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ON THE EVOLUTION OF COOPERATION
IN GENERAL GAMES OF COMMON INTEREST
Fernando Vega-Redondo

ABSTRACT

This paper investigates an evolutionary model of equilibrium selection in
which agents are randomly paired every period to play some general symmetric
game of common interest (i.e., a game where some strategy profile Pareto-
dominates all other configurations). Along the process, players tend to
imitate the strategy (or strategies) which currently yield the highest average
payoff. Occasionally, they also experiment with arbitrarily chosen strategies.
In the long run, if the rate of experimentation is small, the population ends
up playing the uniquely efficient strategy profile "most of the time".
Moreover, the convergence to such state of affairs is relatively fast,

independently of population size.




1.- INTRODUCTION

This paper proposes a very simple model for the evolution of cooperation
which is characterized by the following features:

(i) A finite population is randomly paired every period to play some
(bilateral, finite, and symmetric) game of common interest;(!)

(ii) Players occasionally enjoy the opportunity to revise their strategy;

(iii) When revising their strategies, players imitate that strategy (or
strategies) which induced the highest average payoff in the preceding period.

(iv) Quite "infrequently", they also experiment with arbitrary strategies
different from those prescribed by (iii).

This context differs from those recently explored in the evolutionary
literature on equilibrium selection in the following main respects (see, for
example, Kandori, Mailath, and Rob (1993) and Young (1993)):

(a) Players are randomly recombined after every round of play, the
particular payoff they receive in each period being a random variable. This
contrasts, for example, with the approach of Kandori et al (1993) where the
payoff accruing to each strategy every period is identified with its average
payoff after many encounters. (In this latter case, one relies on the Law of
Large Numbers to identify this average payoff with the ex-ante expected
payoff.)

(b) In revising their strategies, players imitate the best former
strategy rather than play myopic best response to the previous population
profile (as in Kandori et al (1993)) or to a sample of past actions (as in
Young (1993)).

As it turns out, the alternative evolutionary context proposed in this
paper has implications quite different from those obtained by most of the
previous research in this area. Specifically, the (unique) Pareto -efficient

1 As i Aumann & Sorin (1989), symmetric games of common interest are defined
to be those which have a symmetric (equilibrium) profile which Pareto
dominates all others. See below for a formal definition.




Being of common interest, the game would seem to induce a quite clearcut
prediction: the unique Pareto efficient and symmetric pair of strategies,
itself an equilibrium, "should" be played by all agents in every encounter.
This, however, presumes some degree of coordination on the part of the players
which should not be exogenously taken for granted, at least in an evolutionary
framework. Indeed, as stressed by Aumann & Sorin (1989) there might be risk-
related considerations which would make it highly unlikely that players, in
fact, coordinate on such an equilibrium. Similar considerations also underlie
many of the evolutionary models of equilibrium selection existing in the
literature, most of which single out the risk-dominant equilibrium as their

long-run prediction.®
2.2. The Evolutionary Process

Time is modelled discretely. At each period t = 1,2,..., let o,(t) denote
the strategy adopted by player i € N in t. We shall assume that only pure

strategies can be chosen, i.e., o(t) € S for each i and t.

The mechanism by which players adjust their strategies over time consists

of two parts: the imitation and the experimentation components of the process.

Imitation

Given the profile [o,(t)],ey ©of strategies chosen at t, and the
particular associated realization of the matching mechanism, there results a
corresponding profile of players’ payoffs [m(t)],en. Ex-ante, of course, this
profile is a random variable. However, once materialized, it induces a

corresponding vector of average payoffs for each of the strategies played by

2 See, for example, the papers by Kandori, Mailath, & Rob (1993) and  Young
(1993) mentioned above. Two exceptions  to this state of  affairs  may be found
in Binmore & Samuelson (1993) and Canals & Vega-Redondo (1993) for 2X2 games.

In the first paper, a Pareto efficient equilibrium may still be selected
over the risk-dominant one if higher differential payoffs within the basin of
attraction of the former equilibrium offsets the effect of a larger basin of

attraction for the latter, Thus, even in this case, Pareto efficient
equilibria are not always selected.

An unambiguous selection of the efficient equilibrium occurs in the
second paper. In it, however, the framework is quite different from the
present one in that hierarchical, multilevel selection operates along the
process.




Experimentation
As wusual in the recent evolutionary literature, the above described

selection process is complemented with some notion of experimentation. This
involves a small and independent probability that, in every period, each
player i e N adjusts her strategy in some arbitrary direction. More
specifically, each player will be assumed to adopt, with some small
probability € every period, some strategy different from the one prescribed by
imitation. For simplicity,® it will be supposed that all other strategies
have an equal probability of being adopted through this mechanism. In other
words, experimentation (often labelled "mutation") is unbiased.

3.- ANALYSIS

The process described in the previous section can be formalized as an
stochastic process. Its states consist of the specification of a tuple of the
form  [(0)ic10,.n  (Pgg=12,..m)» Where each o; is identified with the

current strategy choice of agent i, and each p, represents the average payoff

of strategy s, induced by the current particular realization of the matching

q
mechanism. Of course, not all such tuples are possible states of the process.
Given a particular strategy profile G0 = (0).,,. , . only those vectors

of average payoffs p = (Pg)e=i2,.m Which are consistent with some possible
realization of the random matching mechanism are well-defined states. The set
of all of them will be denoted by Q.

Due to experimentation, the stochastic process described is non-periodic
and positively recurrent, i.e., there is positive probability of visiting
every state from every other state. Therefore, the process is ergodic, having
a unique invariant probability distribution that summarizes the long-run
behavior of the system, independently of initial conditions. Let p(0,€) denote
such distribution. As advanced, given 0, we shall be interested in the limit

stationary distribution p*, defined as follows:

3 Strictly, it is only required that the experimentation probability have full
support over the full set of alternative strategies.




Remark 1: Fast convergence to the limit invariant distribution.

As emphasized by some authors (see, for example, Ellison (1991)) the
practical relevance of the long-run convergence results of evolutionary models
hinges upon the speed of convergence one may expect for the realizations of
the stochastic process. If such expected convergence is slow, it will
generally be necessary to "wait for a long time" before the realized dynamics
of the process approximates its theoretical limit distribution. In view of
these considerations, it is quite important to evaluate the speed of
convergence of our contemplated stochastic process and compare it to that of
other models explored in this literature. For the sake of concreteness, I will
focus on the model analyzed by Kandori, Mailath, & Rob (1993).

Rather than addressing formally issues of speeds of convergence, it is
perhaps more transparent to illustrate matters by focusing on the related
concept of "waiting time". More specifically, we shall concern ourselves with
the maximum expected waiting time for observing a shift to the predicted long-
run equilibrium from any other state of the process (i.e., the inverse of the
minimum transition probability). In the context studied by Kandori et al, such
expected waiting time is of the order 8'7“1, where A € (0,1) is a parameter
associated to the data of the game being played. Thus, for large populations
(i.e., large n) and small €, the corresponding waiting time will be very

large.

However, in our context, it is easy to check (see, for example, Claim 2
in the Appendix) that such expected waiting time will be of the order €2,
independently of the population size. Thus, even for large populations, the
convergence towards the long-run prediction of the model will in average be
relatively fast, as compared with the model proposed by Kandori et al.

Remark 2: Extensions to general games.
The validity of our Theorem crucially depends on its restriction to
common-interest games. For example, not even if all equilibria of a symmetric

game are both pure and symmetric (i.e., lie in the "diagonal") can one assure

that efficiency will be the unique long-run behavior of the process.
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adjustment. In particular, it would also yield identical conclusions as to the
preeminence of risk-dominance considerations in processes of long-run
equilibrium selection for 2x2-games. In order for our logic to apply in
selecting for the efficient equilibrium, strategy adjustment has to be
sufficiently fast relative to the operation of the matching mechanism,
Specifically, it cannot be so slow as to eliminate the randomness in payoffs

induced by this mechanism.

4.- SUMMARY

This paper has proposed a new evolutionary model for equilibrium

selection in games which:

(i) contemplates imitation rather than best response as the basis of
strategy selection, and

(i) assumes that this process of strategy selection takes place after
each round of play, on the basis of the particular outcome produced by the

matching mechanism.

The combination of these two features of the model, together with the
usual postulate of infrequent experimentation, has been shown to yield the
long-run selection of the unique efficient equilibrium in games of common
interest. We have also argued that the convergence of the process to such
long-run outcome is relatively fast (and independent of population size), as
compared to some other evolutionary models studied in the literature.
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concept of limit stationary distribution) is well defined. As € converges to
zero, the evaluation of (5) hinges upon the rate @ (qw(e)) at which, for each
® € Q, ql€) converges to zero. In order to determine these rates of

convergence we shall rely on the following concepts.

Firstly, given any state ® e €, denote by T(w) < Q the set of states
which may succeed ® with positive probability when no agent experiments. (Of
course, if experimentation were considered, this set would coincide with the
[(G).(p)] and @ =

whole state space.) Next, for any two states ®
[(67),(p)], define a distance function d(-) on Q by:

d(w,0 ’) = card {ieN: o; # 0}}. 6)

This function simply counts the number of agents who play a different strategy

in each of the two states.

Combining the two former constructs, we introduce the following central

concept. Given any two states, ® and ®’, define
c(0,0’) = min { d(®O,®): ® € T(®) } @)

as the cost of transition from ® to ®’. This cost represents the minimum
number of experimentations needed to complement the imitation component of the
dynamics in order to complete the transition from ® to ®  with positive
probability. (Naturally, such cost of transition will be equal to zero if the
imitation dynamics is alone sufficient to carry out the contemplated
transition with positive probability.)

Correspondingly, we may define the cost of a tree H (or, analogously, of

a path h) as follows:

c(H) = Z c(®,m’). (8)

®,mneH

When € — 0, it follows from (4) that, for any ® € €, we may compute the

order of convergence of its corresponding qy(€) as follows:
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Associated to state ®, we shall also need to consider the (sub)path of h,
h = ((0,0),(0,®?),..., (0L,®)}, which links @ and ®. Of course, ® may
coincide with ®, or even with ®. In the former case, h = h; in the latter, h
will be identified with the "empty path", rendering redundant part of the

ensuing argument.

Clearly, state ® and its predecessors in H induce a corresponding @®-tree
restricted to this set. (Here, we generalize the concept introduced above in
order to allow for trees whose vertices span a proper subset of €2.) Represent
such tree by 7T(®,H), where the general notation T(w’,H’) stands for the
"induced tree" obtained from the tree H’ by selecting the new root ® e H’.
Using this notation, we now define a series of induced (sub)trees as follows:

1 = 1(w,H), H° = H\O ;

1 = 1(w,H%, H! = Hoti

1 = 1(03H!), H? = H\t% (12)
1kl = 7(@,Hx2), Hkl = HkAgk2;

7% = 1(w,H¥1), Hk = HkI\tk =g

where recall that ®!, ®?2,.., k! stand for the states in the above path h
which links @ and .

Note that, as reflected by (12) (in particular, by the fact that Hx = @),
the trees in the set T = ({19,7l,...,7%} induce a partition of the full set of
states €. We next need to verify the following claim on their "aggregate
cost".

k

Claim 1: Zc('ci) = ¢* = c(H)-1. Moreover, if ® ¢ By there exists some
i=0
n € N such that, if n = n, then c* = c(H)-3.

Proof: If @ # ®, denote by h+* the sub-path of h which links ® to the

immediate successor of ®. Otherwise (i.e, if if ® = ®), h* is identified with

h, as defined above.
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previous ®Y in the tree T (i.e, on the second level of the tree 7).
Proceeding in this fashion for as many stages as necessary, we shall

eventually come to one of the following two configurations:

(i If ® e Bg, only one single ®-tree will remain spanning the whole Q;
(i) If ® ¢ Bg, two different trees will remain: an @-tree and an ®-tree,
jointly spanning the whole state space Q. Moreover, the former tree includes

all states in Bg,.

Note that the above described procedure has not added any links between
states which could increase the total original cost c* induced by the trees in
T. Thus, if (i) applies, the desired conclusion follows immediately from Claim
1. If instead (ii) applies, this conclusion follows from the following final

claim.
Claim 2: For all ® € Q, @ # ®, 30 By o(w’,m) = 2.

Proof: Consider any strategy profile (0y);.;, , Wwhere some positive
even number of agents play strategy s;. Associated to the particular outcome
of the matching process where all of these latter players are matched among
themselves, there is a feasible state compatible with such strategy profile

where the average payoff of strategy Sp Py equals ag. Let Q be the set of
all such states. Clearly, Q c B Moreover, for any state @ e Q, there is

always some state ® e Q such that, after no more than two agents experiment
with sz, there is positive probability (independent of €) that the process
makes the transition from @’ to ®. Thus, c(®’,0) = 2, establishing the desired

conclusion. |

By the claim just proven, the ®-tree in (ii) can be connected to some
state  in the complementary @-tree such that a full @-tree arises (i.e., one
spanning all states in ) whose cost is no larger than c*+2. Recall that, by
claim 1, c¢*+2 < c(H) when ® ¢ Bg,. Therefore, such consolidated o-tree has a
cost strictly lower than the original ®-tree H. This establishes the Lemma,

thus completing the proof of the Theorem.

5 The procedure is operated sequentially across "levels" of the tree T in
order to  prevent that, at some  stage, a  certain state (® and its  predecessors
could be required linked to one of the predecessors of (D itself.
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