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EXPECTATIONS, DRIFT AND VOLATILITY
IN EVOLUTIONARY GAMES

Fernando Vega-Redondo

ABSTRACT

This paper introduces expectations into the framework of evolutionary
games. On the one hand, (myopic) players are assumed to behave optimally
according to the expectations they hold at each point of the process. On the
other hand, expectations themselves are continuously updated according to the
players’ latest experience. The possibility of random drift on expectations
(i.e., arbitrary variation on them not opposed by selection forces) produces
sharp volatility across equilibria. Specifically, all Nash equilibria (but
only these) have positive weight in the limit stationary distribution,

independently of risk -or payoff-dominance considerations.
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1.- INTRODUCTION

Recent evolutionary models have provided substantial insight into the
important issue of equilibrium selection in games. (See, for example, Foster &
Young (1990), Canning (1992), Kandori, Mailath & Rob (1993), or Young (1993).)
Most of this evolutionary literature has focused on a theoretical framework

which incorporates the following two components:

(a) Selection (or sometime called "Darwinian") dynamics, whereby players
adjust their strategies in the direction of what is best response 1o the
current situation,

(b) Experimentation (or "mutation") dynamics, by which players

occasionally explore strategies not prescribed by (a).

Formally, the combination of the above two dynamics induces an ergodic
Markov chain, on which the following question is asked: What is the long-run
behavior of the system when experimentation becomes a relatively rare
phenomenon ? In some interesting contexts (for example, a population which is
randomly matched to play a 2x2 coordination game) this literature is able to
provide a clearcut answer: In the long run, it is the risk-dominant
equilibrium which will be played by the population "most of the time" (cf.
Kandori, Mailath & Rob (1993)).

Recently, Robson (1993) and Vega-Redondo (1993) have pointed out that the
former conclusion must be modified if, instead of (a) above, an alternative
selection dynamics based on imitation is contemplated. Specifically, they
pfopose a formulation by which players simply shift (perhaps only gradually)
towards those strategies that currently enjoy a higher average payoff in the
population. In this case, the Pareto efficient equilibrium (possibly risk-
dominated) ends up being played most of the time in the long run, as the
experimentation probability becomes small. Thus, somewhat paradoxically,
coordination on Pareto eflficient outcomes turns out to be more easily achieved
by agents who, in a certain sense, are more "boundedly rational" than in the
Kandori et al (1993) context (i.e., agents who can just "imitate" rather than

"best-respond” (o the current situation).



This paper deviates from (a) above in a direction somewhat opposite to
that of Robson (1993) and Vega-Redondo (1993). It also focuses on a context
where agents are randomly matched every period to play a simple coordination
game. Players, however, are assumed substantially more sophisticated than in
Kandori et al (1993). Specifically, they are assumed able to hold expectations
on the future state of the system which, unlike what is implicitly considered
by (a), need not be "static'. That is, in the present context, agents’
expectations may allow for the possibility that the strategy profile

prevailing next period might be different from the current one.

Formally, each player’s "expectations" is identified with a mapping that,
to every possible strategy configuration currently observed, associales some
probability measure over the next strategies adopted by the remaining players.
At any point in the process, each player is taken to react optimally to her
current expectations. On the other hand, she is also assumed to update her
expectations in order to make them consistent with the latest (observed)
realization of the process (see Section 2 for details). The combination of
optimal responses and expectation updating just described defines the
"Darwinian" part of the process. As standard, this dynamics is then
complemented by a "mutation" component which, for each agent, induces

independent and arbitrary transitions.

In this context, the following customary question is posed: What is the
long-run behavior of the system as the mutation probability becomes small ?
Now, the answer turns out to be substantially different from any of those
described  before. Specifically, it will be shown that, in the present
expectation-based context, all Nash equilibria (but only these) are played
some significant fraction of time in the long run. Thus, in contrast with the
received evolutionary literature, we may speak of "equilibrium volatility"
rather than "equilibrium selection", as a description of the long-run dynamics

of the process.

It may be worthwhile at this point to advance, only informally, which is
the basic theoretical idea underlying such conclusion of volatility. In a
nutshell, graduval accumulation of drift, as applied to the expectation side of
the process, can be singled out to be the key factor inducing such state of

affairs.



To explain matters simply, consider a stationary realization of the
process in which a given (equilibrium) strategy of the coordination game, say
A, is both continuously played and continuously expected by all players. In
the absence of any experimentation with alternative strategies, this situation
will remain stationary. But then, most of the components of the expectations
prevailing along the process will be essentially “"redundant” (i.e., will refer
to the merely hypothetical and unobserved contingencies where some player
adopts a strategy different from A). This leaves open the possibility that
"mutation” on these redundant components may accumulate without experimenting
any adverse selection pressure. When enough such mutations have taken place in
a suitable direction, transitions to other equilibrium strategy profiles (say,
to one where all players adopt a new strategy B) can be simply triggered by a
small strategy deviation from the original situation. The only requirement for
this to wunfold is that prevailing expectations happen to ‘"interpret" such

small deviation as a "signal" for the contemplated transition.

The considerations just outlined are quite reminiscent of the role
attributed by some biologists (e.g. Kimura & Otha (1971)) to the phenomenon
of random drift in processes of natural selection. Although there is neither
a full understanding nor agreement among biologisis about the implications of
genetic drift, it is often considered to be one of the main forces inducing
the wide variability observed in biological contexts. The reasons proposed in
this respect (see, for example, Futuyama (1979, pp. 272-78) bear some
resemblance to those outlined above: random drift may allow for the evolution
of certain characteristics which, under the ‘"right" future circumstances,

could prove highly successful and become predominant.

In a quite different vein, the model proposed here may also be seen as a
very stylized formalization of a traditional black box in economics: the so-
called "animal spirits" (see Weil (1989)). Here, those spirits, animal or
otherwise, are conceived as the outcome of a random process which proceeds in
the background, thus remaining unnoticed by "external observers'. When this
process is already "mature" (i.e., the right number and type of mutations have
gradually accumulated), its effects may become abruptly apparent in response
to relatively minor disturbances. Of course, this may only represent a very

incomplete account of such a complex phenomenon. A more satisfactory approach



should also include, inter alia, a richer specification of the sources of
"mutation” at both the strategy and expectation levels,

The remainder of the paper is organized as follows. Next, Section 2
presents the model. In Section 3, the formal analysis is carried out. Finally,
Section 4 concludes with a discussion of the results, as well as some
generalizations. For the sake of smooth presentation, proofs are contained in
the Appendix.

2.- THE MODEL

Consider a finite population of players, indexed by i = 1,2,..,N, with N
even, Every period t = 1,2,..., they are assumed randomly matched in pairs to

play a bilateral symmetric game, with strategy set S = [A,B} and payoff
function 7: SxS —— R summarized by the following table:("
A B
A la,ald.c ,
B [c.d|bb Reure 1

We shall focus on the case of a coordination game with two pure-sirategy,
symmetric, and strict Nash equilibria; (A,A) and (B,B). The other two
possibilities (where the game has either a weakly dominant strategy or a
unique mixed-strategy equilibrium) yield a much less interesting  and
relatively trivial analysis. Thus, in terms of the payoffs specified in Figure
1, we shall consider the case where the following inequalities hold: a > d,
b > c. Moreover, in order to abstract from complications that are peripheral
to our main concerns, we shall also rule out the degenerate case where both
equilibria have exactly the same "basins of attraction". That is, we shall
assume that a+d # c+b,

¢ )Here, TU( ¥ stands for the payoff for the row player,



Within each period, we may either assume that players are matched "many
times", or that there is just one round of play. Both scenarios are consistent
with our formulation. The state of the system at any given time t is
identified with the 2N-tuple (1) = (si(t),ei(t))l?=l which  specifies the
strategy s,(t) and expectations e(t) adopted by each player i = 1,2,..,,N at
t. The set of all such possible states will be denoted by €.

Only pure strategies will be allowed. Thus, s(t) € S = {A,B} for each
player i=1,2,..,N. On the other hand, the expectations e(t) of each player i

(in fact, a "pattern” of expectations) are assumed mappings of the form:
e(t): SN — AGS™Y (1)

which, for any current strategy profile s(t) = (s,(t),...,sN(l)) e SV assigns
a corresponding probability measure ei(t)(s(t)) € A(SN'I) over the future
strategy profile s (t+1) e sh! played by the other players j = i at t+1,
This probability measure ei(t)(s(t)) = p(1) will be labelled the beliefs of
player i at t.

As advanced, the strategy choice s(t+1) of each player i at t+1 will be
required to be a best response to the beliefs p,(t) which this player holds at
t about s (t+1). Define:

il

. 1 .
Bsip) ) {p) [Zm n(s;,5)] } (2)

S N-1 j#i
S; €S #

as the expected payoff for player i of playing s, if she is randomly matched
against the other N-1 players and she attributes ex-ante probability pi(s.)
that her opponents play each strategy profile s; = (8.

We shall require that, for all t € N and every i = 1,2,...,N,
s(t+1) e BR(p)) = { st e S: B(st.pi()) = Bs;pi(»), ¥s; e ST 3)

The above expression formalizes the first part of the selection (or Darwinian)
dynamics. When the set BR(pi(L)) is not a singleton (i.e., both strategies are

best responses) the player will be assumed to use some arbitrary rule to



select her strategy. For simplicity, we shall suppose that such rule is

"anonymous" (i.e., symmetric on players’ indices) and deterministic.®

The second part of the selection dynamics involves the updating of
expectations, Given the state o(t) = (si(l),ei(t))l, prevailing at some given

t and the strategy profile s(t+1) = (s(+1))Y., played at t+1, the following
updating rule is postulated for the expectations e(t+1) of each player i =
1,2,...N:

e(t+1)(s) = ¢(1)(s), for s # s(t)

S[s(t+1)], for s = s(t),

(4)

where 8[s.] e A(S™') stands for the beliefs concentrated on s, i.e.,
] 1

S[s;I(s) = 1.

Thus, we simply assume that the players "match" the latest experience
observed. Specifically, for any strategy profile s different from the previous
s(t), e(t+1) induces the same beliefs as in e(1). (The interpretation here is
that the latest observation "s(t+1) has followed s(t)" is not relevant for
beliefs associated to a configuration s#s(1).) For s = s(1), on the other
hand, e(t+1) simply postulates that the latest observation will be fully
matched. Admittedly, this formulation is somewhat extreme in that expectation
revision is quite drastic. It has the advantage, however, of being especially
tractable. It seems quite plausible that more flexible rules (such as, for
example, ‘"increase the probability attributed to the observed transition")

would still yield similar conclusions under an appropriate reformulation.

The combination of expressions (3) and (4) define the selection dynamics.

Its transitions can be described through a function:
6

D: Q-— Q. (5)
As explained, such selection dynamics will be complemented by "mutation”,
which is formulated as follows. Every t, each player i=1,2,..,N has some

positive and independent probability €>0 of making a transition for her

2) Allowing for general stochastic rules which may depend on players’ indices
simply imakes the theoretical framework more cumbersoime, without affecting the
nature of our conclusions.

10




corresponding part of the state (si(t+1),ei(t+1)) which differs from that
prescribed by D(:).® In that event, it will be assumed that she chooses
every other (s},e;) with positive probability, bounded above zero for all t.
Let
& — AQ) (6)

formalize the (stochastic) transition due to mutation just described. The full
description of the process ("selection plus mutation”) may be compactly
described by the function

F:Q — AQ) )

defined by F(®) = & (D(®)) € AQ) for all ® e Q. Since the set Q is finite,
F(+) defines a Markov chain. Its transition matrix will be denoted by P(g), in
order to express explicitly its dependence on €, a key parameter of our

ensuing analysis.
3.- ANALYSIS

Because of players’” mutation, the Markov chain induced by F(-) is
obviously aperiodic with a single recurrent class. Thus, by standard results
(c.f. Karlin & Taylor (1975, Theorem 1.3, p. 35)), it has a unique stationary
distribution. Let us denote this distribution by [(g) € A(Q).

Conceiving of mutation as a quite infrequent phenomenon, it is natural to
think of € as relatively small, Specifically, we shall focus on the limit case
where € converges to zero, as a a especially convenient benchmark of analysis.
The long-run behavior of the system under these circumstances is summarized by
the limit stationary distribution pW* e A(L2) defined by:

WE(w) = lim  pe)(w), vow e Q. (8)

e — 0
@) It is inessential that all players have the same probability of
experimentation, They could well have different such probabilities, as long as
they all converge 1o Zero al the same rate in the limit exercise contemplated

below for the limit stationary distribution,

Il



We can also think of U* as embodying a certain robustness criterion on
what may be conceived as the main component of the evolutionary process: the
selection dynamics. More specifically, the limit stationary distribution can
be regarded as singling out those long-run predictions of the selection
dynamics which are robust to the introduction of some arbitrarily small
perturbation  (i.e., mutation) by which players occasionally behave
"erratically". (See Kandori et al (1993) for an elaboration on this

motivation,)

Given p*, let A* e A(SN) denote the (marginal) probability measure on
strategy profiles induced by u*, ie.,

M =] o), )
W e Q(s)

where €(s)
state the main result of the paper,

(o = (si,ei)r;‘:,: ($)5.,8y) = s). We are now in a position to

Theorem: There exists some N such that iff N = N, then supp(A*) =
{(AA,...A),(B,B,....B) .

By the previous theorem, the long-run behavior of the sysiem is (almost)
fully concentrated (if € is small) on the two "monomorphic" strategy profiles.
Each of these strategy profiles will be observed a significant fraction of
time (bounded above zero, as € converges (o zero) in the long run. At each of
them, the whole population plays either one or the other equilibrium of the

game in every one of their bilateral encounters.

The theorem, however, does not provide us information on what are the
particular expectations and dynamic paths (possibly cyclic) which underlie its
conclusion. To gain further insight into this point, define the following

set;

Q={w=(s,6)., € Q301 ¢ [AB] s, vi=1,2,..N,
(10)
s; = h, e(h,...h) = 8[(h",...h")] ]



The set Q < Q consists of all those states which satisfy:

(a) each player adopts the same strategy s, = h € (A,B};

(b) each player has the same prediction that a certain strategy
h’ e {AB} (possibly different from the one currently played h) will be
adopted by all players next period.

Thus, the set Q consists of all those states which, in the absence of
mutation, have the population always play and rightly predict one of the two
equilibria, possibly in alternation. These states, moreover, allow for any
expectations off the '"realized path". (It is precisely such degree of freedom
off the realized path which permits the drift on expectations, as explained
below.) The next result, establishes that all states in the set Q will be

visited a significant fraction of time in the long run,

Proposition: There exists some N such that if N =z N, then supp(u*) = Q.

Proof: See the Appendix.

The preceding Proposition indicates that the equilibrium volatility
established across monomorphic strategy profiles will materialize in two
different ways. On the one hand, there will be long stretches of time (for €
small) in which one of the two monomorphic profiles will be continuously
adopted by the population. On the other hand, 2-period cycles will also occur
a significant fraction of the time, with the population alternating between

the two monomorphic strategy profiles.

4.- DISCUSSION

A useful way of understanding our results is by relying on the notion of
expectation components (see Samuelson (1993) for a related, but somewhat
different, concept). An expectation component is defined as a subset X ¢ Q

which is maximal with respect to the following two properties:;

13



(a) X = U X, where each X, < Q is a limit set of the selection

k=1

dynamics,®) and every X, induces the same set of long-run strategy

profiles, That is, there is some Y ¢ SN such that, for all k = 1,2,...1,

(s e SM: 30 = (5,0t € X st s = (sp,0m8,)) = Y. (11)

(b) For every kk’ = 12,..r, k#k’, there exist a sequence of distinct
indices  (k.k,,....k;}  with  k,=k and kg=k’ such that, for every k;,
j=1,2,...,s-1, there are some w; € X, oy, € X, which differ in (exactly)
one single mutation (i.e., there is only one player whose state component
differs between ; and w;,,.)

It is not difficult to see (cf. the Appendix for details) that the

process has only the following three expectation components:

Ch = o= (o)l e Q2 vi=12,.N, 5 = A, e(A,.A) = [(A,..A)] )

{o = (sy¢))., € Q: vi=12,.N, s, = B, e(B,...B) = 8[(B,....B)] }

@
w
1

= {0 = (s,e)V., € Q vi=12,.N, i’ e (A,B], h=h’,

3
o
m

s; = h, e(h,...h) = S[(W’,..h")] }.

Note that the three above components jointly define a partition of the
set Q. Within each of them, transitions across any two states simply require
the operation of the selection dynamics and sufficient accumulation of single
mutations, the same number of them in each direction. Thus, if any state in a
given component belongs to the support of the limit stationary distribution,

so must be the case for any other state of the component.

“) Given a cerain  Markov chain, a limit set is defined as a set of states Z
which  satisfy: (i) if the process liess in  Z al  some point in  time, it  remains
in it forever after (with probability one); (ii) every slate in zZ is reached
with positive probabitity from any other stale in Z after a pre-specified
finite number of transitions, See the Appendix for a formal definition of  this

standard concept,

14



As suggested in our previous discussion, these transitions within
components capture the intuitive idea of "drift". All states of the same
component have identical expectations along the (common) path of strategy
profiles that they induce, but differ away from this path. Since contingencies
off the realized path are irrelevant as long as players’ do not deviate from
this path, "mutation" on expectations associaled 1o those off-the-path
contingencies can arise and accumulate without experimenting any selection

forces (for or against).

At some point, however, some mutation on the realized path must arise if
the process is to ever abandon a given component. The key step in the proof of
our results is to show that, for any two components, the same minimum number
of mutations is needed on the realized path in order to make the transition
feasible 1in either direction. Such ‘“easiest" ftransitions may only be

implementable, however, via some pair of appropriately selected states in each

respective component. Thus, in this perspective, drift performs a crucial task
in making any transition away from a given component possible: it directs the
system towards some stale within this component where the contemplated

fransition is easiest.

I conclude with some brief comments on possible generalizations of the
model as well as possible avenues for further research. It is easy to check
that the essential gist of our analysis, i.e., the volatility of equilibrium
behavior under expectation drift, remains valid for any context in which
players are randomly matched to play a general (symmetric) coordination game,
In the long run, all equilibria will be observed a significant fraction of the
time, with non-equilibrium behavior being a ephemeral state of affairs which

only occurs in the processes of transition across equilibrium components.

For games which are not of coordination, the situation is bound to be
substantially more complex. In general, we must expect that non-equilibrium
behavior will be observed in the long run, even for infinitesimal mutation
probability. This is also the state of affairs prevailing in received
evolutionary models, where only restrictive conditions on the game being
played allows one to ensure the long-run convergence to equilibrium behavior.
(See Kandori & Rob (1992) or Young (1993).) In any case, the volatility across

"components” (not necessarily equilibrium components) would still seem to

15



remain essentially applicable in such general contexts, again as a consequence

of the interaction between expectations and drift.

As suggested by the previous comments, to extend the realm of application
to more general games and matching contexts should certainly be one of the
important fopics of future research in evolutionary game theory. There is,
however, another line of generalization of present evolutionary models which
is also naturally suggested by the present paper: the consideration of

alternative behavioral paradigms.

In the Introduction of the paper we referred to three such paradigms:

- imitation (Robson (1993), Vega-Redondo (1993)),
- "static" best response (Kandori, Mailath & Rob (1993), Young (1993)),
- "expectation-based" best response, defined by (3) and (4).

As discussed, the implications of each of these behavioral rules are quite
different. Consequently, the following natural question arises: What would be
the long-run outcome of an evolutionary process where, say, the three of them
were integrated into a single framework. In such an evolutionary process, it
would seem reasonable to allow for the possibility that, occasionally, each
agent should be able to switch across behavioral rules (not only strategies)
depending on their relative performance. (Of course, this performance could
include different "implementation costs" associated to the diverse complexity
of the different rules.)

Ideally, the long-run analysis of the process would provide some insight
on the relative strengths of alternative behavioral rules, thus yielding some
criterion for both behavioral and equilibrium "selection". The recent work of
Banerjee & Weibull (1992) and Stahl (1993) may be interpreted as a first step

along this direction,



APPENDIX

Proof of the Theorem:

It is easy to check that every state in € which belongs to the support of
the limit stationary distribution p* must also belong to some limit set of the
selection dynamics induced by D(-). (The argument is a direct adaptation a of
similar one used, for example, by Kandori et al (1993). It simply relies on
the upper hemi-continuity of p(e) with respect to €.) Thus, a first step in
the argument is to find the limit sets of D(-). For the sake of completeness,
a formal definition of the standard concept of limit (or absorbing) set

follows, as particularized to the Markov chain (induced by) D(:).

Definition: A set © <€ Q is a limit set of the Markov chain D(-) if:
(1) v o e O D e O,
(2)V w0 ® 3meN st D™ = .

Denote by 7 the set of limit sets of D(-). (Note that, obviously, any
two different limit sets must be disjoint.) The required information on the

limit sets of D(+) is contained in the following Lemma.

Lemma 1: There exists some N such that if N =z N, then U O = Q, where

e
Q is defined in (10).

Proof: The inclusion Q ¢ U © is obvious (i.e., every state in Q

®e f

clearly belongs to some limit set of D(-)). Therefore, only the converse
inclusion needs to be established. Specifically, it is enough to show that,
for any given limit set ® of D(:), we have ©® c Q.
First, we introduce some additional notation. Given any s e SN, denote:
o 1 B 1 : :
Yis) = {3 e St Zm n(S,s) = ZNT n(s}.s), vs} € S}, (12)

JFi jFi

17



i.e., the strategies which are best response for player i to the "residual"

strategy profile s; induced by s. Relying on the correspondences (yi)rle we
then define the following set

N
A=(sesh || ws =8l (13)

i=1

which consists of all those strategy profiles for which the union of the

induced best-response correspondences (yi(s))r?:, spans the whole strategy
space S.

We may now proceed to showing the desired inclusion. Since Q is finite,
the whole limit set considered, ©, must define a single finite cycle
(w!,w?,...,0m) which satisfies:

D(@) = 0, =1,2,..m, (9

where [+] stands for "modulo m". Let s' and ef, r=1,2,....m, denote the

strategy and expectation projections induced by each respective ®". By the

expectation updating rule (4), expectations e] must satisly that:

e(sn) = 8[s7], i=12..,r=12,.m, (15)

where & e SV is some common strategy profile for every player. Specifically,
s* simply coincides with the profile s™*!l, for the latest preceding state
o for which s"= s", (Of course, it may occur that r’ = r. Moreover, for

stationary states @, s'= s'.)

Combining (15) and (3), we may conclude that, for all r=1,2,...,m, we
must have one of the following three possibilities;®)

(1) st =(AA,..A);
(ii) s = (B,B,....B);
(iil) s e A,

G ) The third possibility does not exclude (i) or (ii).

18



However, from our genericity assumption on the game payoffs (i.e., a+d #
c+b), (iii) above can be excluded if N is large enough. For, in this case, it
is immediate to check that:(©®

seA=vs e (1), s ¢ A, (16)

which precludes that any s* along a cycle of states induced by D(+) may belong

to A. This completes the proof of the Lemma.

As noted in the text, the set Q may be partitioned into the three
expectation components C,, Cg, and C,g. To complete the proof of the Theorem,
we need to establish the following two additional lemmas with respect to these

components,

Lemma 2: For every two states W,00° belonging to any one expectation
component, C,, Cg, or Cug, WHw) > 0 & pu¥(w’) > 0.

Lemma 3: For any two states w0 such that w € C,, @ e C,
uw¥w) > 0 = pu¥(w’) > 0.

Proof of Lemma 2 (skeich): The proof of Lemma 2 relies on an argument of

Samuelson (1993, Theorem 2). He proposes the notion of "adjacent limit sets":
two limit sets are adjacent if a t(ransition across them can be implemented
with only one mutation (cf. requirement (b) in our definition of expectation

components in Section 4). He then shows that a limit set belongs to the

©) In the degenerate case where the Lasins of attraction of the two
equilibria are identical, this is not the case, For example, the reader can
verify that, in this case, a path where half  of  the players alternate between
playing strategies A and B (wice consecutively, and the other half of the

players also alternate in a complementary fashion between B and A can be
obtained as a cycle of D(*) for any (even) population size.

Such a strategy path may be supported by expectations which satisfy:
(a) the time  al which one  half of (he  population  swiiches to  strategy h,  their
expeclations are that the other N/2 players will stay wilh this same strategy
h, which is also the strategy that they were formerly adopting; (b) the
(consecutive) time when each half of the players stay with their previous
strategy h, they have the expeclalions thal the olher half will switch
stralegies. These expectations may be chosen o fulfitl the updating rule 4),

even though they are continuously being falsified.
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support of the limit stationary distribution if, and only if, all the adjacent
limit sefs also do. I shall not prove formally this conclusion, although the
intuition underlying it should be clear: the transitions across two limit sets
that are adjacent are of the order € as € — 0, in either direction. Thus,
both limit sets should have weights of comparable order in the limit
stationary distribution. By an appropriate construction of a chain of single
mutations joining any two limit sets that belong to a certain expectation

component, the same conclusion is extendable to any two such sets,

Proof of Lemma 3: We may rely on an idea similar to that of the previous

proof. It is enough to show that, for each h = A,B, there is some states
® € C,, ® € Cy, h’#h, such thal ® can be reached from @ through the operation

of D(-) and just one mutation, For concreteness, let h = A and h’ = B in the

previous statement. Consider the state ® = (Ei,éi)r?:], defined as follows, for
alli = 1,2,....N;

gi A,
e(A,...A) = S[(A,....A)], (17)

e(s) = 8[(B.....B)], Vs = (A,...,A).

]

From ®, it only takes one mutation on the strategy chosen by any player for
the selection dynamics D(:) (o perform a (ransition to the state

o = (éi,éi)rle e Cy given by:

s, = B,
&(A,...A) = B[(A,...,A)], (18)

e(s) = 8[(B,..,B)], ¥s # (A,..,A).

1l

This completes the proof of the Lemma,

From the previous three lemmas, two possibilities can arise. One is that
Cap < supp(u*). In that case, the conclusion of the Theorem follows directly.
Otherwise, if Cup ¢ supp(i*), then Cyp n supp(U*) = & and C, ¢ supp(u*) for
some h € {A,B}. But by Lemma 3, we must then have

supp(*) = C, v Cg, (19)

which again proves the desired conclusion, |

20



Proof of the Proposition:

Denote C,y5 = C, u Cy. From our previous considerations, it is enough to
show that the transitions across C,, g and C,p require the same minimum number
of mutations (together with the operation of the selection dynamics) in either
direction. In fact, this common number of mutations turns out to coincide with
those required to "escape the "basin of attraction" of the risk-dominated

equilibrium,

Let us focus on the transition from C,ypg to C,y and assume, without loss

of generality, that a+d < c+b, ie., the equilibrium (A,A) is risk-dominated

by (B,B). Consider some state ® = (5,6,)\., & Cpyp satisfying:

gi A,
e(A,..,A) = S[(A,...,A),

¢,(B,...,B) = S[(A,...,A)].

I

(20

1l

From such a state o, let 1] € N be the minimum number of mutations on players’
strategy stralegy choices which transforms the profile s = (A,...,A) into some
strategy profile s e A, as defined in (13). By our assumption on payoffs,
1 < N/2 if N is large enough.

Assume 1 individuals simultaneously mutate into strategy B from state ®
at some t, Then, the expectation updating rule (4) implies that the next time
t;, > t, at which the selection dynamics induces a strategy profile s(t) =
(A,...,A) the number of players adopting strategy B at s(t,+1) will be larger
than N/2. (Note that such a t; is bound to occur in finite time because of
Lemma 1 and the expectations €(B,....B) = S8[(A,...,A)] which are postulated
in (20).) But then, the next t, > t{, such that s(t,) = (A,...,A), we shall
have s(i,+1) = (B,...,B) and a limit set in C,g will have been reached. (Of
course, the same comment on the [initeness of t, is applicable here as before
for t,.)

The previous considerations show that only M mutations are needed to
perform the transition from some state in C,,; to a state in C, By the

definition of A, no smaller number of mutations will be sufficient, This
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completes the first part of the argument, pertaining one of the directions of
the transition: from C,yp to C,p. Applying a similar kind of reasoning, the
converse transition is seen to require exactly the same number 1 of mutations.

This completes the proof, |
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