remarked, what appears
to be crucial for equilibrium price dispersion, in this class of models, is
an ex post heterogeneity in consumer information: see the stochastic

advertising mechanism and the stochastic nonsequential search in Wilde



(1977). This ex post heterogeneity may still occur when there is no a priori
reason to expect it. Moreover, some of these models do not exclude the
existence of a symmetric equilibrium in pure strategies. In contrast our
approach excludes any type of either ex ante or ex post heterogeneity in the
sellers’ information and thus it offers a new reason for equilibrium price
dispersion. Namely, a sampling effect in the adquisition of information by
firms, when their ability to influence the informative content of market

signals is the same for both of them in each market.

In other models, imperfect information alone is insufficient to support
price dispersion (Reinganum, 1979). Thus, our model provides a rationale for
the existence of the equilibrium price dispersion as long as the imperfect

information continues.

The value of information in oligopoly games has been the subject of
intensive research. These studies tipically assume either that the firms
transmit information by means of "certifiable announcements"” or that the
signals that yield information to the firms are generated exogenously. Our
model differ from these in that the amount of information generated is

determined endogenously by the choice of actions in the first period.

The closest model to ours is Aghion, Espinoza y Jullien (1993), who
also analyze the price-dispersion phenomenon in a very similar duopoly
setting. However, we find out that their results are driven by the specific
way of modelling the error terms that affect both market demands and which,

in turn, determines which specific market signals the firms want to make



more informative. In particular, it determines that firms are interested in
making their market sales’ difference more informative for each estate of
nature. With symmetric demands this is accomplished by price-dispersing.
In this sense their sampling effect outcome is implicitely introduced by
their concrete specification of demands’ random shocks and it is not
susprising that when dealing with general (although symmetric) expected
demands it represents more a local result than the global outcome of firms
learning behavior. In fact, their insight of that information about the
elasticity of substitution between competing goods is best acquired if
firms set different prices is not generally true -under both general expected
demands ans error terms specifications- unless firms ability to make market
signals more informative is the same for both of them in each market, like in
the Hotelling model. This is why, in this model price dispersion is a global

result independently of the demand random shock structure.

In contrast, our model clarifies the learning mechanims which operate
-in general learning duopoly models- for the existence of price dispersion.
In particular, we offer the sufficient conditions for this phenomenon. In
this sense, our results are different and more general that theirs. Thus, we
allow for a more general modelization of the market demand randoms terms and
for the general class of joint distribution functions of the noises that

satisfy the generalized strict monotone likelihood ratio property.

The paper is organizated as follow. Section 2 sets up the duopoly model

as a game of incomplete information, and the basic demand and information

10



structure assumptions are laid down in first place. Analysis of the
informational characteristics and the experimenting behavior of firms
follows, Some examples illustrate the main findings.The characterization of
the first period equilibria is the goal of section 3. Section 4 relates the
main result with more informative signals, The existence of equilibrium is

considered next. Concluding remarks follow.

1



2.- THE GENERAL MODEL

Consider a symmetric duopoly model. The firms, denoted by 1 and 2,
produce heterogeneous products over two periods. Symmetric market demands are

given by:
Q= 71(P1,P2,6) + e

Q2= WZ(PI,PZ,G) t e, (1)

where Q1 and Q2 are sales in markets 1 and 2 respectively and F’1 and P2 the
prices that firms set. O represents the unknown parameters of the demand
functions, and 81 and 82 are the realizations of uncorrelated random shocks
on demands, (gl,gz), whose  joint distribution is characterized by a
continously differentiable density f (81,82), which  has ZEero means

2 (1). We

(j{elf(sl,ez)deldez = 0 = Ifezf(el,ez)deldsz) and full support on R
assume that © takes on one of two possible values, 6 or 9, and that firms
begin period one with a common and common knowledge prior probability
distribution over (5,9). Let P, denote firms’ prior belief that 6=8. We

assume that for 6= or 0=8, yl(O,PJ,e)>O, i=1,2, i#j and that 'yi(Pi,PJ_,G) is

decreasing and concave on P1 and increasing and convex in ]E’j (products are

3 8y
i __ e = ———l = —, -—--—-l -—
substitute). Let yi—'xi(Pl,PJ,e) and v, Wi(Pl,Pj,Q), and api I(Yi,Pf BPJ
1
o1 o > 7 poY; > ’
v - We also assume that |7i,P| |zi’P |, and Vi p= X o SO that we are

»

J i i 7 J

1 Notice that market sales are not truncated at zero, so that very small

realizations of the €’s can drive sales negative. The analysis is more
difficult without this assumption.

12



concerned about uncertainty that may affect both the slope and the product

substitution parameters of the demand functions.

In period one, firms choose prices P1 and Pz' For simplicity, we assume
that production cost are zero, so that firm i’s expected profits, for i=1,2,

Jj#, is

ni(Pl,Pz;p0)=[71(P1,P2,G)po + 7/i(Pl,P2,Q)(1—pO)]Pi (2)

After these first period prices are chosen, values of gl and gz’ and
therefore values of Q1 and Qz’ are realized. We assume that firms observe
first period prices and market sales but not the realizations of gl and 52.
Consequently, firms may not be able to determine the value of 6 after the
first period. The observation of the market signal (Q1’Qz)’ together with
knowledge of F’1 and Pz’ however, leads each firm to revise its beliefs
regarding the value of 6. We assume that such revisions proceed according to
Bayes'rule, so that firm i’s posterior beliefs that 6=8, p(Ql’Qz’P1’P2|po)’
is given by:

2 — —
p2f (Q - (P ,P_,8), Q -7 (P ,P_,8)) o

2 = — 2
pOf(Ql_la,l(Pl,Pz’e)’QZ_?’Z(P 1 9P2)e))+(1—p0) f(Ql_Wl.(PI’PZ,E)’QZ_WZ(PI’PZ,—B—))

where Q1 and Q2 are market sales realizations in period one and F’1 and F‘2

first period prices.

We shall restrict the density function f(el,ez) to ensure some

monotonic properties, i.e. that larger or lower realizations of the Qi’s,

13



i=1,2, in (3) lead to higher (or lower) common posterior beliefs that 6=8.
While assuming a particular distribution for f (g1’gz) -such as the normal
distribution- would achieve this end (as well as simplifying the
calculations), it would also limit the applicability of our result. We shall
instead merely impose the requeriment that f(€1’82) satisfy the monotone

likelihood ratio property (MLRP) in variables €, and €, namely that

fi(el,sz)

f(sl,ez)

(4)

is strictly decreasing on € i=1,2.

In period two, each firm again chooses a price Pl, period two expected
profits are therefore n_(Pl,Pz;p) (where P, here denotes second period price
1 1

for firm i, i=1,2, and p is calculated by (3)).

We are particularly interested in the subgame perfect equilibrium of
this two period game. As is usual, we analyze subgame perfect equilibria by
transforming the two-period game into a one-period game by specifiying a
value function of posterior beliefs. Observe that, under the conditions
imposed on 71(P1,P2,5) and 71(P1,P2,9), i=1,2, the second period subgame
possesses a unique and symmetric Nash equilibrium for each posterior belief

p; let (Pj(p),P:(p))=P*. Firm i’s period two value function is thus given by:

* % _ * % *
Vi(p) = ['ari(P P ,0)p + ari(P P ,e)1-p)lP = Vj(p) (5)

Now, in period one, the posterior belief p is not known, but rather is

a random variable whose distribution depends upon first period prices (as

14



well as the joint distribution of first period market sales (Ql’Qz) induced
by (gl,gz)). We may therefore write each firm’s two period expected profits

as a function of first period prices:

TP Pyip)) = (P Pyie) + 8 [V(p(,0,P P )NQ,0, )40 O, (6)
where 8 is the (common) discount factor and

_ 2 T _ = _ 2 _ _
h(Q,Q) = p f(Q~ 7, Q- ¥,) + (I-p )f(Q- 7, Q- 7) (7)

(recall that ¥, = 71(P1,P2,9), ¥, = 71(P1,P2,9), etc.)

Let G denote the game whose payoff functions are given by (6) and let

o*i(Pj) = {Pie Argmax Hi(Psz;po)) denote firm i’s best reply correspondence.
P

i
* % * % ¥ L3
A Nash equilibrium of G is a pair (P1 ’Pz) € O‘I(Pz) X O‘Z(P1 ). Any such
equilibrium will be on the equilibrium path of a subgame perfect equilibrium

of the two period game.
Let W(P,P) = ”Vl(p(Ql,QZ,PI,PZ))h(Ql,Qz)dQldQ2 (8)

Note that by the properties of the demand functions and those of f, W1

is diffentiable, in P1 and Pz'

Value Functions.

The first step to determine whether learning considerations creates an

incentive for firm i to set up a price P different from P, i.e. to

15



price-disperse, is to analyze the behavior of Wi(P1’Pz) in P, for a given
W
i

P. This section, accordingly, derives an expression for ) and
j
1

establishes conditions under which the function Wi(Pl’Pz) attains a minimun
at P1=Pz' The next section will use these results to examine

price-dispersion.

oW
To evaluate api , first differentiate (8) to obtain
i
6W1 ap a
P - Vi(p) _E?Fi‘ h(Q1’Q2)dQ1dQ2 * Vi(p) _8—13; h(Q1’Q2)dQ1sz (©)

This expression requires some manipulation before it is useful. Let us
consider first the relation among the market signals Q1 and Q2 and firms’

posterior beliefs p. We have imposed the MLRP in variable € for the function

f(e,e). Let e= Q-7 (P,P.0), (e= Q-7 (P,P,0)), and let e= Q- 7,

(32 = Qz— ZZ), then f(€1’82) (f(el,gz)) gives us the probability of the

realization of quantity pair (Ql’Qz) given that firms’ demand are the high
value parameter one (6=8) (or the lower value, 6=6). The MLRP will allow us

to give a sign to i.e. if high or low quantity sales on market 1 will

3p
8Q,

increase or decrease the probability of 6=6. We similarly require the MLRP in

variable € which will give us a sign to gg . Then it is obtained,

2

16



Lemma 1; If both the slope and the product subtitution demand

. <
parameters are unknown, then there exist a k, k>0 with k > 1, such that @

dp < , >
> <
6Q1 O depending on P1 sz

dp < \ >
30 > 0 depending on P2< kP1

[\

Let €= Q- 7, €= Q- 7, then El— £= V- 5;1' Since 7, decreases in
— 1 - —_ —1

but increases in P, and ¥’ =y’ , the sign of
1

Zi,p |’ ,P. —1,P
J ; :
— . . >
y - 7.is not clear. However by continuity there exist a k, O<k < I, such that
1

> — > >
if P1< sz, then ¥ - ¥, < 0, and hence €< € In the Appendix it is shown
—i i -

that the MLRP implies that 9P S pasE? €. -
c‘:‘)Qi i —i

NV

dp
aQ,

1

Remark. Note that the sign of depends on the relationship between‘P1 and

Pz' This is due to the fact that both the slope and the product substitution
demand parameter are unknowns and that products are substitute. With just
one parameter unknown, say the slope demand parameter (the product

substitution demand parameter), 7 < ¥, for all pairs (Pl’Pz) (v > 71), and
i = 7 L

consequently 28 <0, for all pairs (Pl’Pz) (—g—g >0). Also if 3r’i P< 0
i i |

2 Note that if the intercept (in case it exists) were also unknown, then

< >
the statement would be 28 > 0 depending on P1< kP2+ B, where B >0. We
1

abstract from this case, since it is not relevant for our purposes.

17



(products are complements) (with |§’1 o |>|§:’i . |), then even with unknown
’j H j
slope, ¥ > ?i for all pairs (Pl’Pz)'
Since p = p(Q1’Q2’P1’P2) the following result, that is proved in the

Appendix, gives the behavior of p as a function of Pi:

Lemma 2.
2
p(l-p )
6p — T ap 0 ~ _ ’
8P~ ‘i,p. 8Q D [(7 P, zi,P)fl(El’E )]
i i 2 i i
1_.
S )2 PPy (' -7 )le,e)
3P, 6QJ D JsP, J,P =2
and / or
2
(1-p)p
6p — _n! ap _ 0 ! _ ot P
apP ~i,p.  8Q D (71,1{ yi,Pi)fl(el’SZ)
1
2
(1-p)p
—a? 6p _ 0 ! _ ’ = o
+( Zj’Pi) 5Q) 5 (j’Pi z.’Pi)fj(el,ez)

Note that it takes account on the fact that F’i influences not only Qi

but also QJ.

Tedious algebraic manipulation of (9) in the appendix (and using lemma

2}, give us the following more simplified expresion:

0 i(Pl’Pz) 8p dp 2

— " ~! ! o ot _ P

P T Vl(p)[(yi,Pi zi’pi)—aQi +("Yj,P. ZJ"H)TQJ(I plp fle e )dQ dQ,
1

(10)

18



Observe the meaning of (10). Firm i wants to learn about 6, and it uses
Pi to this purpose, in order to make market sales (Qi,Qj) more informative
about the true value of 8. Then, the first term in the brackets represent the
"experimentation" that firm i undertakes trough market i (by making Ql more
informative) and the second term the one which goes though market j (by
increasing the informative content of Qj). However, firm j also chooses a Pj,
that also affects the informative content of both market signals, (Qi,Qj), S0
that firm i has to consider the possible influence of Pl on the informative
content of Qi and Qj, given that PJ_ is also affecting them. This translates
to that the ability of i, to make market signals more informative through P1
may not be independent of PJ. Here, we consider the case when this ability

increases in the absolute price-difference.

Now, we establish some necessary conditions for Wi to be increasing in
aw

—_— %
6Pi 0,

the distance |Pi—Pj|. Consider first the necessary conditions for

for any given Pj, j#i, i=1,2, and for all (Pi,PJ_). First, it should be the
case that variations in the first period prices, Pi, i=1,2 should affect the
informative content of market sale signals. To formalize this conditions, let
H(p,Pl,PZ) denote the cumulative distribution fuction of p induced by f and

(PI,PZ). Changes in prices do not affect the informative content of market

aH(p’P1’Pz) o
sales if ——a—Pl——— =0 for all (p’P1’Pz) and i=l1,2. Clearly if apl = 0,
aw 5H
i=1,2, then 3p1 = 0. Observe that 55 may be zero for two reasons.

i i

First, we could have ¥’ b= v’ o and 7’ o= ¥ ,» i=1,2, i#j, then the two
i v

LA ’

i i J ]

demand functions have the same slope and product substitution demand

19



N 7 _ / 7 — 7
parameters for each pair (Pi,PJ), so that (afl P 7 ’Pi) and (7J v, v ’Pi)
1

are zero. In this case, for any realization of (gl,gz), p is independent of

Pl, i=1,2, so that varying Pi, i=1,2, does not affect the informative content

AW
of market sales, for any Pj, j#i. So a necessary condition for —?ﬁp—l—— #0 is
i
~! * ’ pw; # 7 s ] .
that Wi,P_ zhp'or 71,PJ zi,PJ over some interval of prices (Pi,Pj)
1 1

However, observe that, by the remark of the end of the lemma 1, if just

‘ : ’ : P - 4 < PV -y’ >
v P(or‘ just c p.) is unknown and AN S 0 (v Y 0) for all

By ’ "y 1,r, i,P, —i,P,
- J - i Jawi J
(PI,PJ), then aQi <0, i=1,2 (—%; >0, i=1,2) and by (10) 7P >0, i=1,2 for

1

any Pj, j#i, higher prices yield a more informative market sale signél, for
all price distances |P1—PJ|, so that W _is independent of |P1—PJ|. This is
so, because in the above situation the "experimentation" (the active learning
behavior of the firms) is just conducted in one market, i.e. if the slope is
unknown parameter, each firm will experiment in its own market and if it is

the product substitution parameter they will do it in the rival’s market (3).

Then, in order that Wi(P1’Pz) depend on the distance [Pi—PJ| we need
that the firms experiment in both markets at the same time. So a necessary

condition for that is that both 'ar’l b

and vy’ , are unknown parameters.
1,
i J

Intuitively, if 5"1 o < 3"1 . (or %’ I y’l ), then an increase in
s iy 1, 1,
i i j j

P1 spreads the two expected demand curves of market i apart (market j), so
that, loosely speaking, it is easier to distinguish between them. The

opposite result follows if }-’1 o

L

>yt
Z1,Pi

20



aH(p,Pl,PZ) 3
The second condition under which ——=——— =0 is 9P <0, i=1,2, for

P, 2Q.
)3 1

all (Qi,QJ) that belong to the supp (h(Qi,Qj)).This later condition, in

turn, holds under the MLRP if the support of f is "small enough" so that, for

any pair (PI,PJ), the firms learn the value of 6 with probability one. Since

we have assumed that if has support on R® then we have ruled out this

possibility.

Finally, we need that information is valuable to each firm. This
translates to the strict convexity of the value function V(p). To see this it
suffices to compare between firms expectations of second period profits when
the true value of the unknown demand parameters is to be learnt between
period 1 and 2, and when it is not. Since in the first "informed" case

expected second period profits for firm i, i=1,2 are equal to:
Vi(l)p + Vi(O)(l—p)

and in the second "uninformed" case, expected second period profits for firm

i, i=1,2 are simply, VI[E(O)]=V1(p), then information is valuable ex-ante for

each firm if:
E[V1(9)1=V1(1)p + Vl(O)(l—p) > Vl[E(G)]=Vi(p), i=1,2 (11)

so that if Vi(p) is strictly convex, information is valuable ex-ante for each

firm. Deriving conditions under which the value of information is positive

21



turns out to be difficult and lies beyond the scope of this paper (4).

We now turn to examine the conditions under which Wi(Pl,Pj) increases
in the distance |P1—PJ|. One set of sufficient conditions is given by the

following proposition.

Proposition 1: Suppose that the MLRP as given in (4) holds. Then,

Wi(Pl’Pz) is strictly convex in Pl, i=1,2, for a given Pj, j#i, with a

minimum at P1=Pj for all pOE(O,l) if
(i) Products are substitutes and both the slope and the substitution
demands parameters are unknown, i.e.

ot

|7

i,P I>‘z,i,P
i i

(ii) supp(f(Q -7 (PP ),Q - (P ,P )nsupp(f(Q -7 (P,P ),Q -7 (PP ))#z
(iii)Information is valuable: V(p) strictly convex.
(iv) If P1=P2, then §l= 7, i=1,2. In other words, k, as stated in lemma 1

is equal to 1.

Proof. Recall that the MLRP in (4), and condition (i) and (iv) imply that by

> <
lemma 1, ——g% < 0 depending on P1> Pj. By (i), (iii) and equation (10) we
i
aWi < <
have that 55 > 0, for Pi> PJ_, i=1,2, j#i. B8

# Note that in the duopoly case in contrast with the monopoly case, each

firm’s second period value fuction, although derived from payoff functions
that are linear in p, is no longer the supremum of a colection of such
functions, since the other firm’s price enters as an argument in its payoff
function.

22



Since conditions (i)-(iii) have already discussed let us now consider
condition (iv). This condition seems very strong, but it has a very intuitive
explanation. The key to understand the meaning of (iv) is the following. Each
firm experiments through the two markets i and j to make the signals Qi and
Qj more informative, i.e to separate the means of the two bossible
distribution firm which they can come from, (?i,zi) and (;J,_a_rj). Also the
ability of say firm i to experiment, through F‘l, in each market may be
different from that of firm j, through Pj, in that market. By lemma 1, given

that products are substitutes, ?liyi, ;_:ta(j if firms set prices such that
(4 P

PiatkPj and Pj:tkPil respectively. Thus k reflects the firms different abilities
for experimentation in each market. However, if this ability to increase the
informative content of market signals Qi and Qj through F’i and Pj is the same
for both firms in each market i, i=1,2, then, given that the products are
substitutes and market demands are symmetric, k=1; in other words, ;iizi,
i=1,2, if P1¢Pj, j#i. This behavior gives place to a "sampling" effect. Since
market demand are symmetric, when P1=Pj’ also 3’1=7J, and ?1—%: zl—zj= 0.
Hence if learning considerations make firms to set P1¢PJ, in order to
separate ?i from zi, i=1,2, it also separates v, from 'yj, or in other words,
the means of Ql and Qj. Thus, price dispersion is a sampling phenomenon that
may appear when firms have the same ability to make market signals more

informative in the markets they experiment at the same time(s).

8 Note that this phenomenon will not appear in our model in the case

where just the demand slope (or the product substitution parameter) is the
unknown parameter. This is so because now each firm only has the ability to
experiment in its own market (in the rival’s market) and not in the rival
market (in its own one). Hence both firms experimentation does not coincide
in the same market. As it was said before, the behavior of p in Ql, i=1,2,

does not depend on the relationship between Pi and P.
J
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Then, (iv) 1is satisfied in some models and under some error

specifications. In particular, in models where the ability of firms to

experiment in both markets is the same, like Hotelling’s type models,and
linear demand structure models with slope and product substitution demands
parameters unknown, where both parameters variation is the same, and in those
models where the demand random shock are just a random shift from one market
to the other (see Aghion, Espinosa and Jullien, 1993). The simplest

specifications for which (iv) hold are the following.

Example 1. Linear Demands. Let gri= a - bF'1 + ch, i=1,2, j®i, with b=(E,E},
c={E,E), (E—E)=(E—E), and Py= Prob{(b,c)=(b,c)}, that is common and common

knowledge for the firms. The stochastic market demand are:

Q=y+e =a-bP+cP +¢
Q1 2(1 1 1 2 1
Q=y+e =a-bP+cP +¢
Qz 3’2 2 2 1 2

where f(gl,gz) is the joint distribution of the error terms has full suport
on R® and satisfy the MLRP in variables € and €, Also E[51]=E[g2]=0. Let p
be the posterior of Py after the firms set first period prices, P1 and P2
and observe the realizations of market sales Q1 and Qz’ i.e. p(Ql’Qz’Pl’Pz)
2 p— p— p— pa—
pof(Ql—a+bP1—cP2, Qz—a+bP2—cP1)

is (12)
2 - - = — 2
pof(Ql—a+b13‘1—cP2 ,Qz-a+bP2—cP . )+ ( l—po) f(Ql—a+EP1—EP2,Qz—a+EP2—EP1)

Note that since (E—E)=(E—E)
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_ e <
9’1=a—bPi+ch 2 a—bPl+c:Pj=3ri depending P > Pj (13)
— 1= j = i

so that by lemma 1, and by (12) and (13) op 2 0 depending on P1§ P_-,’ i=1,2,

ap
J#i.
a’b
Also the second period value function V(p)=Vl(p) = ——= =5 = Vip) is
(2b-c) )

strictly convex in p, where b=pb+(l-p)b, and c=pc+(l-p)c. Then equation (10)

specializes here to:

6Wi(Pl,PZ)= aE[V(p(Ql’Qz’P1’P2) }

dP apP
i 1

”v”(p)[(B—g) [— gg ]+(E—g)gg—](1—p)p0f(51,52)dQ1dQ2§ 0 depending P1§Pj. (14)
i )

Since if P1<PJ_, gg >0, gg <0, and V”>0, imply that (14) is negative; if
i J

8p _ 0p _,
8Q,  4Q

p>p, 9P <o
b

ap . o . . _
50, , TQ: >0, and (14) is positive. Finally if Pi—PJ,

and then (14) attains a minimum.

Example 2. The Hotelling model. Let

. . 1 (Pz_P1)e N

Q1= 3(1(])1’132’9) * &~ 2 * 2 * e
(P-P_)o

52= WZ(PI,PZ,G) + Ez= 5+ ! 22 + e,

where 0={0,68}, ©<6<260, f‘(gl,gz) is the joint density of the shock
disturbances, with full support on R® and satisfy the MLRP in variables €

and £ . Also, Ele ]=E[e ]=0.
2 1 2
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Note that the mean demands here correspond to a Hotelling model in

which two firms, 1 and 2, are located at the extreme points of the interval
[0,1]. The firms costlessly produce two goods 1 and 2 that are identical
except for their location and they compete in mill price and cannot change
location. Consumers are uniformly distributed on the same interval and each
of them purchases only one unit of good per period, provided the total
payment (mill price plus transportation cost) is less than his reservation
value. The cost of transporting one unit of good is ——é— per unit of distance.
At the beginning of period one, the firms do not know the exact value of 8,
but they have the same prior beliefs about 6. Let pO=Prob(9=§}, and .this is
common knowledge (the consumers know the true value of 8, since they directly

bear it). It is also assumed that the consumers reservation value is

sufficiently large for the whole market to be served by firms 1 and 2(6).

Firms set prices P1 and PZ in the first period and observe the

realizations of Q1 and Qz' Consequently, the posterior p(Q1’Q2’P1’P2) is

2 1 1 — 1 1 —
pof(Ql_ 2T T2 (Pz_P1)e’ Qz_ 2 —_Z_(Pl—Pz)e)

p,f(Q- §1(P1,Pz,'é),Q2—§2(P1,P2,6)+(1—p0)f(Q1—zl(P1,Pz,g),Qz—zZ(Pl,Pz,g))

(15)

Also notice that

- = > 2
= < =
v, (PP ,6) + + ¥ (PP ,6) (16)

6 Note, again, that market sales are not truncated at zero, so that very

small realizations of the €’s can drive negative sales .
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ap

<
depending on P1> Pz’ so that for p as defined in (15), 2 0 depending on

an
NS ap N s N 3 ! — ~! ’ — 14

P1> Pz’ 30 > O depending on P1> Pz’ and since 'ari,P.— —'ari,P, ZI,P— zi’P

2 i J i J
and the firms second period value function Vi(p)= ,1\ =VJ(p)=V(p) is strictly

20
8w (P ,P ) B8E[V(p)]
convex, then 112 2 is equal to
’ aPi 6P1

o Vi _ ap ap _ o = S : <
(6 Q)JJV (p)[[ 3QJ+ BQJ](I p)pof(el,sz)dQlsz >0 depending on P1>PJ. (17)

so that WL(P1’P2) is strictly convex in Px’ i=1,2, with a minimum at Pi=P_,
J

J#i.

The next example shows that (iv) is fulfilled under some shock terms

specifications.

Example 3. The Aghion et alia (1993), error term specification.

Let us consider the Aghion et alia error term specification where two
duopolists A and B face the following symmetric demands for their products at

each period t=l,2:

X=D(®P,P,0) +& -& (18)
B B A B s
where 0={(0,0), represent the unknown parameters of the model and (e ,g ) is a
—_— a s

random shock on demand. The agregate component £ is interpreted as a shock
a

on total demand (reflects all the random influences that affect both firms
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equally). The other component gs is interpreted as a shift of market share
from one firm to the other which leaves total demand unchanged. Let f(ga,gs)
represent the joint distribution function of the error with support on IRZ,
and with E[Ea]=E[gs]=0, and Py 3s before, the initial common and common

knowledge a prior’ probability of 6=8.

We assume here that the density f (g1’gz) has the MLRP in variables e

a

and & . As it is usual, in the first period firms set prices PA and PB and
s

observe the market sales realizations XA and XB. Then, the posterior

probability of 6=0, p, is

2 p— p—
pof(ca’ss)

p(X +X ,X -X ,P ,P )= (19)
A BA B AB 2,,— — 2
pfle ,e ) + (1l-p ) 'f(e ,e )
0 a s [o] —a -8
where from (18)
X +X (D +D ) X -X (D -D )
c = A'B A B e = A'B A B (20)
a 2 2 ’ s 2 2
and letting D = D (P ,P_,8), D =D (P ,P_,8), etc, then
A A A B —A A A B-—
X +X (D +D.) X -X (D -D)
z = B A B s B A B o
a 2 2 ’ s 2 2 ’
XA+XB XA—XB
lLet X = —5 and Y = — then here firms are interested in

making more informative market signals X and Y. Note that,
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ap (Fif =1 ), 2

3T = 5 po(l—po) , and (21)
D

ap (3L - ng) 2 2

3y DZ po(l-po) ’ (22)

where f’l and f’2 denote the derivatives of f with respect to its first and
second arguments respectively, and ?=f(5a,gs), £=f(§a,gs) and D=?pi+£(1—p0)2.

If f(ea,cs) has the MLRP in variable € it means that by (20), -ggf_ 2 0
depending on 5A+BBZ D,+D. (i.e. Ea§ _e_a). Note that this does not depend on
the difference of prices. In fact, it depends on the sum of them. For
instance, if DA and DB are linear, as in example 1: —D—A+-D—Bz _12A+9B depending on

T $ = o (T _ = ap  _ .
(b E)(PA+PB) > (c E)(PA+PB), so that if (b-b) = (c-c), 57 =0. Also, in the

Hotelling model of example 2, ﬁA+ﬁB = D,+D =0, so that 2; =0 again. The key

feature of Zf’; is that it will be alway positive or negative (or zero) for

any price pair combination, and does not depend on IPI—le.

However g@ is different. By (20) and the MLRP gf; % 0 depending on

- —> — > — <
D-D< D-D(or D-D < D-D), that in turn is the case whenever P > P_.
A B A -B A=A B —B A B

Note that if P =P, then D =D_ and hence £ =¢ that by the MLRP implies op
A B A B s —s Y

< > = =2
=0; if P > P_ then by the symmetry of demands D < D and D -D < D ~-D_ since
A" B A B A B —A —B

— >
0>0. For instance, in the linear demand structure of example 1, —25— <0

- — <
depending on (b+c)(PA-PB) > (E+g)(PA—PB), that, in turn, is the case whenever

< . . _op 2 . =5 _p S _
PA> PB, and in the Hotelling model: 39 < 0 depending on 6(PA PB)> Q(P‘A PB),

, <
or, on what is the same, PA> PB.
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Let V(p) =VA(p) =VB(p) the firms second period value function and

assume that the second period equilibrium is unique and let

X +X X -X
A B

B
2 2

W(PA,PB)=E[V(p( ,PA,PB))]. Also assume that information is

valuable, i.e. V(p) is strictly convex. Some calculations (see the Appendix)

show that:
oW (P ,P) 5p 8p ,
- " _ _oP _ = = ’
77 =| |V (p)(A+B) —5F— +(A-B) —E— 11-p)p f (€ ,E )dX, dX (23)
BBA 8D,
=D’ - ! < D’ = !/ =
where A DA’P EA,P o, DA,P 3P Zap 3P and
A A A A A A
aBB oD
-1/ - ’ 7/ = 7 = —
B_DB’p EB,P >0, DB,P F:) = : 1 2 apP
A A A A A

Note that (23) reflects the experimentation that firm A undertakes in
order to make the market signals X and Y more informative and hence p more
pfecise. Also, notice that here, in contrast with our model, firm A is not
interested in making XA and XB more informative by themselves, i.e. to
separate ﬁA from D, and EB from D, but in separating 5A+EB form D +D_ and
ﬁA—ﬁB from D -D_. This makes a significant difference from the general model,
since now the firms’ ability to make each market signal (XA and XB) more
informative is not important at all. However, the "sampling" effect that
appeared there, when this ability was the same for the two firms, is
explicitely introduced here through the special structure of the random
shocks that already incorporates the "sampling" effect: by means of G By

(20), €=t whenever D -D #D -D, and since at P =P, D =D, the
s —s A B —A —B A B A B
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price- dispersion results would follow trivially from the modelling of €, if
S

e were absent (or for a given level of € ).
a a

<
More formally, note that (A-B)<O, so that if P1> Pz’ then 25 Z 0 and

(A-B) Z'Z S o. Suppose that g§ =0 (as in the Hotelling model of example 2,
<
or in the linear demand estructure of example 1), then 3P > O whenever
A

< .
P> P, ie W({P,P) is strictly convex in P with a minimum at P =P ..
A B A B A A B

(Notice that:

aW (P, ,P_) ap ap o

3PB =] V”(p)[(A+B) 57 —(A-B) 9 ](l—p)pof(ea,es)dXAdXB so that if
op _ oW < <
—?n,——o, then aPB > 0 whenever PB> PA).

Thus, if the demand random disturbances are Jjust random shifts from one
market to the other, then our condition (iv) of Proposition 1 is trivially
satisfiedm, and the function W(PA,PB) is strictly convex in PA and in PB
with a minimum at PA=PB. We will see next that this implies price dispersion

at the equilibrium in pure strategies. So we have

Proposition 2. The price-dispersion phenomenon will appear if the

demands specification is of the form:

7 Note that for this result we do not need, as in our model, that the

slope and the product substitution demand parameters are both unknown. With
just one of them unknown the result would also follow.
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(i) Q1=7/1(P1,P2,9) t €
Q2=72(P1’P2’e) T
where 6 is the unknown demand parameter and f(e) is the density of €, that
satisfies the MLRP, or
(ii) Q1=71(P1,P2,9) e +oe

Q2=72(P1’P2’9) * €a” €

and WI(PI,PZ,O) is as either in example 1 or in 2 (Hotelling model), and

f(e ,es) satisfies the MLRP with respect to variables € and € _.
a a 8

Next, what is the sign of (23) when g:px #07?. Note that the sign of

(A+B) is the same than that of ——g—%— (more properly the sign of (A+B)

determines that of —Z%—), so that the term (A+B) g; (in (23)) is always
nonnegative. In the case we are considering it is positive, implying that if
—g—%—= , then —Z—Vyy_i >0, i=A,B, i.e. W(PA,PB) is increasing on Pi, i=A,B. In
other words, assuming that information is valuable the duopolist will
increase first period prices with respect to the one-shot optimal ones, for
learning considerations ("experimentation” purposes), as in the case of
demands with just unknown slope. Then, if the random disturbances are such

that they just affect both firms equally, the firms have an incentive to

increase prices respect to the myopic ones.

dp
ax

implying the (provided that information is valuable) following "local"

Then the term (A+B)

adds something positive to the term (A—B)—%,Z—,

results:
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Proposition 3. If the densities f(e ,Es) satisfy the MLRP in variables
a

e and £, and under the Aghion et alia, error terms especification, then .
a s

(i) For a fixed level of € , W(P ,P_) is increasing on |P -P |,
a A" B A B

(ii) For a fixed level of €. W(PA,PB) is increasing on Pl, i=A,B.

Note that (i) is obtained in Aghion et alia (1993) under the assumption

that f(e ,e ) is symmetric and quasi-concave in its second argument € . Here,
a S s

in contrast we merely need that f(ga,gs)
€. Notice, also, that this is a "local"
the global learning behavior of firms is

(ii).

Thus, firm have an incentive to

prices in order to learn about 6. Now,

satisfy teh MLRP in variables £ and
a
result, since € is kept fixed, and
a

driven by the combination of (i) and

both price-disperse and to increase

the question is what is the sign of

(23) when these two incentives are operating at the same time?. It is clear

that for any Pi, i=A,B, P1>Pj, j#i, W(PA,PB) is strictly increasing on P,
1

since W increases in Pl, i=A,B and in the distance |P‘—P.‘, j#i. However, for
i

Px<P" the result is not so clear. Hence,
J

we have two posible behaviors of W

in P, i=A,B and none of them guarantees the "price-dispersion" outcome
1

globally

(iii). Either the function W(PA,PB)

is increasing in Pl’ i=A,B, for all

price pairs (PA,PB) meaning that W will be concave for P.<PJ_, and convex
1

for P1>P_, i.e. the second period expected value function of each firm i
J

is higher the higher is its own price and the higher the distance Pi—Pj>0.
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(iv). Or W can be still strictly convex, but the minimum is not at PA=PB,
but to the left of it, since the firm always benefit in the future from

the higher information adquire though higher prices.

Neither (iii) nor (iv) can guarantee that firms choose to disperse prices as

an equilibrium outcome of the rolled-back game.
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3.- CHARACTERIZATION OF EQUILIBRIUM PRICES

In this section we characterize the equilibria prices for the first
period of the rolled back game, when the conditions of the Proposition 1 are
satisfied, i.e. when E[V(p)] is strictly convex in Pi, i=1,2. We show that
any equilibrium in pure strategies of this game involves prices dispersion in
period one. The existence of an equilibrium in pure estrategies will be
analyzed in a next section, so that suppose, for the moment, that an

equilibrium in pure strategies exists.

Proposition 4. If the densities {f(Ql—'yl(Pl,Pz,e),Qz—yz(Pl,Pz,e)},
e=(g,§), satisfy the MLRP in variables sland €, and if the conditions of
Proposition 1 are satisfied (i.e. E[V(p)] is strictly convex in Pl,

i=1,2 with a minimum at P1= P ), then an equilibrium solutions for the first
J

L& * ¥
period of the rolled back game is characterized by a pair P1 , F’2 such that

-

. £33 m * ¥ L33 m % .
and either P1 >P1>P2, or P1 <P1<P2. In other words there exist no

symmetric equilibrium in pure strategies.

Proof. For any given PJ_ chosen by firm j in period one, firm i will

determine its best response to P , by (see (6)),

PZ‘*(PJ) = Argmax [ (PP 5p ) + SEIV, (p(Q,,Q,)]] (24)

P .
i
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Let us define the one-shot (myopic) best response to PJ, by

P
i

Pi(PJ) = Argmax [nl(Psz;po)]

(25)

~ " >
Observe that since Pi(Pj) is the myopic reacction function P1< F‘j depending

on PS P™.
J 1

Next, we derive the best response correspondence for firm i.

Suppose first that PJ>PT. Then Pi(Pj)<Pj.

Since E[V(p)] is strictly

convex in Pi, with at minimum at P_=Pj, this minimun is to the right of the
1

maximum of the function nl(P1’P2)’ that is to the right of Pi(P.)<PJ_. Then,
J

since

P(P) - P <O,
J O | A]

(26)

the one-shot best response is not the best that firm i can do. In fact, at

Pi(Pj), by (26) and Proposition 1, E[Vi(p)] is

n'(P1’P2;po) is strictly concave in Pi, then the first
1

that PT<P

gains of information. See figure 1

T

Efvien

Y

i(P'), since the loss of short run profits is
J

decreasing and since
order conditions imply

small compared to the

nj +ELVI0))

PPV P, P, Pi i

FIGURE 1
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Next, suppose that PJ<PT, then lgl(Pj) > PJ, and the function E[Vl(p)]
attains a minimum at P1=Pj, to the left of };l(Pj)>Pj, the maximum of
ni(P1’Pz;po)' Then, since lA’l(Pj)—PJ>O, the convexity of E[Vl(p)] with respect
to Pl implies that it is increasing at 131’ so that by the first order

*%
conditions and the concavity of ni(Pl,Pz;po) in Pi, P‘i >P1(Pj)' See Figure 2.

EIvieY)
E rREVIP))

. S
L i A
L R R

" ~ ]

FIGURE 2
Finally, if Pj= PT, Igi(Pj) = Pj= PT. Then, the function E[V(p)] has a

A **' > A
minimum at Pi(Pj)= P= PT, so that by the above argument, Pi < Pl,
J

depending on

>
[ni(Psz;po) + 8E[Vl(p(Q1,Q i)} < [nl(Px’Pz;po) + 6E[V1(p(Q1’Qz))i* )

P >P P <P
i i1 i i1
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Then, there is a jump in the reaction correspondence of firm i at
P1=Pj =PT. Hence Dboth firms’ response correspondences never cross the
diagonal: firm 1i’s ({respt. firm j) correspondence has a discontinuity at

PJ=PT (respt. P1= Pnln). Note that this type of best responses precludes the

existence of symmetric pure strategy equilibrium, i.e. there is always price

dispersion in equilibrium. See figure 3. B
Ril{P)
P
: Rj(Pi)
R P
Ri (Pj)
Pi
FIGURE 3

Remark. Note that the above equilibria in pure strategies implies a
coordination problem. In fact the choice of the equilibrium could be viewed
as a pure coordination symmetric one-shot game. Moreover, since any symmetric
game has a symmetric Nash equilibrium, our duopoly game has in addition to
the asymmetric equilibria a symmetric solution in mixed strategies. We state

without proof the following result.
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Lemma 3. The duopoly game has a unique symmetric Nash Equilibrium in

£33 * %
mixed strategies, with both first period prices Pl and P2 distributed on
the same compact interval. This interval 1is centered at the myopic

equilibrium PT.

Since it is seems that in most of the cases the natural solution for
symmetric games is a symmetric equilibrium, the justification for the
asymmetric solution, that yields the highest expected profits to the firms,
has to rely mainly in two types of arguments. One belongs to the preplay

communication or "cheap talk" stories. For example, firms would be interested

in talking before the starting of the play to coordinate in which equilibrium
to play. They could even send signals to this end. The second argument is

based on focal points and/or preplay reputation about players’ way to play,

i.e. firms way have same preplay reputation of aggressive pricing, or one
firm can be located in a "luxury" area so that it may price higher than the

other, etc.

Assuming, then, that firms can coordinate themselves in the asymmetric

equilibrium, we analyze next the informational properties of the solution.
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4.- INTERPRETATION OF EQUILIBRIUM PRICE-DISPERSION

Proposition 4 tell us that both firms choose first period equilibrium
prices, Pj* and P:*, that are different from the firs period myopic price PT,
and that are also different from each other, i.e. firms price-disperse at the
equilibrium. The reason of this behaviour is that firms follow it to collect
information about Nature's choice of 6. Let us be more specific. Observe that
in the second period the posterior belief about 8 is represented by p(Q1’Q2)’
where p is defined as (3). However, in the first period, before PT* and PZ*
have been chosen, p itself is a random variable that is generated by the

signals of the parameters 0, Q1 and Qz'

For any pair of first period prices, F’1 and Pz’ let S =

1 — ~ . .
SP b (9)—71(P1,P2,6) * e, be the signal generated by P1 and F’2 in market 1,

3

12

=2 2

when 6=0, and let S = @)= v (P,P,B) + e, be the signal
PP, PP, 201 2 2

generated by P1 and P2 in market 2, when again 6=0. Defined similarly,

st , s? and S! (8), s? (6), when 0 is not specified.
-P P’ “P,P P, P ,P
1”2 172 12 1”2
Let § =s__(@®=(§ ,§ ), s, =S _(e)=(s. _,s¢ ),
P,P P,P P,p ' P,P “p,p P,p = "=P,P’-P,P
172 172 12 12 12 12 2 172
and SP b (), be the vector of market signals generated by P1 and Pz’ The
2

market signals vector Sp P (6)=(71(P1,P2,9)+81, 72(P1,P2,9)+82}, 6={0,6}, is

2

distributed as the joint distribution of the random variables yl(Pl,Pz,e) +E1
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and y (P,P_,8) +g, and lead to some posterior about 0, p(S IP,P) =
21 2 2 PP 112

Prob {6=0|S }. Define,
PP

]

i)
oS, |P,P) =L [p?(E -y (P,P,0)LS% -y (PP 6)] (26)
p,p 1 1 2 D 0 "P,P 117227 77P P 2712
12 12 1" 2
where
2,051 =2 20l 2
D = pof(SPI,P2|P1’Pz’ SP ,P2|P1’P2) ¥ (1_po) f(§P1,P2‘P1’P2’ §P1,P21P1’P2)

Consider next, two pairs of first period price values of both firms:
the pair P1=P2=y, and the pair P1=x, P2=y, x#y. The associated market signal

vector is in the first case Sy(9)=(S;(6),S32’(6)) and SX (9)=(S1 (9),S2 (8))

Y X,y Xy
in the second -case, 9=(5,Q}. These market signal vectors generate the

posteriors about 6, p(Sy |y) and p(Sxy‘X,y), that are as in (26).

Then, the condition that ensures that any decision market will prefer

the signal vector S y(e) to the signal vector S (8) is the following.
y

X,

Definition 2.

S (B) is more informative than Sy(e), if:

X,y

Eq [G(p(SX’y [x, 911 > Eg [G(p(Sy | y))] (27)
X,y y

for any strictly convex function G(p), i.e. for any strictly convex function

G(p),
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3

JG(p(s|x,y))[p0g(éx,y,x,y) + (l—po)g(§xy,x,y)]ds >

JG(p(S|y))[pog(§y,y) + (1-p (s ,y)lds

where g(sX y(E)),x,y) is the joint density function of each S (8) evaluated

Xy

at s, i.e. S = (§1 ,§2 ) has joint density function.
X,y %y Xy

2

— _ —l _ pa— — _ .
g(SX’y(G),XJ) - [pOf(Sx,y Wl(X)Y>9); SX y ’JZ(X,y,e)]

b

and g(sy(e),y) is similarly the joint density function Sy(e) evaluated at s.

In words, the signal S (8) is more informative than the signal Sy(e)
Xy

if the future expected profits conditional on observing S (8) are higher

s

than those conditional on observing Sy(e). i.e. SX y((5)) is more valuable than

S ().
v
Then, it can be proved, (see Appendix).

*
Proposition 5. Let Pj and P:‘e be the first period equilibrium prices with

*k *% m m m . . . . .
F'1 # P2 and let P1= P2= P1 be the symmetric myopic first period price. Then

the signal SP**P** is more informative than the signal Sprn.

)

1" 2 1
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5.- EXISTENCE OF EQUILIBRIA

Recall that firm i’s period-one problem is to solve

* %

Max T (P,P"") = Max {m (PP ,p ) + SEIV(p(Q ,Q_; P_,P. )] (28)
p i 1] i 1] 0 1" "2 1" 2
i
The maximization problem in (28) can be taken to be on some compact

set. To see that let fP1 = (P € [Rf : Qi(P)>O} and Fi= sup (Ple IR+: P e 731).

Note that 0<Fi<oo since E[V(p)] does not increase without bounds and
lim ni(Pi,PJ_,e) = -w. In fact E[V(p)] is bounded above by the monopolist
P =0

i

profits for the favorable demand curve.

Let P = ?lr\ ?2. Also note that each demand Qi(P) is twice-continuously

differentiable on lRf \ U bd(?l), strictly decreasing in Pl, whenever
i=1,2

Q(P)0, i=1,2, and Qi(P)>O, j#i for P € int ®. Moreover, the
1

a
apP

J
properties of our demand system imply the existence of a unique second period
equilibrium for each p, say Pf(p), twice-continuously differentiable in p,

1

for p € (0,1). By the properties of the function f(81’€z)’ p s
twice-continuously differentiable in ? and so is V(p). Hence Hi(Pi,PJ) is

twice-continuously differentiable for P € int ?.

It follows that P = [PI,FZI is the unique maximal element of the
closure of P. for prices out of # at least one firm is priced out of the

market. The strategy space for firm i is [0,P ]. Although revenues may not be
1
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necessarily smooth on [0,?1])([0,?2], but provided that when a rival prices at
zero a firm can still make a profit, we can show that all the equilibria will
lie in regions of the type,[O,Pm)X(O,ﬁl]U(Pm,ﬁj]x[O;Pm) with INDiS Fz’ i=1,2,

i#j, where best responses are strictly increasing.

Let \I/I(Pj) be firm i’'s best responses, i=1,2. We prove first that the
composite best response ¥ = \I/lo \I/2 is always increasing for P €

[O’P1]X[O’PZ]'

Lemma 4. Suppose that firm i, i=1,2, can make positive profits even if
its rival charges a price equal to zero, then ¥ = \I/lo \I/z is increasing for Pe

[O’P1]X[O’P2]'

Proof. Note first that firms’ two period payoff functions are the same and

hence, by lemma 1 and proposition 1 their best responses are symmetric.

Next, consider firm i, since it can make positive profits even if Pj=0,
the best reply of firm i will lie in fPi. Let 13j = inf‘(Pje R,:P € bd(SDj), F’i €
\I'i(PJ_)). Clearly, f’js FJ. We claim now that \If1 is strictly increasing in
[O,Pm)u(Pm,ﬁJ]. For any PJE[O,Pm), lgl(PJ)>PJ, where lgl(Pj) is the myopic best
response as defined in (25), and by the proof of the Proposition 4,
\I/l(Pj)>l;i(Pj), for any PJE[O,Pm). Since I;i(Pj) is strictly increasing, then
\PI(PJ) is also strictly increasing for any Pj e [0,P™), or since Hiis

twice-continuously differentiable,
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8m (P ,P ) am BE[V (p)]
LN L v | —— |50 (29)

apP 8P P >P 6P)6P1 8P 8P
J i i) j i

Now, by Proposition 1, E[V(p)] decreases in Pl, whenever P1<PJ_, for a

fixed P, so that by (10) and by lemma 1, E[V(p)] increases in PJ, for a
J

fixed P, such that PJ_>Pi. In particular, for P1=PJ, we must have that
1

E[V(p(Pl,PJ))]] < E[V(p(Pi,P;)]:I so that the new minimun of

P’>P =P
J yo)oi

E[V(p)] as a function of Pl, at the new P;, is at P;=P;>Pi (i.e. to the right

P =P
1

of the old one). Therefore it must be the case that ——6%[3—)—]— is monotone
J
increasing in P, for P <P, i.e. OELV(p)] >0, then
j joi 6PJ6P1
2 2
SHI(P,,P) om 8°E[V(p)]
RS S SO I = 5555 *9 >0 (30)
8P OP P <P i 8P oP
J i i ] 3 1

This implies that \I/i(PJ) is strictly increasing for Pje (Pm,ﬁj].
Furthermore \I!1 cannot jump down out of P into fPi\fPJ_ where firm j is priced
out the market since for any PJ_ firm 1’s maximun monopoly profits for the
favourable demand is strictly larger than any profit level that firm i may
attain if firm j produces a positive amount. Therefore \I/i(PJ) is strictly
increasing for PJ_>Pm, till it hits the boundary of ij where firm j goes out
of bussiness, this is at Pj=ﬁj. Hence \I/i is strictly increasing for
Pje[O,Pm)u(Pm,ﬁj]. Similarly, for firm j we can find an analogous 131. '\I/1 and
\;[/2 are strictly increasing on [O,Pm)u(Pm,ﬁz] and on [O,Pm)u(Pm,ﬁll

respectively. Note, however, by the proof of Proposition 4, that each \I/i, has

a jump down at PT. But since, firms’ best responses are symmetric and both
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jump down at P, the two jumps cancells out so that the composite best

response ¥ = ¥ o ¥ is continuous and increasing in [O,P ]x[O,P_l.
1 2 1 2 B
We can now prove

Proposition 6. Suppose that firm i, i=1,2 can make positive profits even if

its rival charges a price equal to =zero. Then, the equilibrium set is

non-empty.

Proof. The proof of this Proposition is based on one application of Tarski
existence theorem (see either the existence Theorem 4.2 in Vives (1990) or
Theorem 4 in Milgron and Roberts (1990)), who showed that if ¥ is continous
and increasing in the compact sets where it is defined, then the equilibrium

set is non-empty. By lemma 4, the results follows. B

Note that all equilibria in pure strategies will lie in any of the
following regions: either in [O,Pm)x(Pm,ﬁZ]C[O,IS’I]X[O,}NDZ], that implies
* ¥ £33 . m ~ m ~ ~ . . L2 * %
P2 >P1, or in (P ,PI]X[O,P )C[O’Pl]X[O’PZ]’ that implies P‘1 >P2 . In any of
these regions \I/1 and \I’z are strictly increasing and no equilibrium may exists
outside of them. Let E1 and EI2 be the set of equilibria. Given our
assumptions E < IntP, that is all equilibria involve positive prices and
production, and ECE1UE2' Also, notice that the set E1 (resp. Ez) is strictly

#* # * #

ordered., Let P and g be two equilibria that belongs to El, i.e. P2>P1 and
sq ( E, ie P<P, q<q), which t strictly ordered: P >q
q,>q, (resp. E, ie P<P, q,<q,), which are not s rictly ordered: 29,

* *
and stqz. Then, since \1/2 is strictly increasing in P1E [0,P™) (resp.
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~ ¥ #*
Ple(Pm,PI]), then min \I/Z(Pj)>max \Ilz(ql) wich is a contradiction since PZZ min
v (P1)> v(q)=q
gt g7 mAX BN = Gy

Finally, notice that given the continuity of firms’payoff functions and
compactness of their strategy spaces established above, by the existence
Theorem in Glicksberg (1952), a Nash equilibrium always exists in mixed

strategies.
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6.- CONCLUSIONS

In this paper we have tried to clarify the learning mechanisms wich

operate behind the price-dispersion phenomenon.

We have considered a symmetric duopoly game with product
differentiation where firms have imperfect information about demands. In
particular, both the slope and the product substitution parameters of the two
demand are unknown to firms and in addition there are random shocks in both
markets. Firms learn about these parameter by observing market sales in the

two markets.

We have modelled our duopoly market as a game of imperfect information
and have characterized the first period equilibrium solutions. Our main
concern has been to show under which conditions the information about the
demand unknown parameters is acquired more efficiently if firms experiment by
setting different prices. Our results show that when firms experiment in all
markets at the same time and they have the same ability to make ‘rnarket
signals more informative then, provided that products are substitutes, they
will price-disperse as an attempt to increase the informative content of
these signals. Hence a sampling effect may arise as the global outcome of

market learning behaviour.

Some few remarks should be made. First, we have restrict our analysis

to the case where the experimenting variables, prices, were publicly
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observable, and where market signals were also public. In this way we have
isolated the learning behavior from signal-jamming considerations (see MSU

1993,b).

Second, we have left aside the case of asymmetric expected demands,
i.e. independent (and not perfectly correlated) parameters, because the
analysis becomes very cumbersome is this situation. This is so because there
are now additional factors which also play a key role in firms’ learning
actions. In particular, both the strategic relation of firms with respect to
information and the possible correlation of demand random shocks, that
translates to correlation between market signals, will influence the outcome
of the market experimental behavior. The first one ‘is due to the fact that
now there are two posterior beliefs (which depend on firms first period
prices) and each firm second period value function will depend on both, its
own an its rival’s posterior. Firms experiment to gather information but at
the same time -since market signals are publicly observed- they may also give
information to the rival. Hence each firm has to consider whether it wants
the rival to be more informed and if a more informed rival is a nicer
competitor. In other words, if firms are strategic substitutes or complements
in information (see Bulow, Geanakoplos and Klemperer, 1985, and Vives, 1‘988),
that will determine the relationship between each firm second period value
function and its vrival’s posterior. Under price competition firms are
strategic complements in information (See AU, 1993), so that they will be
willing to give information to the rival. But, in adittion to the above
effect, firms also have to consider the effect of a higher informative

content of one market signal on the informativeness of the other one, i.e.

49



the correlation between market signals. This depends on the corfelation
between the demand random shocks. For instance, a positive covariance of €
and €, means that to make one market signal more informative also makes the
other one more informative, so that if firms are strategic complements
(strategic substitutes) in information it will encourage (discourage) the
production of information, meanwhile if cov(sl,ez) is negative it will
discourage (encourage)} it. Since both firms experiment in each market, the
above mentioned effects are interrelated so that to look for the conditions
that guarantee the price-dispersion outcome as the result of market learning
behavior, becomes a very complicated issue and although same local conditions

could be found it remains an open question.

Third, our analysis has relied on the value of information being
positive. Deriving conditions under which this is the case turns out to be
difficult and lies beyond the scope of this paper (see AEJ, 1993 for a

discussion on this issue).

Finally, the moral of the paper is that the outcome of market
experimentation in a multifirm setting is highly sensitive to the kind of
uncertainty that firms face which, in turn, affects the specific markets
signals that they want to make more informative and their relationship. This
will determine whether firms will experiment in the same markets and if so
whether they have the same ability to make them more informative. The
interrelation of all these factors together with the nature of market

competition will drive the outcome of market experimentation.
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APPENDIX

< —
Proof of Lemma 1. We have to prove here that —g—g— > 0 as eligi where
i

E= Q - W(P,P ,6) = Q - (;i, §1= Q1 - '(Zx'
Suppose that Ei>gi i=1,2 (<), then the MLRP in variable € i=1,2 implies

that:

7 — g 7 —~
fi(€1’82) < fl(El’ez)

(>)

/
< filee)

) (1)

f(e ,e )

f(81’82) 10(31’82) 1’22

' (v < P 7
or f1(81’€z)f(—8—1’52) >) f(81’82)1”1(-51‘1’32)

on the other hand, by the definition of p,

V(o o PR ’ 2 2
[fi(el,sz)f(gl,gz) - f‘(el,ez)fi(gl,gz)lpo(l—po)

ap <
= 0 (2)
6QI D2 (>)
— 20— = 2
whenever 81>§1 (<), where D= pof(el,ez) + (l—po) f(gl,gz). -

Proof of lemma 2. From the definition of p and recalling that

81=Qi_"yi(Pl ’Pz’e)’

p (1-p)
6p 0 0 ~7 ' (o o ’ 7 - o
aP. 2 { ( a(1,P )fi(sl,ez)f(gl,gz) ¥ z1,Pfi(—e—1’§2)f(€1’82) *
i D 1 i
('%,pi)fj(81’Cz)f(§1’52) + gJ,Plfj(gl,gz)f(cl,ez)} (3)
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that may be expressed as

2 2
ap _ po(l_po)
8P B 2

- -y If! (e e )(e e ) - f(e 8 )f(e € )]

i ,P1 i

—(Wi,Pi—zi ’Pl)f_l(gl,_e_z)f(el,ez)—(arml)[fj(el,ez)f(gl,_e_z)—fj(gl,gz)f(el,ez)]

T e 6, E)

j’Pl '—j,P j ~1"—2 1

that by (2) and the definition of p gives the first expression in lemma 2.
Note that the second expression is obtained in the same way by manipulating

(3) in the right way. B

Derivation of equation (10).

(9) in the text is

oW

[ ' dp a
P - JJVi(p) _6‘13_1 h(Ql’Qz)dQ1dQ2 * JJVi(p) 8P h(Q1’Qz)dQlsz (4)
Note that
0 n,0) = 2 pkE,E) + (-p)le,e)] = Pl (,E)-F ) +
EJPi 1’ <2 6P1 P EPE, Po -1’2 Poltt i Y81 €, ar1,131

1 (o~ o ! _ 2104 ! ’ !
f' (e ,e )(—7j pi)} + (1-p )7If" (e ,e ) Zi’Pi) + fj(gl,gz)( (. 1)]

then, the second term of the right hand side of (4) is

JJVi(p){pslf;(El,EZ)(—§;’Pi) SR HCHCR CAN | IV CRERC N
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Integration by parts of (5) and rearranging of terms gives:

vz, e = 8p] 20— =
Vi(p) ¥ + 7 —————.- pof(sl,ez)dQlsz +

Vi) 7! OB vy 9P l-p (e, e )0 dQ, (6)

6Wl ap — ap — ap
) VI(P)[ P, " Tie a0 e aQ]P fle,8,0dQ,dQ, +

/ ap ’ 6p ’
”(Vi(p)[ 3P A Tou ZJ’P 3Q](1 Po ) f(f? € )dQ dQ, (7

and by lemma 2, and by the definition of p

oW pli-p )% _
~ = — J[V;(p) ———[(7'_ -y Nie,e )+ (¥ -7 )f (e,€ )]

D i, —i,P i —1'—2 3P, =3,P
i i i 1

! ’ 2 _
@)= )0 ) o )] 1-p’tte e a0 d0, =

—1,P, i —1"—2 JsP, =3P )
1 1 1

- ”vgp)pzu-po)z[@‘;,},_— 7 (e e 1+ o )f’(gl,gz):l dQ dq, -
..._J’Pi

”v (P1-p°e7 |, PREARCRCAT R &p,)] 40,00, (8)
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and rearranging (8) is

oW
b ~ ’ ’ 200 2., Ry 20— —
W{ = - (Wi’Pi"“ zi,Pl)JJVl(p) [p (1 pO) fl(gl’EZ) + (1 P) pOfl(el’SZ)] dQldQZ
! ’ ’ 2 _ 20, _ 2 2,,¢= =
_ (a'j,Pl-— ZJ’Pi)JJVi(p)[p (1 po) fj(_c_l,gz) + (1-p) pofj(el,cz)]dQlsz (9)

Next, note the following facts:

(1-p)%= (1-p) - pl1-p) (10)
pof(el,ez) pof(el’ez)
p= — > = 5 , so that
p f(el,sz) + (l—po) f(§1’§z) :
z PR —
pD = pof(el,ez) (11)

and then derivating with respect to Q,
1

ap 2p0 g— — Y L 2n = =
ag D+ plp f' (e e ) + (1-p )T (e ,e )] = p f'(e e ), or

i

1

ap 2T Ty L IRRY Y
TQ—i D=1 p)pofl(sl,ez) p(l po) fl(gl,gz) (12)

for i=1,2, then (9) is by (10) and (12)

—?Yv—i=+(§ - )”V’()D—a-’—’—deQ
i,P, ipp aQ. i 2

1
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7 ’ 200 &
- 7i,P1)”Vl(p)(l—p)pofl(el,ez)dQlsz
1 ’ ’ ap
+ WJ,P_ Z_’Pl)”Vi(p)pD —aQJ dQldQ2
~ 7 ’ - 2002 X
S C A )”Vl(p)(l p)pofj(el,ez)dQlsz (13)

P )P
CBR TR

Next, integration by parts of the second and fourth terms of the right hand

side of (13), for i=1,2

B ERVZ o2 (m = _ wi -y 0P (1 _ rey 8P ] 20— =
JJVi(p)(l p)pofi(el,sz)dQlsz—JJ[Vi(p) aQi(1 p) Vi(p) 6Qi]pof(e1,82)le1sz

(14)
and inserting (14) in (13), and cancelling terms by (11),
6Wi — ap — ap 20— —
_._api = Vi(P)[(Wi’Pi— zi’pi)——-an + (vj’Pl— Zj’Pi)—__an:I (1-plp f(e ,€ )dQ dQ,
(15)
(15) is equation (10) in the text. -
Derivation of equation (23) in the text.
Note first that since p(fx,‘y,PA,PB) =
2 (5A+DB) (EA EB)
pof(fx - 2 ’ (y - 2 )
—— — (16)
2 (D,+Dy) (D,-Dy) (D,+D,) (D,-Dy)
pof(fx - 5 Y - 5 )+(1—p0) f(X - — 5 Y ———2————)
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then,

op  _ = ap ap =y, dp ap
aP __DA,P[BZX * 6‘9]—DB,P[6OC B 6‘9}
A A A
p(l—po)2 _ p(l—po)2 _
B D (DA,P ~9A,P )[£1+£2] h D (DB,P —EB,P )[£1—£2] D
A A A A
and/or
bp  _ _p p . 0P | _p- gp  9p
ap —A,P 8X 8Y —B,P ERA 8Y
A A
(l—p)p(z) _ o (l—p)pz _ L
B D (DA,P _P—A,P )[f1+f2] - D (DB,P _EB,P )[f1_fz] (18)
and
BW(PA,PB) P
3P = 3P V(p('x,‘y,PA,PB)h(fX,'y)dXd‘y (19)
A A
) (D,+D,) (D,-D,) ) (D,+D) (D,-D.)
where h(%,'y)=p0f(fx— — Y— — )+ (l-po) f(X— —s Y —s )
then, (19) is:
aW(P ,P)
A B (p)22 hx, widxdy +| | Vie) -2 h(x,¥)dxay (20)
8P oP ’ 8P !
A A A
Note that
ah(x,‘y)_ Y Yy 2 / ’ ’ _ 2
—8?;_— B DA,PA[f1+fz]po B EA,1>A[£1+£2](1 po)

N’ r_ 2 _ ’ t_p1 _ 2
h DB,PA[fl fz]po 913,PA[£1 £z](1 po)
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so that integration by parts of the second term of (20), yields,

: _vrols: (2p 4 9P ypo2 B (PP _ 0P yF,?
JJV(p) BPA h(X,Y)dxdY = JJV (p){DA’PA( T 3y )fp0+ DB,PA( 5T —g- )fpo
7 6p Bp _ 2 ; 8p ap B 2
+2A>PA(__6{K + 3y )2(1 PO) + I—)-B,PA(_G.'Y_ — '———-a,y )i(l pO) }d&fd‘y (21)

Then, by substitution of (21) in (20), by (17)-(18), by cancellation of

terms, and by the definition of p, (20) is

BW(PA,PB)

opP

= - Hv (p)D D! ][pz[gfl +£210-p )" + (1-p)(T +?'2]pf)] dxdy
A YA T A

7 n’ ’ 2ty ’ 2 2t5r T 2
- ”V (p)[DB,PA—_D_B’PA][p [£/—£11-p )" + (1-p) [fl—fz]po] dxdy

(22)

let A = [D’ -D’ 10, and B = [D’ _-D’ _I>0.
AP —AP B, —B,P
A A A A

Then, by (10) in the Appendix (22) is,

6W(PA,PB) 2 =, =12
AT J v’ (p)(—A)p[[£'1+£'2]p(l-po) - 1T +f"2]po(l—p)] ddy

~

’ I 2
+| [V (p)(=A)1-p)IT* +T ! 1p_dXdY

~

+| [V (p)(-Blp l:[ﬁ'l—f_’zlp(l—po)2 - [f’l—?;]pz(l—p)] dxdy

~r

+| |V (p)-BY1-p)IT" —F Ip dxdy (23)
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By (16)

pD = Fp("; (24)

and the derivation with respect to X and Y yields respectively,

ép T 20y PTENRY
—ax D = [ipplmp) = pfUop)
ap _Fs 200y Y-
By D= fzpo(1 P) pf—z(1 Py

so that (24) is

aW(P P ) 5 8p dp  p

+JJV' (p)(—A)(l-p)[i;’1 +F2 ]Pid%d‘y + ”V’ (p)(—B)(l—p)[?’l—F’z]psdird%/ (25)

and a new integration by parts of the two last terms of the right hand side

of (25) and cancellation of terms, yields

EiW(F‘A ,PB)—

" dp 3P | (1_Fn2 p dp 0P | (1_\Fn2
———————6PA = JV (p)A[_BT— + —W—](l p)fpodedy+'|"|‘V (p)B[ 3T —a,y——](l p)fpodfxd‘y

=J' V”(p)[(A + B) g; f (A - B)—gg—](l-p)?pzdfxdy

This expression is (23) in the text.

|
Proof of Proposition 5. It suffices to prove that
E [Glp(S_** **|P",P. )] > E, [G(p(S m |P™)] (26)
S****pppi1’2 Smmell
P P, 1 2 P 1

for any strictly convex function G(p).
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Consider ES [G(p(Sxylx,y))]. To show (26), it suffices to show that

X,y

price dispersion i.e. x#y makes the signal S more informative, i.e. that

Xy

(27) in the text holds. This is equivalent to prove that S attains a
X,y

minimum at x=y.

Observe that, by the definitions of SXy and p, the function
E [G(p(S |x,y))] can be expressed as,
S Xy
X,y
[G(p(slx,y))[pog(sx,y,x,y) + (l-po)g(§x,y,x,y)lds =
1 2 1 2, 1,2
JJG(p(s ,s71x,y))h(s’,s")ds ds =J[G(P(Q1,Q2|X,y))h(Q1»Q2)dQ1dQ2 (27)

1l

12, _ 2 .= - Y
where h(s,s") = h(Q1’Q2) P, f(el,ez) + (1 po) f(gl,e_:z), and

"
Il

1 _ _
s - Wl(x,y,e) Q1 - WI(X,Y,G)

®
Il

2
s” - 7,(%y,8) = Q, - 7,(xy,0)

2

and £ and s_:z are defined similarly.

First note that (27) in the text holds if we replace V by G. Secondly,

<
by the strict convexity of G(p), and since by lemma 1, % > 0 depending
i

>
on x <y,

9
ox

HG(p(QI,QzIx,y))h(Ql,QZ)dQlsz =

’
—i,x aQ Jrox  —J,x 6Q

_ 8 — 8 P
”G”(p)[(a’;,x_ v 08t 2 )—B—J](I_P)pif(€1’€z)]dQ11dQ21§ 0

<
depending on x > y. (28)
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Hence by (27) and (28), ES [G(p(Sxybi,y))], attains a minimum at

X,y

x=y, so that it is increasing in price dispersion, i.e. when x#y.

. . L3 m # ¥k m ¥ m
Now, by proposition 4, either Pl > P1 and P2 <P1, or P1 <P1 and

P rsp™ that P #P.'. By the ab t E. [Glp(S, [P P )]
, P S0 a , *P, - By the above argumen S PiS, | oF,
P P 12
12
increases in price dispersion and hence (26) is satisfied. B
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