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INDUSTRIAL DYNAMICS, PATH-DEPENDENCE
AND TECHNOLOGICAL CHANGE

Fernando Vega-Redondo

ABSTRACT

In this paper, I propose a game-theoretic, intertemporal model of
industrial competition in which active firms innovate, imitate, enter or exit
as it is optimal in some prevailing (Markov Perfect) equilibrium. The main
novel feature of the approach is that technological change is modelled as
advance along a directed graph of technologies. This permits a rigorous
formalization of such key notions as technological distance, technological
precedence, or switching costs, all of which play a crucial role in the model.
In particular, they underlie a process of technological change which is highly
path-dependent. The theoretical analysis of the paper centers on existence and
ergodicity issues but also investigates the effect of different technological

structures (digraphs) on the induced population dynamics.







1.- INTRODUCTION

The phenomenon of industrial competition is best viewed as a process of
strategic interaction in an heterogeneous and ever-changing context. () There
are two main forces which underlie such process. On the one hand, the process
of population turnover by which firms enter or exit depending on their
particular fortunes; on the other hand, the various processes of know-how
accumulation which continuously change the strategy spaces of incumbent firms
(e.g., their "technological" choice sets). The objective of this paper is to
propose a highly stylized model which displays these features and that could
be tested against empirical evidence.

I now summarize very briefly the main components of the model. Firms are
optimizing units which choose their actions (namely, their technologies and
research expenditures) as part of an intertemporal equilibrium; specifically,
a Markov Perfect Equilibrium. Exit of firms occur when they go bankrupt. New
firms enter when there are profitable opportunities. As the process unfolds,
firms change their respective sets of available technologies through
innovation and imitation. Both are costly activities. On the one hand,
innovation that goes beyond mere "learning by doing" requires the expenditure
of resources. On the other hand, imitation of others (which can be done only
with some lag) involves switching costs which depend on the magnitude of the

technological shift.

A key feature of the approach resides in the way in which innovation and
switching costs are modelled. The space of technologies is endowed with a
directed-graph  (digraph) structure which reflects both the notions of
"technological precedence” and of "technological gap”. The first is relevant
for innovation (a firm learns or invents a new technology among the successors
of currently available ones). The second 1is pertinent for imitation (as
mentioned, switching costs are linked to the magnitude of the technological

1 See, for example, Cubbin & Jeroski (1987), Dunne, Roberts & Samuelson
(1988), or Cohen & Levin (1989) as a sample of the empirical research  which
shows  that  firm  heterogeneity and a  permanent  "state  of  flux" is a  prevalent
feature of many important industries.




gap). A central objective of the paper will be to explore how the industrial
dynamics is affected by alternative digraph structures. Specifically, the
following such structures will be explored: a tree, a line, and a lattice.

I end with a review of related literature. The closest research I am
acquainted with is reported by Ericson & Pakes (1989). These authors also
propose a dynamic stochastic model where innovation and population turnover
interact to produce the overall industrial dynamics. As in the present paper,
their model induces a stochastic game, whose intertemporal equilibrium is
analyzed. There are, however, three main differences between our approaches.

First, Pakes and Ericson abstract from technology diffusion (imitation),
which is clearly an important component of the technological dynamics of many
industries.

Second, they ignore the effect of switching or learning costs in
processes of technological adjustments. This makes the model unable to reflect
important path-dependency considerations which, in the real world, seem to
underlie many firms® technological decisions (e.g. their often inertial
behavior).

Third, their model implicitly restricts its attention to linear
technological structures; that is, to contexts where more or less advanced
technologies are all bound to be along a single development path. As indicated
by numerous empirical and theoretical studies @ this is hardly a good
assumption to describe many important cases where there co-exist (at least,
potentially) a number of different particular technological paths. Each of
these paths generally embodies quite different idiosyncratic skills, capital
requirements, or management structures. Under these circumstances, adjustments
across different technological lines may well be very costly.

2 See footnote 6 below for a  brief reference to  some  empirical case  studies.
More generally, the reader  may refer  to the work of  authors such as Brian
Arthur  or  Paul David who have stressed the importance of path  dependence  in
technological processes. In particular, 1 suggest reading David (1988) or
Arthur (1989).




An additional important work in this area is Jovanovic (1982).® In it,
industrial competition is also modelled in an intertemporal context with firms
entering, exiting, and learning along a dynamic equilibrium. It exhibits,
however, the following two essential differences with the present approach.
First, it contemplates a context with a continuum of firms and, therefore, no
aggregate uncertainty. Second, firms are involved in learning about a fixed
idiosyncratic  parameter rather than exploring unbounded technological
possibilities. This latter point was modified in Jovanovic & McDonald (1988),
where genuine innovation is assumed to take place along the process. However,
the maintained continuum assumption (first point above) makes it unsuitable to
model some of the rich strategic considerations involved in technological
interaction. To address them, one needs to focus on a small-number context

where individual firm choices may have significant effects on competitors.

The study of intertemporal strategic processes of innovation and
diffusion which has been recently developed for a "one-shot, single-project
framework" also bears important relationship to the present work (see, for
example, the recent handbook paper by Reinganum (1991) for a survey and basic
references). While this paper inherits from this literature some of its
theoretical apparatus, the main contrast with it resides in the fact that
technological decisions are embedded in a continual industry-wide process of
technological change.

Finally, the evolutionary approach of Nelson & Winter (1982) or Iwai
(1984) also shares with this paper similar motivation. Their same concern is
to study industrial dynamics as an interplay among all those components which
are involved here: entry, exit, innovation, and imitation. However, in
contrast to the present approach, their model incorporates no rational or
equilibrium behavior, with firms being assumed to adjust behavior in a
rule-of-thumb fashion.

The rest of the paper is organized as follows. In the next Section,
Section 2, the model is presented and discussed. Section 3 contains the
analysis. A summary closes the main body of the paper in Section 4. For the
sake of smooth presentation, formal proofs are relegated to an Appendix.

3 See also the related more recent work of Hopenhayn (1992).
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2.- THE MODEL

The presentation of the model is divided into the following subsections:
The Firms (2.1); Technological Structure (2.2); Technology Sets (2.3); Stage
Payoffs (2.4); Entry and Exit (2.5); Dynamic Game (2.6); Equilibrium (2.7).

2.1. The Firms

There is a set of potential firms which is countably infinite and indexed
by I = N. Time is measured discretely, t = 0,1,2,... At any given t, a subset
of firms, P(t) < I, represents the current participants in the industry. These
are the firms which may choose to produce and sell their product with some of
their currently available technologies. Such set P(t) is partitioned into two
further subsets, Z(t) and E(t). The former represents the incumbent firms
(ie., those which survive from the preceding period), the latter includes the

current potential entrants.

At the start of the process the original set of incumbent firms Z(0) is
exogenously given. As time progresses, the sets P(t), Z(t) and E(t) will
evolve through entry, bankruptcy and exit, as described in 2.5 below.

2.2. Technological Structure

Let © denote the global technology space. It is assumed identical for all
firms and endowed with a directed graph (digraph) structure (O,u). Here, u
represents a binary relation on © formalizing direct technological precedence,
as presently explained.

When two technologies 6,0’ are consecutive points of © (i.e., 0 u 0’ it
is said that O directly precedes ©’ (technologically). Compositions of u give
rise to the notion of general (as opposed to direct or immediate)
technological precedence. Specifically, when two technologies 0 and 0’ are
Joined by some p-chain starting at 0 and ending at 0’ it will be simply said
that 8 technologically precedes 6” and we write © B 0°. That is:




0B 6 < 3(0,0,...0,) s.t. 6, 1 6, k =1,2,..n, 8, = 0, 8, = 0.

The length of the shortest chain leading from 6 to 6’ will be denoted by
h(6,0’). For the sake of formal convenience, I shall use the conventions 6 3 0
and h(0,0) = O for all 8 € O, ie., any technology 0 "precedes" itself and
defines a p-chain of length zero.

Motivated by the interpretation of [ as reflecting technological
precedence, it will be assumed that it is an ordering (in general, a partial
one) on O; or, in the language of Graph Theory, that (O,u) is an acyclic
digraph. Such structure will be an essential component of both the innovation
and imitation processes described in the next sections. In particular, it
permits to make precise the notion of “technological gap" between two
technologies which is presently introduced.

Consider any two different technologies 6” and 0’ and define the set of

their common predecessors by:
QO’0’)=({0cO:0p06,0p06 }. (1)
The technological gap from 0’ to 0 is defined as follows:

¥(6’,0°’) = min { h(0,0”’): 6 € Q(6°,6”) }, )

where it will be recalled that h(6,0’’) has been defined as the length of the
shortest -chain leading from O to 0°. The formulated concept of
technological gap is reminiscent of biological contexts where the genetic
("information") differences between two species can be linked to their
separate divergent evolution from a common ancestor. Its present technological
motivation is based on the interpretation of every p-step in the digraph (O,u)
as an (homogeneous) "quantum" of knowledge. If any one of these knowledge
quanta is not yet incorporated into the current technology, it needs to be
learned (at a cost, as described below) in order to use any new technology
that does include it.




2.3. Technology sets

At every period t, each firm i € I has a subset of ©, denoted by ©O(t),
as its current technological choice set. The law of motion for this set is
defined as follows.

If firm i ¢ P(t), ie., is not a current participant in the industry, it
is simply written:

e, = (#), t=0,12,., 3)

and interpreted to mean that firm i is forced to inaction, denoted by #.

If firm i € P(t), i.e, it is a current participant in the industry, the
following law of motion for its technology choice set is proposed:

0,1 = (6,t-1) \ D) u M) u N(©), t=12,., %)

where, for the initial firms i € P(0), the set ©,(0) = {B,] is exogenously
given and:

(i) N,(t) represents the set of firm i’s current inventions;

(i) M(t) includes the technologies acquired through imitation of other
firms;

(iii) D,(t) stand for those technologies which are lost due to lack of
usage; this phenomenon shall be called technological

"dissipation".

A precise description of each of these sets presently follows.
(i) Invention

For each firm i e Z(t) which is an incumbent at t (i.e., had
0,(t-1) = #), N(t) is simply postulated to be some non-empty random sample
from the set S(0,(t-1)) u {o), where:

(a) S(Gi(t-l)) = {0 € O 6,(t-1) u O} denotes the set of direct
u-successors of the technology 6,(t-1), ie., the previously adopted
technology, and
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(b) the element o is a fictitious term which stands for "failure".

The sample over S(0) v {e} which formalizes "invention possibilities from
0" is assumed conducted according to some probability distribution Pe(-),

exogenously given. This formulation reflects the idea that invention is
uncertain, gradual and path-dependent. The cardinality of the set N(t),
denoted by ny(t-1), will be considered an object of decision during the
preceding period (see subsection 2.6 below). It is assumed no smaller than
one. Thus, just one invention draw is interpreted as the minimum degree of
"learning by doing" associated to production itself during the preceding
period. Any additional draw will reflect an R&D costly decision by the
incumbent firm (c.f. assumption (A.3) in the next section). Note that, as
formulated, R&D decisions only bear fruit with a one-period lag.

On the other hand, if firm i e E(t), i.e., it is a potential entrant at t
(in particular, ©,(t-1) = #), it is assumed that it cannot obtain any
invention. This can be formalized by making S(#) = e, i.e., "inaction" has no
technological immediate successors. Admittedly, this is a very strong and
unrealistic restriction. It is adopted just for simplicity and could be easily
relaxed by assuming, for example, that any potential entrant may innovate from
those technologies which it has available through imitation.

(ii) Imitation

As for the imitation possibilities reflected by M(t) in (3), it is
postulated that, for all i € P(t),

M() = M(®)

| (6: T =ts)), ift=s

j€l

)

= (eo} s ift< S

That is, every firm i e P(t) has lagged access to all those actions
available to any other firm in the sufficiently distant past. The time lag
s, € N is a parameter of the model. It may reflect considerations (exogenous
to the model) which are related to, say, the speed of information transfer or
the nature of the patent legislation.
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(iii) Dissipation

Finally, technological information that is not being used somewhere in
the industry by some viable firm is assumed lost ("dissipated") after some
time. Denote by V(t) the set of viable firms at t, ie., those firms active at
t which remain as incumbents at t+1. (The process of entry and exit is
precisely described in Subsection 2.5 below.) The process of dissipation,
which was identified in (3) with the sets D), is now defined as follows:

D) =D®) = {0 ©:0201),je V), ts,=t<t }, (6)

where s, € N is another parameter of the model, with S = s;. Note that,
according to (6), in order for a technology to become integrated into the
technological base of the industry, it must have been used by some yiable firm
(i.e., a firm that has lived through the whole period when the technology was
used). Otherwise, it is assumed that such technology has not been used long
enough to become assimilated into the "technological pool" of the industry.

2.4. Stage Payoffs

Stage payoffs are decomposed into three parts: gross payoffs, adjustment
costs, and R&D expenditures. I describe each of them in turn.

(i) Gross payoffs are given by a function:
¢: 0 — R, (7
where we adopt the convention that;
vl = (6,,0,,...) € O, ¢0) = 0 if 6, = #. (8)

Each function @(-) gives firm i’s gross payoffs in "reduced form" with
technologies as their sole arguments. It is easy to expand the model to
include explicit market demands and production decisions. In Vega-Redondo
(1991) this was done by contemplating a two-stage decision process in which
the technology was first chosen simultaneously by all active firms, then
followed by usual Cournot competition (see also Section 3.1 below for an

illustration along these lines).
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(ii) Adjustment costs for each firm i are given by a function:
C:Ou {#) x(Ou {#) —R, )

with the interpretation that C(a,b) represents the adjustment cost in
shifting from a to b, where any of these could either be some technology in ©

or # (inaction).

When both arguments are different from #, it will be assumed that the

function C, admits the representation:
C(0,0) = C(v0,07), (10)

i.e., it only depends on the technological gap involved in the shift from
0 to 0’. (See (A.2) below.)

If # is involved, it is postulated that:
C#6) = 1, (11)

where M > O is then interpreted as a fixed entry cost. Finally, the particular
assumption made on the cost of switching to "inaction" # will be inessential

for our purposes, as long as, naturally, we have:

C(##) = 0. (12)

(iii) Finally, R&D expenditures for each firm i are given by a function

Ri N — R, (13)

where Ry(-) is some function of the number of invention draws enjoyed by firm
i in the next period. (See (A.3) below.)

Given gross payoffs, adjustment costs, and research expenditures as
described above, (net) payoffs result from subtracting the two latter from the
former. Combining (8), (9) and (13), they are given for each firm i € I by a
function

ﬂiiex@IxN———)R, (14)

which for every tuple (Gi(t-l),ﬂ(t),ni(t)) of preceding technology choice,
current technology profile and invention level induces the net payoff:

13




m(0,-1).81).0(0) = ¢(00) - C(6,4-1,6,0)) - Ri(n(®)). (15)

2.5. Entry and Exit

The rule of entry and exit in the industry is written as follows:

Pt = Z(t) v E(t) = [P(t-1) \ X(t-1)] v E@v), t=0,1,.2,., (16)

where Z(0) = {1,2,..,.m} is given, X(t-1) stands for those firms in P(t-1)
which meet a certain exit condition in t-1, and E(t) represents the set of
firms which may consider entry at t. In each of these two latter respects,
entry and exit, I shall specifically postulate the following.

As for firms’ exit, it is assumed that there is some v > O such that:®)
X = {i ¢ Pe-1): m(0-1.80NM) < v }. a7

That is, firms which are unable to obtain a stage payoff of at least v in
any given period are forced to exit the game (irreversibly, given the entry
formulation presented next). Of course, the implicit idea that capital markets
are very imperfect must underlie the assumption that exit is exclusively
linked to current payoffs. This contrasts sharply with the polar opposite
(utterly perfect capital markets) considered in most of the literature (e.g.
Ericson & Pakes (1989).) I find hard to say which of both extreme assumptions
is more realistic or otherwise appropriate.

Entry, on the other hand, is formalized as follows:
E(t) = {t+m+1}, (18)

that is, each firm i ¢ Z(0) is indexed according to its corresponding future
time of entry. Such very stylized (and rigid) entry rule is chosen for its

special simplicity. Other more elaborate ones could be considered with similar
implications.®)

4 Since gross payoffs have been assumed non-negative, "bankruptcy” is defined
in terms of a positive V. This s simply dome for formal convenience, since
adjusting V to any level is just a matter of payoff scaling,

5 For example, fims could be "put i line", any of them being given the
opportunity to enter  when, and only when, all  the  preceding ones  have already
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2.6. The Dynamic Game

The items described in Sections 2.1 to 2.5 define most of the components
of the model. A complete description of the induced dynamic stochastic game

still requires the following complementary specifications.

(i) Order of play and available information
At each t = 1,2,..., every firm i e P(t) chooses simultaneously its
respective current actions (Gi(t),ni(t)) knowing the sequence of all past

actions:
{CTOEYO) N

and the current technology choice sets: ©
{ (1) } jer

Of course, as it is standard in Game Theory, it is also implicitly
assumed that the rules of the game and the laws of the environment, i.e.,
every one of the items described in Sections 2.1 to 2.5, are common knowledge.

(ii) Intertemporal payoffs
Let xt € (@1 x lNI)°° denote a typical path of action profiles starting at
any time t. That is:

xt = [(8t).n(»),(8t+1),n(t+1)),(8(t+2),n(1+2)),...]. (19)

Every firm i e I has at each time t an intertemporal payoff function

defined over such paths:
@: (6 x M)* — R (20)

6 The alternative assumption could be made that the realizations of the
current  invention draws of a firm are not observed by other firms, Or it could
be  postulated that the decision on the number of invention draws is only taken
by a firm after it has adopted its technological decision, so that the play at
every period involves two stages. These or other similar modifications could
be contemplated without affecting the nature of the results.
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which, given some discount rate 1 > & =z 0 (common to all firms), will be
assumed to associate to every path xt the discounted sum of the corresponding
stream of stage payoffs (c.f. (15)). That is:

Ox) = ¥ 8% 1,(0,1-1),0(t),n(1)). Q1)

T=t

2.7. Equilibrium Concept

The analysis of the game can be greatly simplified if we rely on its
Markov structure and study it as a Markov stochastic game. A Markov
description of the game requires the specification of a state space Q, whose
elements ® € Q embody a sufficient description of all the payoff-relevant
aspects of any game situation (ie., of any history). ® In fact, for
equilibrium analysis, it is enough to require that states discriminate only
among situations which are payoff-relevant for strategies that are not
strictly dominated.

Among alternative state spaces which are sufficient in this sense, it is
of special interest that which is minimal. Let Q* be such state space. (It is
easy to see that, by the minimality requirement, Q* must be unique.) For each
firm i e I, those strategies of the form:

o QF — A x N), (22)

are called Markovian strategies, where A(® x N) denotes the set of probability
measures on © x N. At every period t, they induce a corresponding (possibly
mixed) action Gi((o(t)) which only depends on the current (minimally
sufficient) state (t).

The game form proposed is totally symmetric among firms, except for the
order of entrance in the industry. Or in other words, if such order were
chosen randomly and anonymously ex ante, the rules of the game would treat all
firms identically. Reflecting this and the fact that payoff functions will
also be assumed symmetric (c.f. Section 3.1), it is natural to require that

7 (Definition 2.1 below).
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firms’ strategies reflect such "anonymity". To make this idea precise, let
p: I — I be some given permutation of the set of firm indices. Denote by

Y QF —> Q¥ 23)

a mapping which, for each i € I, interchanges the positions of firms i and
p(i) in all respects (including the order of entry). The following definition
introduces the equilibrium concept which shall underlie the game-theoretic

analysis of the paper.

2.1. Definition: A Markov Perfect Equilibrium (MPE) of the game is a
profile of Markovian strategies (0%),g; such that, at every t and every
prevailing state (t), it defines a Nash equilibrium of the continuation game.
The MPE is called symmetric (SMPE) if for any permutation p(-) of the set of
firm indices, for all i € I and @ € Q%, o}(®) = &%, (x,(®).

2.2. Remark: It is immediate to see that every MPE is a subgame perfect
equilibrium, and that every SMPE is itself a MPE. In other words, if a firm’s
competitors decide to ignore considerations which are either payoff-irrelevant
or non-symmetric it is (weakly) optimal for this firm to ignore them also.

17




3.- ANALYSIS

This Section includes the analytical results of the paper. Its content is
divided into three subsections. Subsection 3.1 introduces some required
assumptions on gross-payoff and cost functions. Subsection 3.2. presents the
particular families of digraph (technological) structures which shall be
object of analysis. Finally, in Subsection 3.3, the results of the paper are
formally presented and discussed.

3.1. Assumptions

The first assumption postulates a numerical representation of the "value"
of different technologies and assumes that only their relative magnitude
enters (symmetrically) in the gross payoff functions of firms.

(A.1) There is some non-negative function p: ® — R, (p(#) = 0) such
that, for each firm i € I, ¢(8) = f(p(8)) where p(®) = (p(6,).p(8,)....) and
the set of functions

f;.’RIHIR,iEI,

are "anonymous” (i.e., invariant under index permutation), homogeneous of

degree zero, continuous, and increasing in their respective p; = p(0,).

Moreover, ¥e > 0, 36 > 0 such that:

i

vp € R, =0 = fi(p) = &

#i Pi

The set of functions (fi)iEI should be conceived as a reduced-form
construct representing some underlying process of market competition. A simple
context which satisfies the preceding assumption is provided by a
Chamberlinian market in which:

(a) Each firm i confronts a specific inverse-demand function for its
"type of product” 0, of the following form:

18




.
p(6) o (

Pi(gag) =
Zj p(6)
€1

Zj a), 24)
€1

where q; is the quantity produced of firm i, and ®(-) is some real function.
(b) There are no fixed (nor sunk) costs.

(c) Firms take their decisions in two steps: first, simultaneously, on
technologies; second, also simultaneously, on quantities produced.

The next two assumptions deal with the nature of adjustment costs and R&D

expenditures.

(A2) For all i € I, é\‘i( () = 6’( -) is monotonically non-decreasing with

6’(1 ) = 0. Moreover, YM 3y, such that if Y > ¥, e'(y) > M.

(A3) For all i € I, R(-) = R(-) is monotonically non-decreasing with
R(1) = 0. Moreover, ¥M 3n, such that if n > ny, R(n) > M.

The preceding assumptions contemplate symmetric cost functions for R&D
activities and technological switching which are identical for all firms,
monotonically non-decreasing, and unbounded in their respective arguments. It
is also assumed that both gradual adjustment (one [i-step at a time) and
gradual invention (one sample draw at a time) are costless. The justification
of this latter assumption derives from the idea that some learning-by-doing on
the job is simply "automatic" and requires no specific resources devoted to
it. In any case, the analytical purpose of this assumption is simply to ensure
that the process of technological invention (if anything, at such slow pace)

will continue forever in full probability.

3.2. Alternative Digraphs

The analysis shall focus on three alternative types of digraphs.
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(i) A linear structure where every option belongs to the same
"technological line".

(i) A branching structure (a directed tree) where every bifurcation
gives rise to "irreversible divergence" of their respective successors.

(iii) A reticular structure where bifurcations are not necessarily
irreversible but have some successor paths which eventually merge.

The above three structures represent very stylized formulations of three
different qualitative kinds of technological scenarios. Their starkness aims
at highlighting in the most clear-cut way the main issues involved.

Before discussing each of these structures in detail, I introduce the
following simplifying assumption which will be considered in every case.

(A4) (i) There is some fixed § > 1 such that ¥ e ©, v0' < S(9),
p(®’) = & p(o).

(i) v 0.,0' « ©, Po(5(8)) = Pg(8(8°)) < 1 with Po(-|S(8)) uniform on
5(6).

The previous assumption requires that: (i) every technological "quantum"
involves the same proportional advance in value (c.f. (A.1)); (ii) invention
from every technology 0 is always equally uncertain and symmetric across
successors in S(0). As explained below, this assumption is a way of ensuring
that the technological structure is stationary, i.e., isomorphic to its
substructures.

(1) A Linear Structure

The digraph (O,u) is a linear technological structure if:
(L) v6,6° € ©,0 36 or 0 B 6.

Under (L), all technologies can be viewed as more or less advanced points
along a common technological ladder. This is the implicit assumption in most
- of the literature on technological change (see, for example, Helpman &
Grossman (1991) or the aforementioned Ericson & Pakes (1989)). One of the
essential objectives of the paper is to contrast it with the following two

alternatives.
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(i) A Branching Structure

To define it formally, some additional notation is needed. A finite
sequence I' = (0,,0,,....8,) is called a path of (O,u) if vk=12,..,m-1,
0, U 6,,,. Given such a path, denote by s(I') = 0, and e(I') = 0 its first and
last elements, respectively. The digraph (O,u) is a branching technological

structure (or a tree) if:

(B)({) v0,0’ € ©, 6 B 6, there is a unique path T" st. sI) = 6,
el = 0.
(ii) v0,0’ € O, card S(0) = card S(0’) = 2.

Under (B), every technology gives rise to at least two disconnected
families of succeeding technologies. This is in sharp contrast with (L) above.
Some sort of "compromise” between (B) and (L) is provided by the third type of
technological structure which is considered next.

(iii) A Reticular Structure

Informally speaking, the idea captured by a reticular structure is the
following. Consider any given technology 0 and the set of its technological
successors S(0). Suppose that, besides having a higher value (recall (A.4)),
the technologies in S(0) may also differ from 0 in terms of a number of
different relevant dimensions (or characteristics).® Further assume that (a)
these characteristics can be appropriately quantified in terms of integer
numbers, and (b) any technology is uniquely defined by its value and a
particular  specification of its characteristics. Then, for any two
technologies 6 and 0’ with 6 B 6’ there will generally be many different paths

8 Consider, for example, the case of  the computer manufacturing industry. In
it, each  particular  technology may differ in the number of bits per chip used
(keeping, say, the number of <chips fixed) or diffr in the number of  chips
used with the same of number of bits per chips. Swan  (1991) carries out an

empirical analysis of the technological competition in the computer industry
exactly along these lines. In fact, he uses directed graphs similar to those
employed here to describe recent technological developments in this industry.

In Foray & Griibler (1989), such digraphs are also used to understand the
technological evolution of the casting industry.

21




linking them. In other words, even though technological bifurcations are
possible, they are not irreversible.

I now formalize these matters. Consider a number of different dimensions
D = D;xDyx..xD,,  where Dj = {-rj,-rj+1,...—1,0,1,...,rj-l,rj}, , € NO
represent the 2r;+1 different values of the jth dimension. A digraph (O,n) is

a reticular technological structure (or a lattice) if:

(R) (i) Every 0 € O is uniquely characterized by its p(0) and the vector
of characteristics d(0) e D.

(ii) There is some k = (k;,k;,....k,,) € N" such that v0 ¢ ©,
A A
(d(®): 8 « S©) = (d < D: |d-4@)] = k).

Part (i) requires no further explanation. Part (i) postulates that, for
any given 0, the vectors of characteristics spanned by its successors are all
those which, in each dimension j, are not farther away from dj(G) than kj. The
following diagram illustrates a digraph satisfying (R) in which there is only
one dimension (D = D)), r;=2, and k,=1.

FIGURE 1
A reticular structure: D, =D and r, =2k, =1

9  Note that if ] is zero for each j = 12..m, then a linear technological

structure obtains.
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.3. Results

(i) Existence and Ergodicity of an SMPE

I start with the following existence result.

3.3.1. Theorem: Assume (A.l1) to (A4), and (L), (B), or (R). A Symmetric
Markov Perfect Equilibrium (SMPE) always exists.

Let o* = (0%),c; be a SMPE. Given an initial state @, o* defines a
stochastic process on Q¥*, the minimally sufficient state space for the game
(c.f. Subsection 2.6). Consider now any real function

G Q"5 R, (25)

for some q € N. For every state path @ = (0)(0),(1)(1),(0(2).") e (Q*y°, a real
path {(®) = (y(9).y(q+1),y(g+2),...) can be associated through y(t) =
C((o(t- g+1), o(t-q), ...,(o(t)) for each t = q. This induces, given g* and ®,, a
real stochastic process in the obvious fashion. Such process shall be denoted
by &£ (g*,C,(nO) in order to express its dependence of the strategy profile g¥,
the function {, and the initial condition ®(0) = .

The case where the function { is "anonymous" is of special interest. In
line with our preceding formalization of symmetry (or anonymity) of a MPE, the
function { is said to be anonymous if for any (©,,0,,...,0,) € (Q*)? and any
set of index permutations p;: I — I, j=1,2,...,q,

g(wl ’(DZ" . .,(Oq) = C(Xpl(ml)sxpz(m2): . ..,qu((l)q)). (26)

Natural examples of real variables specified by such anonymous functions
in our context are the following: number of active firms every period, average
profitability or research intensity, the rates of change or variances of any

of these variables, etc.

Given the stochastic process describing a certain aspect of industrial
dynamics, a natural question to ask is whether one can obtain from it any
expected long run behavior. When this is the case, such behavior is summarized
by the so-called invariant distribution. More ambitiously, it can be inquired
whether such invariant distribution is unique (i.e., independent of initial
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conditions). If so, the corresponding stochastic process is called ergodic. In
this case, one can show that the unique invariant distribution is also the
unique limit distribution in the following strong sense: any path of the
process induces a realized distribution which converges with probability one
to the invariant distribution in the long run. Thus, in this case, such
distribution may be viewed as a compact description of the actual (not just
expected) long-run behavior of the process. (See Karlin & Taylor (1975) for a
standard reference on these issues.)

The analysis that follows addresses these issues. I start with the
following result.

3.3.2. Theorem: Assume (A.1) to (A4) and (L), or (B), or (R). Let
0* = (0%)ie1 be an SMPE and § an anonymous real function as in (25). For any
Wy, € Q¥ the stochastic process #(0*(,0,) induces a well-defined invariant
distribution.

The next issue to deal with is that of ergodicity. In order to establish
it, I shall need to restrict to equilibria which avoid situations of
technological "impasse". A formalization of this idea is presently introduced.

1]

Denote by f)\(t)
of the industry at t. Let n*(t) denote the aggregate set of successful
inventions (i.e., invention draws which are different from ©) occurred at t.

max {pt), i eI }, ie., the "technological frontier"

Given some SMPE o*, I postulate:

(*) v e Q* VB >0,V tt’, 3m € N such that:
p()

%
S 1()
Condition (+)  precludes  situations of  "strategically-enforced"

Prob

=B |5 nm*®mz=mon=0} =1

technological ~stagnation. It asserts that if the number of successful
invention draws becomes large enough between two points in time, the
technological frontier of the industry should grow to any arbitrary level.(19)

10 Note that since, in equilibrium, the number of innovation draws per firm i
bounded above (c.f. (A4)), the condition could have been equivalently stated
in terms of a sufficient number of successful "inventors".
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In the Appendix, I present a simple two-firm example where Condition (+)
is violated for an SMPE. It describes a situation where each firm decides to
remain technologically stationary under the (credible) threat that, if it were
to deviate, the technological competition that would follow would bring about
its eventual bankruptcy with positive probability. Under either the assumption
that firms are sufficiently patient or that the potential "monopoly rents" are
small, this is enough to deter the adoption of any innovation.() Building
upon this idea, it is easy to construct equilibria which induce non-ergodic

stochastic processes.

In general, it seems clear that the sort of "implicit collusion" which
must underlie a violation of Condition (+) can only prevail if firms are
sufficiently patient. This conjecture is confirmed by the next Proposition,
which also provides a scenario where Condition (+) always holds. An
alternative justification of this condition is discussed in Remark 3.3.5

below.

3.3.3. Proposition: Assume (A.l1) to (A4) and either (L), or (B), or (R).
There exists some &, > 0 such that, if 8 = 8, condition (+) is satisfied for
every SMPE.

Under Condition (+), the following ergodicity result is now established.

3.3.4. Theorem: Assume (A.l1) to (A4) and (L), or (B), or (R). Let { be
an anonymous real function as in (25) and 6* = (6%),c; an SMPE which satisfies
condition (*). There exists some T, > 0 such that if 1 = 7, the stochastic
process  L(o*Cw,) is ergodic, i.e. its invariant distribution is

independent of .

3.3.5. Remark: In Ericson & Pakes (1989), the industrial dynamics induced
by their model is shown to be ergodic under a condition such as (+) derived
endogenously from the model. The main reason why this is possible in their
context is that they contemplate the existence of an "upward competitive

11 This  idea s strongly  reminiscent of the argument used in the classical Fol
Theorems of repeated games. The essential difference here is that the threat
which supports equilibrium behavior is restricted to depend only on payoff
relevant aspects of the situation.
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drift" imposed on the industry from outside (e.g. the development of better
competing products elsewhere in the economy). Since potential "threatening”
entrants are supposed to enjoy the benefits of this outside drift in their
ever improving entering conditions, this external pressure precludes any
equilibrium strategy which may lead to technological stagnation. It seems very
plausible that the consideration of a similar external "environment" in the
present model would allow to dispense with the exogenous need of Condition (+)
for establishing ergodicity. If this were the case, this condition could be
interpreted as an indirect way of incorporating constraints on equilibrium
behavior imposed on the industry by external, un-modelled trends.

(ii) Population dynamics

This section provides some further results which illustrate more specific
implications of the model. They will focus on the extent of turnover induced
by the alternative types of technological structures conmsidered: (L), (B), or
(R). Very schematically, they establish that, if the discount factor and entry
cost are small enough:

(a) Under (L), there will be no firm tumover when the technological
change is sufficiently gradual. In this case, if entry is not too costly, the
limit distribution over population sizes is concentrated in its maximum.
(Proposition 3.3.6);

(b) Under (B), the process of turnover will continue indefinitely. More
specifically, every firm which enters will also exit later on in full
probability. Furthermore, the limit distribution over population sizes has
full support over all feasible values (Proposition 3.3.7);

(c) Under (R), the conclusions of (a) or (b) will essentially obtain if,

essentially, the "technological span" of O, Zj‘:l r, is, respectively, small

J’
or large enough (Proposition 3.3.8).

Denote by z(t) = |Z(t)| the number of incumbents at t. Let Z represent
the maximum number of viable incumbents which may simultaneously survive in
the industry. By (A.1) and (17), this number is finite (see expression (36) in
the Appendix for its precise determination). Denote by €,(-) the function
which assigns to every state ® in Q* the corresponding number of incumbents.
As above, let & (g*,CZ,wO) represent the induced stochastic process and
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M_Q‘*,Cz,mo) the density function of its invariant distribution. The previous
informal statements are now precisely stated.

3.3.6. Proposition: Assume (A.1) to (A4) and (L). There is some &, > 0,
€ > 1, such that if & = 8, and & = &, then Z(t) < Z(¢'), V&' > t, in every
SMPE o©*. Moreover, there is some M, > 0 such that if N = M, the ergodic

distribution has Mo*,(,,-)(z) = 1.

3.3.7. Proposition: Assume (A.l1) to (A4), (B) and Z = 2. There is some
8, > 0 and my > 0, such that if § = 8, and n =My, ve > 0, 3A > 0 such that if
-t = A then Z(t) n Z(f') = o with probability of at least 1-€ in every SMPE

o*. Moreover, the ergodic distribution Mc*,C,,+) has support {1,2,...7}.

3.3.8. Proposition: Assume (A.1) to (A4), (R) and Z = 2. There are some
8 > 0,8 > 1,ng > 0, such that if § = §,, & = &, n = M, then:

(i) There is some T > 0, C > 0 such that if 2;21 r ST, 6'(2) = a then
Z(t) < Z(t'), ¥ > t, in every SMPE o*. Moreover, the ergodic distribution

has Mo*.C,,-)(Z) = 1.

(ii) Given k € Nm, there is some r > 0 such that if Zj'fl rp=r,

ve > 0, 3A > 0, such that if -t =z A then Z(t) n Z(t') = o with probability
of at least 1-¢ in every SMPE o*. Moreover, the ergodic distribution

Mo*,C,,-) has support {12,...7}.
The intuition lying behind the preceding results is easy to describe.

Under (L), all firms’ technologies belong to the same "line" and remain
relatively close throughout. Thus, if technological innovation is sufficiently
gradual no firm becomes backwards enough to be forced to exit the industry.

Under (B), and if firms are not too far-sighted, they will end up
"betting" on different technological lines. When their technological paths
become sufficiently far apart, large relative advances along any one of them
will lead to the bankruptcy of those firms which are already too "committed"
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to alternative ones. In the limit, this produces an industry in continuous
flux, with its invariant distribution having full support.

Finally, scenario (R) displays qualitative features of both (L) and (B):
there is technological branching, but not irreversible one. Thus, it is not
surprising that the induced behavior reproduces that of either (L) or R),
depending on whether the technological range is small or large. In the former
case, the branching possibilities remain quite limited and are overcome by the
possibility of technological reversibility (provided both technological change
and switching costs are sufficiently gradual). In the latter case,
technological divergence may (and will, from time to time) become sufficiently
large to make the eventual bankruptcy of firms unavoidable.

(iii) Suggestions for further research and the role of simulations

A variety of other interesting results could be derived within the set-up
described. For example, it follows easily from the preceding analysis that, if
firms are impatient, the alternative technological structures (L), B), or (R)
have significantly different effects on the long-run profitability variance of
the industry. Thus, while under (L) this variance remains bounded within
relatively narrow limits, under (B) - or (R) with a large technological range
- the process will witness wide differences in firms’ profits.

Another important concern of future research should be to explore the
effect of different parameters of the model on the equilibrium incentives to
innovate (i.e. to "buy innovation draws"). In this respect, the diffusion lag
s; would represent a natural candidate, whose interpretation, for example, as
the regulated life-span of patents could permit extracting form the resulting
conclusions some valuable insights on technological policy.

The technological structure itself should also have interesting
implications on the incentives to innovate. For example, it seems intuitive
that, under technological scenario (L), quite  backwards technological
followers should never spend resources on innovation and rely instead
exclusively on imitation. This would be in agreement with the empirical
regularity which indicates that only firms which are close to the
technological frontier carry out genuine innovation activities (cf. Dosi,
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Pavitt & Soete (1990)). However, under alternative technological assumptions
such as (B) or (R), I would conjecture that path-dependence considerations
would probably add some interesting caveats to the previous statement.

The above comments simply illustrate some of the pending questions which
could be addressed in future research. In general, of course, a complete
analysis of the industrial dynamics should ideally focus on the full knowledge
of the limit or invariant distribution of the corresponding stochastic
process. However, the complexity of the framework proposed makes it a
formidable task to attempt a general analytical approach to this problem.
Thus, a sensible alternative is to have dynamic simulations "solve" indirectly
for the stationary distribution in particular contexts. This is a particularly
sound option when the dynamic process is known to be ergodic (c.f. Theorem
3.3.4). By conducting such simulations for a wide range of different
parameters and alternative technological scenarios, such simulation exercises
should yield some light on interesting "comparative-dynamics” issues. This
task is also left for future research.
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4.- SUMMARY AND CONCLUSIONS

This paper has proposed an intertemporal model of industrial
technological competition in which firms’ choices and possibilities are
subject to crucial path-dependent considerations. The technological space has
been endowed with a digraph structure. This formalizes, in a stylized fashion,
such notions as technological precedence, technological gaps, or switching
costs, all of which play a key role in the model.

At each point in the process, active firms adopt a technology within
their choice set, itself the result of their own past innovating activities
and a (lagged) process of technological diffusion across the whole industry.
New firms enter into the industry only gradually as allowed by current
technological availability. On the other hand, incumbent firms exit when
forced by bankruptcy. This context induces a dynamic game. In it, firms have
been assumed to play a Symmetric Markov Perfect Equilibria (SMPE). That is, a
symmetric equilibrium where each firm’s strategy only depends on payoff-

relevant considerations.

The analysis has focused on three alternative types of technological
structures: linear (L), branching (B), or reticular (R). First, it was proven
that an SMPE always exists. Second, it was shown that every SMPE induces a
well-defined limit (or invariant) distribution for any associated real and
anonymous function of the prevailing situation. Third, conditions have been
proposed which guarantee that such limit distributions are ergodic, i.e.,
independent of initial conditions.

The second part of the paper has investigated the effect of different
technological structures on the "population dynamics" of the industry. It was
shown, in particular, that if firms are relatively impatient the extent of
population turnover may be highly sensitive to the underlying technological
structure. Thus, the situation will range from no turnover under (L) to a
never-ending process of firm renewal under (B). Scenario (R) was seen to yield
either one conclusion or the other depending on the magnitude of the
technological range.

30




In the last part of the paper, some heuristic comments have been proposed
which suggest further issues for future research. It was also argued that, in
view of the complexity of the theoretical framework, a fuller analysis of
long-run behavior may require the use of computer simulations. The above
mentioned ergodicity results support this option.
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APPENDIX

Proof of Theorem 3.3.1:

The proof could proceed, in a more straightforward way, by conceiving the
game as the limit of essentially finite "truncated" games, as in Fudenberg &
Levine (1983). Because of its future use, however, the existence proof given
here will rely on the fact that, under the postulated assumptions, every SMPE
of the game may be defined upon a finite state space. To establish this fact,
a Markov description of the game will be proposed which is then shown to admit
a finite but sufficient "symmetric" coarsening.

Consider the basic state space:

Q° = [% 2@]1, 27)

where a typical state @ e Q° specifies, for each firm i e I, the pair o?
(h;,N;) where the first component is firm i’s technological history h;, e % '=

((~) v | e))°o and the second one is the set of firm i’s current invention draws.
Here, the symbol o represents a "dummy" constant which fills unneeded (or
inexistent) dimensions. (For example, finite histories are represented by
sequences which are constantly equal to o beyond a certain point.)

Such an ‘"exhaustive" state space is obviously sufficient for  all
strategies which are not strictly dominated and are only dependent on payoft-
relevant aspects of the game history. First, it is artificially enlarged as

follows:

Ql

[% 29]‘ . T (28)

where ®! = (w%h), h € & o 3 strategies are symmelric, it is possible to
abstract from the firm indices and restrict attention to participating firms.
(Firms only differ in their order of entry. Thus, once they have entered,
payoff relevant strategies should abstract fully from their particular index.
On the other hand, a non-participating firm, has the only trivial strategy of
selecting the unique element of its choice set, namely #).
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By (A.1) and (17), there are at most a finite number of simultaneously
participating firms, say v, in any given period. On the other hand, by (A.3),
the number of invention draws chosen by any firm in any period is bounded
throughout by some given natural number, say d. Finally the postulated process
of technological dissipation, permits ignoring histories going back longer
than s, periods. These three facts combined render it sufficient to

contemplate a state space

Q* = (Oufe))" (29)
where there are at most u = 2(v-s,)+d "dimensions", appropriately codified.

Addressing each of the different technological scenarios in turn -- (L),
(B), and (R) -- it is shown next that, under (A.1) to (A.4), any SMPE can be

defined on a finite coarsening of Q.
(i) Scenario (L)

By (A.1) and (L), each technology 0 is uniquely characterized by its

corresponding value p(8). For each x ¢ Q% let
Vi=(per p=p®),0e0), (30)

?

for each of the participating firms, j = 1,2,..,v’, v° = v. The
homogeneity of degree zero of the payoff functions allows the values in
v
V=V
j=1
to be normalized, making min {p: p € V) = 1. Then, associated to any x e Q%
a real vector y(x) € R' may be associated with the convention that p(e) = 0.
Moreover, by (A.4(1)), for any positive components y; and Y; G, = 1,2,...,u)
the relation y; = §k y; must hold for some k e Z, an integer number. I now
show that such integers k must remain bounded across all reachable states
(i.e., those states which have any possibility of occurring along the

process).

Denote by ¥ € N a sufficiently large number of "u-steps" such that é('y') >

f,(1,0,0,...). Such ¥ is ensured by (A.2) and represents a bound on the number
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of pu-steps which any incumbent firm will adjust its technology in any given
period. Given any t and the state x(t) e Q? prevailing in it, consider

y(x(t)) € R', as described above. Let h[y(x(t))] € R be the maximum component
of y(x(t)). The fact that innovation is gradual and "dissipated" when not used
in s, periods implies, in view of the preceding considerations, that:

Vi ts, = 10 < t, h[y(x(@)] = n[y(x@))] %Y. 31)

By (A.1), there is a minimum ratio € between the technological values of
two firms which is consistent with the survival of the laggard. Let k, satisfy
§'k0 < &. Expression (31) implies that any firm i € P(t), t-s, = T < t, which
is active and survives at T, ie., i € Z(1+l), must use a technology 0,(T)

with a value

p(8,®) = &% n[y(x)]
= &% h[y(x1))] €7 = g2 Vg (gr)) (32)

for all 7, t-s, = 7° < t. Denote b = s,-¥ + k, + 1. The previous argument

permits replacing the state space Q7 in (29) by:
Q={yer ay=1&yy>0>Gkez [k =by=Ey)}. 33
which is obviously a finite set, as desired.

Scenario (B)

The considerations underlying (31) and (32) which permit the restriction
to a finite set of value vectors also apply in this case. Under (B), however,
a technology is no longer characterized by its value alone but requires the
specification of its position in the graph. The key idea in the argument that
follows is that, given the fact that no technological shift will ever be

considered which involves a gap larger than ¥ above, any configuration in the
graph may be described without any loss of relevant information through a
finite "truncated tree" which never involves branches joining bifurcation

points longer than ¥.
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Let x € 92, as described above. Let é be the (finite) set of non-dummy
components of x and let f: é —> R be uniquely defined such that min { p(6):

A A
0 O} =1 and v0,0’ € O,

p(e) _ p(®)

= 34
p@) p®) 69

As above, it can be guaranteed that v6,8°  ©, P(6) = & p(8’) with
k| = b.

Complement now é with ad-hoc "technologies" to form a set 0 > é\) such that

©,fi) is a tree (i, B, and ¥ will denote the counterparts of |, B, and y) with
the following characteristics. First, it preserves the ordering given by B in
the underlying tree (O,L):

G v0.0' O, 0B6 <06p6.

Second, the function f is extended to ©, giving rise to a function

p: © — R meeting the following requirement:

(i) v0,0° €« ©, 0 L 0’ = p(®’) = & H(O).

Third, the Y-distance between technologies in é whose 7Y-distance does not
exceed ¥ is preserved:

(iii) v0.0" € ©, Y6,0") =7 — ¥6,0”) = ¥(6,0").

Finally, the y-distance between consecutive "branching points" of (é,ﬁ)
is bound by ¥. Denote by B(O,fi) = (8 « ©: 30°,0”, 0’0", 0 [L 6, 0 [i 67},
i.e., the set of branching points of (O,[1).

(iv) Let 0, 0 € B((:),;."L), 0 = 0°, such that ﬁ 0” e B(é,ﬁ), different from
© and ©’ with © B 0> B 6. Then 7(8,8") = 7.

Clearly, given any state x € Q,, a tree satisfying (i)-(iv) can always be
associated to it. Under (B), it represents a sufficient description of the

game situation. Moreover, given ¥ and b, the set of minimal such trees is
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finite. They define, therefore, the elements of a sufficient and finite state

space, which will be denoted by Q%.

Scenario (R)

As before, for any state x e Q? and every pair of technologies 0, 0’

which are components of x, it can be ensured that p(8) = &* p(0’) with |k| =b
for some pre-specified b. Thus, by normalizing technological values
appropriately, any current state may be sufficiently represented within a
reticular structure of the same dimension range as the original one and a

finite depth which is only dependent on b and L‘;‘:lrj. Being analogous to the
preceding arguments, I do not dwell into further details. The finite state

space which results which results will be denoted by Qg.

It has been shown that for any of the three technological structures
contemplated, (L), (B), and (R), there is a finite state space Qﬁ, h = L,B,R,
which, for any given firm, is able to reflect all the pay-off relevant and
symmetric considerations. Let QE, QS and lez be maximal coarsenings of their
respective former counterparts. Since each Qf, is finite so is Q for each h =
L,B,R. Denote by ©,(®) the (finite) number of actions that the given firm has

in state ® € Q. The existence of a SMPE then immediately follows from the
fact that if the firms restrict to strategies of the form

: | e
o: & — A , h = LB,R, (35)
0eQ
the game can be viewed as a finite game. This completes the proof. |

Proof of Theorem 3.3.2:

Let Q* be the minimally sufficient joint state space of the game, as
introduced in Subsection 6.2 (iii). Denote by Q** the quotient space Q*/y,
where the equivalence relation v is defined by:
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VO,0° € Q¥ ® Y ® <« There exists a permutation p(:) of I s.t.
® =Y (@)

If firms play a symmetric MPE o* (i.e., strategies as in (35)), the
stochastic process on Q* induced by o* and any initial state @, € Q* will only
depend on (i.e., its transition probabilities will be a function of) the
element [®] € Q** to which the current ® belongs. Thus, it may be viewed as a
stochastic process on Q**, On the other hand, any anonymous function { as in
(25) is constant on any element of Q**, Therefore, it may be also regarded as

a function on Q¥¥*,

From the considerations explained in the preceding proof, it is clear
that the set Q** is finite. By a well-known result on Markov Chains (see, for
example, Karlin & Taylor (1975)), every Markov process defined on a finite
state space has a well-defined invariant distribution from any initial state.
The existence of such invariant distribution on Q** for any initial state
®, € Q* induces a corresponding invariant distribution for the process
P£(0*,{,m,). This completes the proof. |

Example: Condition (*) can be violated in a SMPE.

Consider scenario (B), assumptions (A.1)-(A.4), and payoff conditions
which allow at most two viable firms in the market (c.f. (17) and (36) below).
Let:

@) C@) = RQ) > £,(1,00,...).

(i) f,(p.£p,0,0,...) < M < £,(p,p,0.,0,...);

(iii) vij e I p; = & p; = fp) < v;

Thus, by (i), no firm survives if it performs a technological shift
involving a gap of more than one quantum or choose more than one invention
draw; by (ii), every new firm which enters the industry will do so with
technological-value parity with the incumbent; by (iii), any firm that lags
two &-steps in technological value will not survive.

As in the proof of Theorem 3.3.1, let % =(0)); € Q0 where ) =
(h;,N). Consider a state with two incumbents, say 1 and 2, and the following

partial prescriptions:
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(@ Let h = (h;,h,) be such that both firms are at the same status-quo
technology and enjoy the same technology choice set prior to invention. Then,
neither firm adopts any invention, staying with the prior choice.

(b) Let h = (h;,h) be such that the status-quo technologies of each
firm, 0, and 0,, display y(ei,ej) = 3 for each i,j = 1,2, i#j. Then each firm
adopts any successful invention if one arises; otherwise, it stays with the
preceding choice.

I shall now argue that, under certain conditions on payoffs and parameter
values, the previous prescriptions form part of a SMPE. I simply sketch the
argument. Denote:

£,(1,00,..) - £,(1,1,00,..) = A, > 0;
£,(1,1,0,..) - £,(1,£,00,..) = A, > 0.

The key point to check is that deviations from (a) can be deterred. Given
the parameters of the model, and in particular the discount factor §, choose
the ratio

A
= 0.0,

sufficiently small. Then, any deviation from (a) can entail at most an
arbitrarily small gain in total (discounted) payoff. Any positive probability
of such gain would be more than offset if there is also positive probability
(independent of o) that the firms will enter into a situation where (b)
applies. For, in this case, there will be positive probability (again,
independent of ) that the firm goes bankrupt in finite time. This will deter
the deviation if o, is small enough.

To see that after any deviation from (a), there is a given positive
probability that (in finite time) (b) applies, focus on the following chain of
events. After, say, firm 1 adopts an invention deviating from (a), firm 2
obtains one successful invention different from that of firm 1, followed by
three subsequent periods when both firms obtain successful inventions. Suppose
that the diffusion lag s, = 4. Then, to adopt its respective inventions by

each firm is a mutual best response if, given
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A,
£,(1,1,0,...) ’

)

8 is not too large. Once the circumstances contemplated in (b) apply, they
remain in place until one of the firms goes bankrupt, with probabilities over
different paths which are only dependent of invention probabilities, not on
the rest of parameters of the model. Once a firm goes bankrupt, the other one
enjoys a "temporary monopoly" which, in view of (ii), ends with the conditions
contemplated by (a) and restores a stationary situation. Given this fact, to
follow the prescriptions of (b) is also a mutual best response for each firm,
again provided that o, is sufficiently small.

From the above discussion, it follows that, under the conditions
described, any situation displaying the features contemplated by (a) is an
absorbing state of the process. This violates condition (+). Relying on the
idea embodied in this example, it should be clear how to construct equilibria
which, by having more than one absorbing set of states, yield non-ergodic

processes. |

Proof of Proposition 3.3.3:

Consider first the case with 8 = 0. Then, any SMPE defines a Nash
equilibrium of the one-shot game induced at any t by ©(t), the technology
choice set of firm i after invention, and the previous technological choice
0,(t-1). By (A.1) and (A.2), it is a strictly dominated strategy for any firm
i € Z(t) not to increase the value of its technology if it has obtained a
successful invention draw. (This does not mean that it must necessarily adopt
one such invention when arises. However, if it does not, it must be because it
shifts to some other technology available through imitation that itself must
have a higher technological value than the status quo.) Analogously, it is a
dominated strategy to choose a technology of lower value than the current
status quo for any incumbent, or one of lower value than the maximum available
in the industry by an entrant. Therefore, none of these strategies can belong

to any one-shot Nash equilibrium.

Let now &6 > 0. If § = §; for sufficiently small §, the preceding
restrictions on equilibrium strategies also applies to any SMPE. Given any
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m, t, t" € N, suppose Eéq n*(t) = m. Then, since, by (A.3), the equilibrium
number of invention draws of any incumbent firm is bounded above, say by d,
this implies that there have been at least ¢ = m/d successful inventing firms
from t to t’. By making m sufficiently large, Condition (+) must be satisfied
for any B > 0. This is a consequence of the following considerations: (a) any
successful inventing firm will raise its technological value; (b) a firm which
lags by some maximum pre-specified (relative) amount behind any firm of the
industry will not survive; (c) any new entrant will choose the technology
available with the highest value. Points (a) and (c) were explained above.
Point (b) is a consequence of assumption (A.1) and (17). This completes the
proof of the Proposition. |

Proof of Theorem 3.3.4:

By Theorem 3.3.2, the stochastic process & ((_)'*,C,(oo) induces a well-
defined invariant distribution for any anonymous function { and initial state
®y € Q* To show that such invariant distribution is independent of initial
conditions, it is enough to show that, for every state ® e Q% there is
positive probability of reaching some state in a given equivalence class [®] e
Q** (c.f. the proof of Theorem 3.3.2). Given the anonymity of €, this implies
that the process & (Q*,C,a)o) has a single ergodic class. Or, equivalently,
that it is ergodic. (See, for example, Karlin & Taylor (1975, Theorem 1.3)).

Let ¢, = (1,1,.,1,0,0,...) denote the vector in R' whose first z
components are equal to one and the remaining components equal to zero. By

(A.1), the maximum carrying capacity of the market Z is defined as follows:
Z=max { zeN: Q(e) > v | (36)
The class [®] that shall be used in the argument is described as follows.

There are z incumbent firms, i.e., for any O e [(’:5], |Z((/b)| =7z. All firmsi e
P(®) (including the potential entrant) have the same technological choice sets

A A A
©; = (0}, where 0 is also the status-quo technology of incumbent firms. Thus,
& can be identified with some initial conditions, as described in Section 2.3,

where the industry starts at "full capacity”.
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I provide the argument in detail for scenario (B). The reader should find
no difficulty in adapting the line of proof to the other two simpler scenarios
(L) and (R). Let w(t)) be any state in Q* prevailing at some t,. A chain of
events of positive probability will be specified which leads to some state in

[B] in finite time.

For any t € N, denote by

o)

I ew (37)
ie P(t)

the set of globally available technologies. This set can be divided into a
collection of (not necessarily disjoint) subsets C(t) = {c,(t), c(t), ...,
c,(t)} where each c,(t) include those technologies in ©(t) which belong to the
same "technological line". This concept can be formalized as follows:

V0,0’ € O(1), (0,0') sc ) e C(t) > O B O or & B O (38)

It will be useful below to write the preceding expression in the

following counter-reciprocal equivalent fashion:

v0,0° € O(1), = ( (6,6°} < c (1) o 3q € N: ¥0,0)) = q, ¥O',0) =q.  (39)

Throughout the contemplated chain of events, it will be supposed that,
starting from t;,, no future realization of the invention process "opens a new

technological line". To formalize this idea, let B stand for the strict (non-
reflexive) part of 3 and, for any 0 € © and any subset & < ©, let the notation

0 B E (or 8 B Z) indicate that © B-precedes (or B-precedes) some element of Z.
Suppose that for all t > t;, the following holds:

(i e Z(t), B(t-1) B O(t+-1)) — vO « N(1), 8 B O(t-1). (40)

Given B > 0, let m(B) be determined as required by Condition (+). If B is
chosen large enough and the hypothesis of this condition is satisfied at some
t; > t;, then q in (39) can be chosen at t, arbitrarily large for any two
available technologies belonging to different technological lines in C(t,).
Or, more formally, ¥q € N, 3B > 0 such that:
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(z,‘c;o n*(T) = m(B), 0 e c,(t), 0’e cy(t,), kzk’) (41)
- (667 =q, ¥0'8) =g

The preceding statement is clearly true for current technological
choices; to see that it must also hold for any of the available technologies,
recall the argument used in the first part of the proof of Theorem 3.3.1 where
it was shown that the gap of past but still available technologies to those
currently used is bounded.

Thus, choose q large enough so that, by (A.2), it can be ensured that no
shift across different technological lines will be performed at t; by any of
the incumbents. Let

6 = max {p(6): 6 € U o,t)},
i € 24

and assume that for some t, and all t € N, t; = t = t,, the following holds:
[i<z), p(8,») = p] = Nyt+1)={o}; (42a)

liezco), p(6,0) < p ] = Nt+1) 2 (o). (42b)

That is, only those firms below the technological frontier prevailing at
t, obtain successful invention draws. By choosing t, sufficiently large, (40)

implies that it must be that for all 6 € O(t,), p(0) = [3 Otherwise, Condition
(+) would be clearly violated. If it happens that there exists a unique
technological line in C(t,), then the essential part of the argument will be
complete (see below). Otherwise, choose any of the technological lines, say
¢i(t,), and assume that for some sufficiently large t, and all t e N,
t, = t =< t;, the following holds:

[iez(v), 6,1) € c,(] = Ny(t+1)=(o}); (43a)
[iez®, 6,1) ¢ ¢, ] = Nt+1) = (o), (43b)

where c¢(t), t > t,, is defined in the obvious fashion, composed of the
technological successors of the (unique) technology belonging to c,(t,). By
choosing t; large enough, it is clear that only incumbents using technologies
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in ¢(t;) will remain. From there on, a chain of events analogous to that
described in (42) can be contemplated such that for some finite t,,

@) 12| =z,
(ii) 0,(t,) = ,
(iii) ©4t,) = (8).

Thus o(t;) e [&], as desired. Point (i) obtains, if the entry cost is
small enough, by the rule of entry postulated in Subsection 2.5. Point (ii)
follows from Condition (+), as above. Finally, Point (iii) is simply a
consequence of the process of technological dissipation postulated in
Subsection 2.3.

It just remains to show that the above described chain of events has
positive probability and can be completed within a pre-specified duration
which bounds t,-to. But this immediately follows from the assumptions of the
model, completing the proof of the Theorem for scenario (B). As indicated
above, the proof for the other two scenarios (L) and (R) is an easy adaptation
of the preceding argument. |

Proof of proposition 3.3.6:

Consider first the case where 8 = 0. Starting from an initial state ©,
with the features described in Subsection 2.3, it is clear that for all time t

and every i,j € Z(t), it must be the case that

p;(tz =< §
pi(t)

since it is a strict best response in every SMPE (which, under § = 0, is a

(44)

b

Nash equilibrium of the one-shot game arising in each t) to adopt any
available technology which is an immediate successor of the preceding one
(cf. (A2)). This implies, by (A.1), that, provided that &, is chosen small
enough, no incumbent firm will be forced to exit the industry. Thus,
Z(t) € Z(t’), vt > t, as desired, for this case. Since such conclusion is
based on strict best responses by firms, it still holds if 9y > 0 is selected
sufficiently small and 8 = §,. This shows the first part of the Proposition.
For its second part note that, if entry costs are small, there is probability
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1 that, at some t, the cardinality of Z(t) equals Z. Since thereafter Z(’) =
Z(t) for all t > t’, the limit distribution Mo*,L,,-) must be concentrated at

z, as claimed. This completes the proof. |

Proof of Proposition 3.3.7:

To establish the first part of the Proposition, it is enough to show
that, at any given t), every firm i e Z(i) has positive probability of
exiting the market within some maximum number of periods. This ensures that
set of incumbent firms at two sufficiently distant points in time will be
disjoint with an arbitrarily high probability.

Consider any (t) e Q* By Proposition 3.3.3, 3§, > 0O such that, if
8 = §), Condition (+) is satisfied for any SMPE o*. If, furthermore, the entry
cost is small, the line of argument used in the proof of Theorem 3.3.4 shows
that from any state ® € Q%, there is some minimum positive probability p, that
the process reaches a state in the equivalence class [®] € Q**, as described
above, within some pre-established number of periods, say r. Recall that in

any such a state there are Z incumbent firms and all of them have the same

A A
technological choice sets ©; = (6}, where 0 is also the status-quo technology

of incumbent firms.

Let o) e [&], t, = to, + r. From any such a state, choose one
particular i, € Z(t;) and consider the following chain of events. For all

t e {t+1,...5),

Vi € Z(t), N(© = (o}, IN®)| = L (45a)
vj,j’e Z(tl), j#ioaej’, Nj(t) = Nj,(t); (45b)
Vj € Z(t,), j#i, Nt+1) n Nt+1) = e. (45c¢)

If t, is chosen large enough, (A.3) implies that both firm i, and the
rest of incumbents are, with respect to each other, "technologically
isolated". That is:
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vj < Z(t), j#, Y(8(1).0, (1) = a*, (8(L)6, (1)) = g*, (46)

where gq* is large enough that it deters imitation in any direction across firm

i, and the rest of incumbents in Z(t,).

Consider now, for all t e {t,+1,...,t;}, the following further series of

events:
vj € Z(v), j * i, Ni(t) = {o}, (472)

N, (® # (o). (47b)

If t; is chosen large enough, (A.1) implies that there must be some t’,
t, <t = t; such that Z(t’) = {i ). The preceding chain of events from t, to
t; described above has, given our assumptions, some positive probability, say
p;- Thus, from any state w(t,) prevailing at t,, from which the argument

started, there is positive probability p = p,-p, that the eventual situation
referred at t* obtains. Since the firm i, in (45) was chosen arbitrarily among
the incumbents at t,, this implies that, from any state ©® e Q¥ there is

positive probability no smaller than p that any current incumbent will exit
the industry in the next r+(t;-t;) periods. This establishes the first part of
the Proposition. As for its second part, note that the preceding argument

shows that both z = 1 and z = Z must have positive weight in the the ergodic
distribution A(g*,{,,-) for the SMPE o*. Since entry is gradual (c.f. (18)),

this implies that AMc*,(,,-)(z) > O for all z € {1,2,...,Z}. The proof of the
Proposition is complete. i

Proof of Proposition 3.3.8:

Since the proof of Parts (i) and (ii) parallels very closely that of
Propositions 3.3.6 and 3.3.7 respectively, I will just sketch the argument.

To show Part (i), consider only one dimension and r, = 1. If switching

costs are gradual enough, it is easy to see that, provided & and (AJ(Z) are
small, the inequality (44) derived above for scenario (L) is now replaced by:
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- = gslﬂ. (48)

If & is small, the desired conclusions follow for the case considered.
This yields the upper bound claimed in the general statement.

As for Part (ii), it follows from the fact that, given k e N", if Z;'l 1

is large enough, the chain of events described in (45)-(47) for scenario (B)
can still be chosen so as to induce the sole survival of firm i, at some
corresponding time t’ = t;. To see why, suppose, for simplicity, that there is
just one dimension and postulate the series of events (45) and (47) with the
following additional requirement in (45). For all t, t; <t = t,,

0 e N, (® = &) = min {d,® (t1) + 1, 1,} (492)
Vj € Z(), j # i, 0 € N(® = d,(0) = max {d,0, (1) - 1, 1,}.  (49)

Even with these additional requirements, the contemplated series of
events has positive probability, bounded above zero. If the "dimension range"
r, is large enough, they will eventually produce the exit of all firms in
Z(t,) except i, since, beyond t,, the technological gap between the former
firms and the latter can be made arbitrarily large. Hereafter, the argument
proceeds as in the proof of Proposition 3.3.7. |
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