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CREDIBLE IMPLEMENTATION

Bhaskar Chakravorti, Luis C. Corchén and Simon Wilkie

ABSTRACT

The theory of mechanism design and implementation abounds with clever mechanisms whose
equilibrium outcomes are optimal according to some social choice rule. However, the cleverness of
these mechanisms relies on intricate systems of rewards and punishments off-the-equilibrium path.
Generally, it is not in the designer’s best interest to go through with the reward/punishment in the
"subgame" arising from some disequilibrium play. This would make the mechanism’s outcome
function non-credible. In the context of exchange economies, we define an appropiate notion of
"credible” implementation and show that (a) the non-dictatorial Pareto correspondence can be credibly
implemented (b) there exists no credibly implementable Pareto-efficient and individually rational social
choice rule and (c) there exists no credibly implementable fair social choice rules. We derive
necessary and sufficient conditions for credible implementability of choice rules. The main implication
is paradoxical: it is suboptimal for the designer to be endowed with "too much" information about
the economy. Finally, we show that the negative results persist even under weaker credibility

requirements.






1. Introduction

The theory of mechanism design and implementation abounds with clever mechanisms whose equilibrium
outcomes are optimal according to some social choice rule. However, the clevemess of these mechanisms
relies on intricate systems of rewards and punishments that result in case of behavior off-the-equilibrium
path. The voluminous literature on the subject generally ignores the designer’s incentives to operate the
mechanism ex post. After all the designer is usually a principal (in a principal-agent setting) or a
government or a body of representatives of the agents in society whose interests and objectives are

embodied in the social choice rule being implemented.

Suppose a disequilibrium strateéy profile is played by the agents; it is not always in the designer’s
best interest to go through with the reward/punishment in this “"subgame". Consequently, the mechanism’s
outcome function would be non-credible. In the absence of indefinitely repeated mechanism design, given
the designer’s inability to pre-commit to the rules of a mechanism, credibility poses a critical

constraint over and above the familiar one of "incentive compatibility”. This is the motivation for our

paper.

Extreme examples of non-credible mechanisms are ones that either promise a drastic outcome such as
confiscating all resources from the agents, or from any given agent; and extravagant ones such as a
promise to give an agent whatever outcome the agent desires in certain circumstances, regardless of the
effect on the rest of the economy. In general, the lack of credibility appears in more subtle ways. In
the context of exchange economies, we define a notion of “credible” implementation appropriate for the
standard model of social choice rule implementation and show that (a) the non-dictatorial Pareto
correspondence can be credibly implemented, (b) there exists no Pareto-efficient and individually rational
social choice rule that can be implemented in a credible manner and (c) there exists no envy-free and
efficient social choice rule that can be implemented in a credible manner. We derive necessary and

sufficient conditions for credible implementability.



Next, we address the following question: are these negative results an outcome of an excessively
strong credibility requirement? We explore this issue with respect to the result (b) above. To define
weaker (and, perhaps, more acceptable) requirements, we need to impose more structure on the standard
implementation problem. In particular, not only must the target social choice rule be common knowledge,
but the entire social utility function that the designer is maximizing needs to be specified. Note that
the social choice rule, which is a correspondence from the domain of preference profiles to allocations
simply conveys information about the allocations that maximize social utility for each preference profile.
We show that for any social utility function satisfying a weak property of monotonicity, the negative
results persist: there exists no Pareto-efficient and individually rational social choice rule1 that can be
implemented in a weakly credible manner. A similar result is obtained if the social utility function were
to satisfy a property of lexicographic preference for efficiency. A social wutility function is
lexicographic in efficiency if efficient allocations are preferred by the designer to inefficient
allocations. The motivation for such a requirement is strong in environments with costless renegotiation
opportunities among the agents. In such circumstances, a mechanism that assigns an inefficient allocation
of resources will be undermined by the agents renegotiating via a Pareto-improving trade. This indicates

that the negative implications of credibility are rather robust.

The questions associated with the inability to commit to a mechanism has recently been addressed in
Maskin and Moore (1989), Rubinstein and Wolinsky (1989) and Aghion, Dewatripont and Rey (1989). The
approach taken in these papers is as follows: it is presumed that there is some renegotiation or
bargaining process after the outcome is chosen by the planner, which leads to efficiency ex post. Our
approach is radically different. Instead of focusing on the issue of commitment on the part of the
agents, we consider that of commitment on the part of the designer. We do not extend the original model

to allow for ex post renegotiation possibilities.  Instead, the designer’s objectives are consistently

With one exception -- a rule that is not very interesting and fails strict individual rationality.



associated with the social choice rule she is committed to implement.

In spirit, the notion of credible implementation introduced in this paper is akin to the idea of a
sequential equilibrium of a game between economic agents as first movers and the game designer as a second
mover. The game designer is modelled as a dummy player whose preferences are embodied in the social
choice rule. In case, the entire social welfare function is known, these preferences are fully specified
by such a function. The economic agents simultaneously transmit messages to the designer who chooses an
outcome (i.e. allocation of resources) in response to the messages received. For a mechanism to be
credible, we require the outcome chosen to be a "best response” (consistent with knowledge of the social
choice rule) according to some posterior beliefs about the underlying economy. On the other hand, for a
mechanism to be weakly credible, we require the outcome chosen to be a "best response” (consistent with
knowledge of the social utility function) according to some posterior beliefs about the underlying

economy.

We proceed with a note of caution. We cannot simply re-write the standard simultaneous-move game
form as a sequential game with the designer as second-mover (as outlined in the previous paragraph) and
examine its sequential equilibria. In an equilibrium, the strategies of all players are assumed to be
common knowledge. If the designer were to be modelled as a full-fledged player, technically, we would
have to admit the possibility that in equilibrium, she knows what strategies the agents in the economy are
playing. This would endow the designer with too much knowledge and the revelation problem would disappear
since knowledge of strategies would mean that in revelation mechanisms, the designer would be able to
discern truth-telling from lying.  Hence, our notion of implementation incoporates the idea of a

sequential equilibrium, but is not one in the formal sense.

The basic model presumes Nash equilibrium as the fundamental solution concept employed by economic
agents. This translates to an implicit assumption of complete information among the agents. In addition

it ignores the many criteria for refining equilibria. Since we wish to keep the focus on the issue of



credibility, we maintain the assumption of Nash equilibrium -- which has always been the starting point
for all analyses. Once our main point is made in this context, it is easy to see that it applies to all
other environments (with asymmetric information, refined solution concepts, abstract social choice

domains, etc.) as well. The extension to the latter cases is the subject of future papers.

The central implication of our paper is the following paradox: it is sub-optimal for the designer to
have "too much" information about the economy. We shall argue that the designer’s freedom to design
credible mechanisms decreases as more information is observable regarding the economy. Our conditions
show just how much absence of information is sufficient to ensure credibility of implementation of

sub-correspondences of the social choice rule.

The following section presents the basic model and definitions. Section 3 contains the results on
credible implementation and Section 4 contains those on weakly credible implementation. The final section

concludes.

2. The Model

Exchange economies with m goods and n agents are considered. The set of agents is N. Each i € N is

a triple <Z, >, ®>, where Z ¢ R is i’s consumption set, > 1is i’s (weak) binary preference relation
1 1 1 1 + 1

M
+

defined on Z X Z and ®w € R is i’s initial endowment. We assume that, for all i, > is complete,
1 1 1 1
reflexive, transitive and continuous and monotone in z. Also, ® is fixed and is publicly observable and
1 1

the profile (>'i)ieN is observable to all i € N but not to a social planner.

For any set X and an element x with i € N, the following notational convention will be used. We use
1 1

x to denote (x) __, x_  to denote (x).
ii€EN -1 b

., x. to denote the i-th component of x, and X to denote
JEN\{i} i

xxe NXi'



Let & denote the domain of admissible preference relations for i. 92 completely characterizes the
1
class of economies under consideration, and we refer to > € $2as an economy. let A = {z € Z: Zie N =
ZiGNmi} denote the set of feasible allocations and let Li(z’ ») = {2 € A: z > z;} denote the lower
1

contour set for i defined at allocation z in the economy >.

A social choice rule is a non-empty valued comrespondence @: #Z->> A.
The following are examples of important social choice rules:
The Pareto-efficiency social choice rule, PE is defined by
PE(>) = {z € A: %i 2> € A such that Vi € N, z; >z and for some i € N, 2’ ¢ Li(z, »)].
The non-dictatorial Pareto efficiency social choice PE* is defined by
PE*(>-) = {z € PE(>): z » 0}.
The individual rationality social choice rule, IR, is defined by

IR(~) = {z€ A:Vie N,z > @}
1 1

Suppose that for all i, j € N, Zi = ZJ Given z € A, i, j € N, define 2 as the vector in A

obtained by replacing z with zj and vice versa.
1

The envy-freeness social choice rule EF is defined by

EF(>) = {z e A: Vie N, %ij € M\{i} such that z%j > z.).
x 1 1 1
Given A as the (m - 1)-dimensional unit simplex, and p € A, define H(z, p)=1{z € A: Vi e N, pz; =
pzi} and Hi(z, p)={z € A: pz; < pzi].

Define ©* € A by 7. = 25, Vi, j € N.
1 J

The (constrained) Walrasian social choice rule, W, is defined by

W(-) = {z € A: 3p € A such that Vi € N, Hi(m, p) < L(z, »}.
1
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The (constrained) Walrasian from equal-division social choice rule, Wz, is defined by

W) = {z € A: 3p € A such that Vi € N, Hi(ze, p) € L(z >}

- A
Let A(-) and A(>) denote the sets of Walrasian and Walrasian from equal-division prices for the
economy >
A game form T is a triple <N, S, g>, where, given that for all i, Si is a message space, S = XieNSi
and g: § > A is an outcome function. A strategy for i in I' is a function o R Si, with Ei denoting the

strategy space.

A game designer is a social planner who cannot observe the true economy > and possesses a prior
probability distribution defined on the domain of economies, denoted Bo: 92 - [0, 1). Depending on the
application, the designer could be a principal in a principal-(multi-)agent relationship; or a govemment;
or a body of representatives of the agents. We assume that these priors are simple probability measures
and use B to denote the class of admissible priors. The support of Bo is denoted supp(BO). The designer
has preferences on A that are dependent on the economy > and representable by a social utility function u:
AX @ x B> R. For each » € & the set of allocations in A that maximize the designer’s utility is @(>).
The function u is normalized so that for all > € & for all z € @(>), for all B° € B, u(z, >, B) = u" .
The class of social utility functions consistent with @, ?éq), is defined by % ? - {u: V> € 9% Vz € ¢0),

max

u(z, >, Bo) =u }). Given u € %(P, the designer’s expected utility from an allocation z € A given a

A -~ A
probability distribution B: %- [0, 1] is denoted u(z, B).

The standard model of social choice rule implementation does not provide much information about the
designer other than the fact that her objective is defined by ¢; hence it is common knowledge that the
underlying social utility function is some element of % ?  We have added some further structure by
defining beliefs to formalize the credibility notion to be defined subsequently. To develop a weaker

concept of credibility than the one given in the first definition below, we need to add to the minimal



structure available from the standard model; we must assume that a particular social utility function u €

%(p is known as well.

The agents and the designer participate in the following process. The designer chooses I', then the

agents (simultaneously) submit their messages in I" to the designer, who in tumn decides on an allocation

by employing the outcome function in T.

The set of Nash equilibria of T is

NET)={c € X: Vie N, Vc; € Si, V> € &%, g(G;(>-), c.i(>)) € Li(g(cs(>-)), >}

The set of Nash equilibrium allocations of T" in > is

NEA(T, ») = {z € A: Jo € NE(T) such that g(c(>)) = z}.
Next, we introduce the criterion which is central to this paper.

Definition 1A: A social choice rule @ is credibly implementable in B if
Vp® € B, 3r, 3B: #X S » [0, 1] such that Vu e %%, V> e &
o]
[>— € supp(B )] = [NE (T, >) = cp(>—)] and
A
Vs e S, [z = g(s)] = [Vz’ € A, u(z, B(e, 5)) = u(z’, Be, s))].

[)— € supp(Bo)] = [Vs e S, BO, 9 = O].

The credible implementation concept is an amalgam of the standard notions of Nash implementation and
sequential equilibium. Any outcome chosen by the designer should constitute a best response according to

the designer’s beliefs.  Other than satisfaction of Bayes’ Law, when applicable, these beliefs are

unrestricted.

The standard objective of implementation theory is to check for the existence of a game form with

certain desirable properties. Our concept checks for a game form (with the implementation properties) and



a set of beliefs (in terms of posterior probabilities) for the designer which make the game form credible.

Three important remarks are in order:

() The implementability concept defined above is a global one (as in Palfrey and Srivastava (1987),
Chakravorti (1992a, 1992b)). A pair (T, P) with the appropriate properties must be shown to exist for
every conceivable prior distribution in a class B. This specification should be distinguished from one
where such a pair must satisfy the appropriate properties in a given domain of economies. Hence, our
notion covers both wide and narrow domains; we ensure the designer that no matter how good (or bad) her
information is about the economy, she can indeed implement ¢.

(ii) Also, the pair (I, B) must implement ¢ for every u € 7®. This formulation is in keeping with the
standard implementation model wherein the designer’s preferences define a partial ordering on A: the only
distinction is between @-optimal allocations and sub-optimal allocations. This is consistent with every u
€ %(p; hence, the mechanism must be credible with respect to any such u.

(iii) It should be observed that we have not defined implementation in sequential equilibrium. Also, we

have not used the notion of sequential equilibrium in a formal sense.

The first of the three conditions in the definition above corresponds to the usual condition of Nash
implementation. The second condition requires that any outcome recommended by the game form must be
rationalizable as a best-response, via ¢ and the designer’s beliefs, regardless of whether or not the
outcome is expected to be realized in equilibrium. The third condition is a minimal requirement imposed

by Bayes’ Law, whenever it applies.
In environments in which there is more information available about the designer’s objectives, and the
underlying social utility function is common knowledge, we would have a weaker notion of credible

implementability.

Definition 1B: Suppose u € #® is known. A social choice rule @ is weakly credibly implementable in (B,



u) if
Vﬁo e B, 3l 3B: #x S - [0, 1] such that V> € &
[ & suppe)] = [NEA(r, > =96)  and
Vs € S, [z = g(s)] = [Vz’ € A, uz, B(e, 5)) 2 u(z, Pe, s))].

[>— € Supp(Bo)] = [Vs € S, Bo-, ) = 0].

Next, we shall define some properties that are crucial to the analysis of the implications of

credibility. Some additional notation is required.

Let (B%) = {z € @(): > € supp(B%)}.
This is the set of allocations that are ¢-optimal in some economy assigned positive probability a priori

by the designer.

Given p € A, let >? € S be defined by
Vie N,Vze A, {22 € A: 2 >—},) z. and z, >—I; 2’} = fI(z, P)-
1 1 )] 1

These are the preferences with linear indifference surfaces with normal p.

Definition 2: A social choice rule ¢ satisfies Property 1(B) if

VvB° € B, V>, »* € supp(B), [z € ¢(-) and {L(z, ») N (B} < L, >—’)] = [z € (p()—’)}.

In the sequel, since it will always be clear that the condition is stated relative to a class of
priors B, we shall omit B from "1(B)" and simply refer to the condition above as Property 1. Property 1

is a strengthening of Maskin-monotonicity, due to Maskin (1977), which is given in the next definition.

Definition 3: A social choice rule ¢ satisfies Maskin-monotonicity if

V>, > € & [z € @) and Li(z, ) C Li(z, >—’)] = [z € (p()—')].



For n > 2, the property of Maskin-monotonicity is equivalent to that of Nash implementability, (see
Maskin (1985)) i.e. ¢ is Nash implementable if
Jr such that V> € & NEA(F , >) € 90).

This concept ignores the issue of credibility of the game form TI.

Definition 4: A social choice rule @ satisfies Property 2 in B° if

V> € supp(B°), [Bz € (B and i € N such that V7' € o), Vi € M{i}, zj >—J_ z;] = [z € (p()—)].

Property 2 is a variant of the "No Veto Power” condition of Maskin (1977), in which the allocation z
in the definition above is >-maximal in A for n - 1 agents. Our condition simply says that if in a given
economy, n - | agents agree on an allocation as top ranked among all allocations in 5(B°), then that
allocation must be ¢-optimal for the economy. Note that though Maskin’s No Veto Power condition is
trivially satisfied by any @ in the class of environments that we are studying, Property 2 is not
necessarily met. If the prior distribution B° has a sufficiently "rich" support, then most interesting
social choice rules would satisfy Property 2 in Bo. A rich support ensures that no two agents would agree
on a single allocation z as top ranked in (3([30) since @(B°) itself admits more allocations. This would
lead to Property 2 being met trivially. Hence, Property 2 should be seen (with some exceptions) more as a

condition on the richness of the support of B° rather than on @ itself.
The following properties are direct conditions on the designer’s beliefs.

Definition 5: A prior belief distribution BO: 92 [0, 1] satisfies Property 3 if

3p e A and >* € Rsuch that »F € supp(Bo).

Definition 6: A prior belief distribution BO: 92~ [0, 1] satisfies Property 3A if

Ve R [>— € supp(BO)] = [Bp € A() and ¥ € #such that > € supp(Bo)] .

14



Definition 7: A prior belief distribution B°: 2~ [0, 1] satisfies Property 3B if

V€ R [>— € supp(Bo)] = [Bp € 3()—) and >¥ € @such that >* € supp(Bo)] .

The restrictions on the beliefs given in the definitions above have the following form: the
designer’s priors must assign positive probability on the existence of at least one "linear” economy in
the domain of possible economies. Properties 3A and 3B distinguish two different criteria that such a
linear economy must satisfy; if an economy > is admissible then the priors must admit linear economies
defined by a Walrasian price for » (in the case of 3A) and a Walrasian price from equal equal-division for

> (in the case of 3B).

Next, we define a Pareto-indifference property from Gevers (1986), related to a regularity condition

used in Thomson (1984, 1987).

Definition 8: A social choice rule @ is Pareto-indifferent if

Ve HVz, 27 € A, [z € @o(>) and Vi € N, z > z and zi' > z] = [z‘ € <p(>—)].
1 1 1 1

i

3. Results on Credible Implementation

In this section, we establish necessary and sufficient conditions for credible implementability of
social choice correspondences. Furthermore, we identify correspondences that are credibly implementable
and those that are not. These include ones that are Nash-implementable. Finally, we establish conditions
on the designer’s beliefs that ensure credible (partial) implementability of a large class of

Nash-implementable correspondences.

Theorem 1: If ¢ is credibly implementable in some B, then it satisfies Property 1.

Proof: Choose > € & B° € B with » € supp(Bo) and z € @(>). By the definition of credible implementation,



there exists I' = <N, S, g> and 6 € NE(T) such that g(6(>) =z € ¢(>). Let B: & X S > [0, 1] be the
probability distribution representing the designer’s beliefs. By the definition of a Nash equilibrium,

foralli e N, {2’ € A: Bs; € Si such that g(s;, ci(>-)) =z} c Li(z, >).

Consider a second economy >’ € supp(ﬁo) with {Li(z, ) N 5(30)} c Li(z, >’) for all i € N. For any i
e N and G; € Ei, by definition of implementability, in the case where (cr;, c_i) € NE(T), we know that
8(6;()_)’ O'_i(>-)) = o) € (T:(B°) Hence, B0O-, c;(>—), o‘i(>)) = 1. In the case where (G;, o_i) ¢ NE(D), by
definition of credible implementation, there exists B: 2 X S > [0, 1] such that ;(g((o;(>-), o_i(>—))), B)
>%z B)forall ze A and all w e %% Hence, given that () BO-", (6;(-), 6, 6)) > 0 implies B°e-")
> 0 for all >" € & and (ii) @(>") is the set of allocations that maximize u(e, >") for all >" € 42 and all
u e Zé(P, we have g(c;(>-), o_i(>-)) € 6({30). Otherwise, if g(c;(>—), 64()—)) 3 6([30), then there exists u €
% ? such that u(g(G;(»), o_i(>-)), > < u(z", »") for all z" € A and all >" € % -- in contradiction with
the definition of credible implementation. Since {z’ € A: Bs; € Si such that g(s;, c_i(>-)) =2} c {Li(z,

») A ®(B%)}, and by hypothesis, (L(z >) N o)} < L(z, >), it must be the case that g(o(-)) € NE, (T,

»’). By definition of credible implementability, z = g(c(>)) € ¢(-). =

Theorem 2: Suppose n > 2. If ¢ satisfies Property 1 and Property 2 for all [30 € B, then ¢ is credibly
implementable in B.

Proof: The proof is constructive and closely follows the standard proofs for establishing sufficient
conditions for Nash-implementation in general social choice environments. Choose ﬁo € B. Consider the

following procedure:

For all i € N, let Si = {@z@(), »@), v(i)) € A X X {0, 1, 2,.}: z(i) € o0H)) >(i) €

supp(B°)}.

Definition 10: A message profile s € § satisfies Condition A(i) if

* E3
M Vje M[i}, z(j) = z for some z € 4,

16



an vj e M\i}, () = >-* for some >-* € %

am vj e M\{i}, v() = 0.

* *
Let (z , > ) be the allocation-preference pair for which parts (I) and (II) of Condition A() are met and
define z(Vv) such that

z(v) = 2(i) with Vj € M\{i}, V(i) = v(j) and [v() = V()] = [i > j]}.

The outcome function g: S - A is defined as follows: Vs € §,

Rule 1: If Condition A(i) is met for all i € N, then g(s) = z*.

Rule 2: If for some i € N, Condition A(i) is met for all j € M\[i} and Rule 1 does not apply, then
g(s) = () if 20) € Li(z*, »"). Otherwise, g(s) = z -

Rule 3: If neither Rule 1 nor Rule 2 applies, then g(s) = z(V).
The resulting game form is referred to as I'(¢).

The proof involves two steps. First, we show that @(-) C NEA(I' (¢), >) = @ for all > € supp(Bo).
Choose > € supp(B°), z € @(>) and s, = (z, >, 0) for all i € N. By Rule 1, g(s) = z. Consider a
unilateral deviation by i to s;. By construction, either Rule 1 or Rule 2 must apply to (s;, s_i). In

either case g(s;, s_i) € Li(z, >). Hence z € NEA(I‘((p), >).

The second step involves showing that NEA(I"((p), ») € of>-) for all > € supp(Bo) and that there exists
B: #x § > [0, 1] satisfying the credibility restrictions. Choose > € supp(ﬁo), 6 € NE(I'(p)) and o(>) =
5. Suppose g(s) € @) and s satisfies either Rule 2 or Rule 3. By Property 2, given n > 2, there exists
ke N and i, j € Mk} such that i and j do not prefer g(s) over every other allocation in (3([30). Thus,
one of them, say i, can deviate to s; = (Z’(}), > (@), v'(@)) so that 2’(i) e Li(g(s), ) N 5([30) and

v'(@) > wWJ for all /e M{i}. Since Rule 3 applies to (s;, s), g(s;, Si) = z’. Since z'(i) ¢
i B

Li(g(s), »), this is in contradiction with the assumption that ¢ € NE(I'(9)).

17



* * *
Suppose Rule 1 applies to s. We know that for all i € N, s, = (z,>,0) and g(s) = z. Any
unilateral deviation by i to s; € Si must be such that either Rule 1 or Rule 2 applies to (s;, s-i)' By
* *
construction, g(s;. Si) € Li(z , > ). Moreover, by construction of the strategy space, g(s;, s-i) €
~ * * - . * * ~ 0
PPB%). Also, {z € glsy, s) st € S} =LG,>)nN ®(B°). Since 6 € NE(T(9)), Lz ,>)noeB)c

E 3
L_l(z ,>). By Property 1, z € ¢(). =

As expected, the additional requirement of credibility drives a wedge between necessary and
sufficient conditions for implementability. The standard constructive proofs for sufficiency of Nash
implementability rely on the ability of agents to obtain their "most desired outcome” in certain parts of
the game (i.e. the one that corresponds to the chasing of the highest number) and thereby reducing the set
of equilibrium outcomes. The credibility constraint restricts what is achievable in this part of the

game; hence, an additional condition, i.e. Property 2, is needed.

As a second observation, we note that, contrary to what may appear to be the case at first glance,
the beliefs in a credible implementation are not necessarily degenerate. For example, if g(s) € o) N
¢(>-’) for any >, >’ € supp(Bo), then P(e, s) may be non-degenerate. The notion of credibility is such
that it excludes allocations that are not in 6({30) from the range of the outcome function. For weaker

notions of credibility, we refer the reader to the next section.

The following theorems identify social choice rules that meet Property 1, and those that do not. The
PE rmule is trivially credibly implementable, in a partial sense, by a mechanism that allocates all
resources to a single agent. The more interesting question relates to correspondences that exclude such

x
trivial outcomes, i.e. the PE , PE n IR and PE n EF correspondences.

%*
Theorem 3: The correspondence PE satisfies Property 1 for any B.

* *
Proof: Choose >, >’ € #and B° € B with », »* € supp(Bo). Suppose that there exists z € PE (»N\PE (>').

18



. *

Also suppose that the hypothesis of Property 1 is met, ie. for all i € N, {Li(z, ») N PE (Bo)} c Li(z,
' *

>'). Since z ¢ PE (>’), there exists z" € A such that z" Pareto dominates z in the economy >’. By

* %*
transitivity of the Pareto-dominance relation, and by closedness of preferences, there exists z € PE (>)
* *
such that z Pareto-dominates z in the economy >’. Hence, for all i € N,z ¢ Li(z, >’). However, by
- % *

assumption, for all i € N, {Li(z, >} N PE (Bo)} c Li(z, »’), which in turn implies that z ¢ Li(z, >")

* -~ X o . * * *x ~ X% o

must mean that z € {A\Li(z, )} v {Li(z, >\PE (B°)). Since z € PE (»'), we have z € PE (B).

*
Therefore, for all i € N, z € {A\Li(z, »)}. But this is in contradiction with the assumption that z €

*
PE (>). ]

In the two-person case the intuition underlying the argument above can be seen on a diagram. Refer
to Figure 1. Suppose that the hypothesis of Property 1 is met and its conclusion is not. Without loss of
generality, consider z € PE*(>-) as the point where the indifference curves for agent 1 in the two
economies > and >’ intersect. Such an intersection must occur to ensure that z & PE*(>—’ ). Next, consider
the intersection of the set PE*(>-’ ) with the indifference curve for agent 1 through z in economy >'. This
intersection must occur to the south-east of z, otherwise we would violate the requirement that for all i
€N, ILG ») O PE (8%} < Lz >). Let 2" be such a point of intersection. Now observe that z €
I3E*(B°) and is strictly preferred to z by agent 2 in economy >’. However, if z € PE*(>—), agent 2 must

* - %
clearly prefer z to z in economy >. This violates the hypothesis that {Lz(z, ») N PE B%)) c Lz(z, ).

Corollary to Theorem 3: Suppose n > 2. The PE* correspondence is credibly implementable in B.

Proof: Observe that the PE* correspondence satisfies Property 2 trivially for every B°. Each agent’s most
preferred outcome in A is the one which allocates all resources to him; however, such outcomes do not
belong to T’E*(ﬁo). Hence, each agent would like allocations arbitrarily close to these dictatorial
outcomes. No agent has a >maximal element in T’E*(BO) for any >». By Theorems 2 and 3, PE is credibly

implementable in B. =

Theorem 4: Suppose @ < PE n IR and B is unrestricted. Then ¢ fails Property I.



Proof: Consider BO: #- [0, 1] such that B°(>-) = ﬁ°(>—’) = 0.5 and the PE N IR correspondence defined for >
and >’ is as given in Figure 2. PENIR(>) = AB and PENIR(>’) = CD. The example is for a two-person,

two-good economy. However, it easily generalizes.

Choose z € ¢(-) € PENIR(>). Observe that L (z,>) N ®B”) < CD L AE and L (z,>) N (8°) c EB. By

construction, CD U AE C Ll(z, »") and EB Lz(z, »"). Clearly, z € PENR(>). =

Theorem 5: Suppose @ < PE N EF and B is unrestricted. Then ¢ fails Property 1.
Proof: The argument is identical to that of the previous proof. Consider BO: - [0, 1] such that B°(>-) =
B°-") = 0.5 and the PE N EF correspondence defined for > and >’ is as given in Figure 3. The figure is

> > > —>
drawn so that the vectors 01X = 02Y and 02X = 01Y' The locations of the points A, B, C and D are chosen

so that PENEF(>) = AB and PENEF(>’) = CD. w

In the examples above we considered very narrow domains. However, if a mechanism fails to deliver in
such domains, it fails to credibly implement. This is because we are interested in being able to state
whether or not ¢ is implementable in every situation regardless of how good or bad the designer’s prior
information is. The examples above were designed to be as simple as possible and are not pathological
cases. The same arguments can easily be shown to hold for economies with at least three people in which
Property 2 is satisfied. Hence, the non-implementability of these crucial sub-correspondences of PE

hinges entirely on the failure to satisfy Property 1.

The examples used to prove the last two theorems point to the following paradoxical phenomenon: when
the designer’s information about the economy is relatively good, it is more difficult for her to design a
mechanism in a credible manner. This follows from the requirement that the range of the outcome function
must be contained in the support of her priors. Good information means that the support is narrow; hence
there is relatively little flexibility. This raises the obvious question: just how much incompleteness of

information is "enough” to guarantee credible implementability of Nash implementable rules? The rest of



the section deals with this question.

The following result establishes that Property 3A, applicable everywhere in B together with the mild
Pareto-indifference assumption guarantees that any Nash-implementable Pareto-efficient and individual
rational rule can also be credibly implemented in a partial sense, provided that the (constrained)
Walrasian correspondence, W, satisfies Property 2 in every BO. The role of the W correspondence in the
credible implementability of an arbitrary correspondence @ becomes evident upon examination of the proof
of the theorem. By partial implementability, we mean that for any @, there is a sub-comrespondence ¢’ < @
which is implementable. Given that the designer is, typically, indifferent over the allocations in @(>-)

for given », partial implementation of @ is quite acceptable.

Theorem 6: Suppose n > 2.

If (i) ¢ ¢ PEN IR,

(ii) @ satisfies Pareto-indifference,

(iii) @ satisfies Nash implementability,

(iv) every B° € B satisfies Property 3A,

(v) W satisfies Property 2 for every B° e B,
then there exists ¢° C @ such that @’ is credibly implementable in B.
Proof: First, we shall show that if every B° € B satisfies Property 3A, then the (constrained) Walrasian
correspondence W satisfies Property 1. By Theorem 2, W is credibly implementable in B if Property 1,
together with Property 2 for every B° € B, is satisfied. Finally we argue that ¢ is credibly partially
implementable in B by combining these two results with a result in Thomson (1984) which states that W € ¢

if @ ¢ PE U IR, satisfies Maskin-monotonicity and the Pareto-indifference condition.

The following result is crucial.

Lemma 1: If every B° € B satisfies Property 3A, then W satisfies Property 1.

(]



Proof of Lemma 1: Choose BO: - [0, 1] such that Property 3A is met and choose >, >’ € supp(Bo) such that

{Li(z, ) N W(Bo)} c Li(z, >-") for some z € W(>).

By Property 3A, for some price vector p € A for which z is >-maximal on Hi(z, p) for all i € N, there
exists >¥ € supp(B®) such that L, P = H(z, p) for all i € N. By definition of W, H@z p) € WoP) <
W(B%). (L@ ») N WE)) < Lz >) implies that H(z, p) < L(z, >). By definition of W, z €

w(e-). |

The proof of the Theorem follows from the following result:
Lemma 2 (Thomson (1984)): If ¢ < PE v IR satisfies Maskin-monotonicity, and the Regularity condition, then

W co

The following result establishes a similar set of sufficiency conditions for credible

implementability of Nash-implementable rules satisfying Pareto-efficiency and envy-freeness.

Theorem 7: Suppose n > 2.
If (i) ¢ € PE N EF,
(ii) @ satisfies Pareto-indifference,
(iii) ¢ satisfies Nash implementability,
(iv) every Bo € B satisfies Property 3B,
(v) W° satisfies Property 2 for every B° € B,
then there exists ¢° < @ such that ¢’ is credibly implementable in B.
Proof: Similar to proof of Theorem 6. A comesponding result, from Thomson (1987), stated as the

following lemma, is needed.

Lemma 3: If ¢ < PE U EF satisfies Maskin-monotonicity, and the Regularity condition, then W 0.

[
()



The results of this section are, in general, negative in nature. Most interesting social choice
rules are not credibly implementable. To ensure credibility, the designer’s beliefs must be sufficiently
diffuse which in tumn assures the designer greater flexibility in designing the range of the outcome
function of the mechanism. The conditions on the beliefs given above identify sufficient conditions on
the extent of information asymmetry that must exist between the agents and the designer to ensure credible

implementability.

It may be checked that a weaker condition such as Property 3 cannot be used to replace Properties 3A
or 3B in the theorems above. Examples can be easily constructed showing that Property 1 is violated by

any @ < {PE N IR} U {PE N EF} even if Property 3 is met.

4. Results on Weakly Credible Implementation

The negative results of the previous section are obtained under the assumption that the only
information available about the designer’s objective is that she is commited to implementing a social
choice rule ¢. This yields a rather strong credibility requirement. In many situations, of course, there
is more information regarding the designer; for example, the social utility function may be kmown in

addition to ¢. This yields the weaker requirement given in Definition 1A.

In this section, we shall suppose that the social utility function is drawn from some natural
sub-classes of social utility functions. We shall first define a class of functions characterized by a
weak property. The property simply requires that the social utility be monotone (not to be confused with

Maskin-monotonicity) in individual preference orderings.

Definition 11: Suppose [30 € B is given. A social utility function u is monotonic if

V> € supp(Bo), [Vi € N,z > z’; 3j € N such that 2’ ¢ Lj(z, >—)} = [u(z, >, ]30) > u(z’, >, Bo)].



Next, we define an altemative property of social utility functions which is natural in a context in
which it is common knowledge that subsequent to any inefficient allocation of resources by the designer,
the agents can costlessly renegotiate and arrive at an efficient allocation through a Pareto-improving
trade. Hence, the designer’s utility from assigning an inefficient allocation cannot exceed that from

assigning an efficient one.

Definition 12: Suppose B° € B is given. A social utility function u satisfies lexicographic preference
for Pareto-efficiency (LPPE) if

V> € supp(B°), Vz € PE(>), 32 € PE(>) such that Vi € N, 2’ >z and u(z’, >, ﬁo) > ufz, >, B°).

The following results show that, provided the social utility function is monotonic, then the negative
result relating to implementability of individually rational and efficient social choice rules persists.
The social choice rules must satisfy a mild requirement of containing some strictly individually rational

allocations.

Theorem 8: If (i) ¢ < PE N IR

(ii) V> € G int[IR(>)] # @ = @(>) N int{IR(>)] # D,

(iii) B is unrestricted, and

(iv) u satisfies monotonicity,
then @ cannot be weakly credibly implemented in (B, u).
Proof: Consider B°: &2 [0, 1] such that B°(-) = B°(-") = 0.5 and the PE N IR comespondence defined for >
and >’ is as given in Figures 4a and 4b. The broken-line indifference curves represent the economy »>,
whereas the unbroken-line curves represent »’. For each economy, the indifference curves are derived by
horizontal translations of the curves shown. PENIR(>») = AB and PENIR(>’') = BC. The example is for a

two-person, two-good economy. However, it easily generalizes.



We begin by supposing that ¢ is weakly credibly implementable in @B, u). We shall amrive at a

contradiction in two steps. Let I' = <(1, 2}, S, g> be the game-form that weakly credibly implements ¢.

1) First observe that, by construction, the monotonicity property on u implies that for any z € A, if z
e g(s) then z € PE(P°) = DE U —Dﬁz V) El. Suppose otherwise, i.e. z ¢ DE U D—O’2 ) E—O_l. In this case, for
both economies > and >, there will exist 2° € DE such that for i = 1, 2, 2’ >—i z and 2’ >—’i z and for each
>-’k e {>, »’}, for at least one agent i, 2’ € Li(z, >—*). This follows from the construction of the
indifference curves in Figure 4a. Recall that, for each economy, the indifference curves are horizontal

translations of the curves shown. Thus, by monotonicity of u, u(z’, B) > u(z, B) for all B. This is in

contradiction with the assumption that I’ weakly credibly implements @.

2) Next, we shall argue that if I weakly credibly implements ¢, then it must be the case that @) =
@(>"). This is clearly, not the case in our example, except if G(BO) = f{(point B)}. This is in

contradiction with the assumption of the theorem that @(>) M int[IR(>)] # O.

To show that ¢(>-) = @(-’), choose ¢ € NE() such that g(c(>)) = z € ¢(>-). By the definition of a

Nash equilibrium, for all i € N, {z’ € A: 35" € Si such that g(s’, ci(>—)) =z} c Li(z, ).
1 1 -

Consider the second economy >’ and observe that, by construction, {Li(z, ) N T’E(Bo)} c Li(z, »") for
all i € N. By step 1 above, {z’ € A: 35 € Si such that g(s’, 6 0-) = '} € (Li(z, ) N f’E(BO)}. Since
1 1 -1
{Li(z, >} N ﬁE(Bo)} c Li(z, »’), it must be the case that g(c(>)) € NEA(I", >’). By definition of weakly

credible implementability, z = g(c(>-)) € @0(-). |

Next, suppose that the designer has a lexicographic preference for efficiency. Under this
assumption, the negative conclusions of the previous theorem can be obtained as a corollary of the

previous result.



Theorem 9: If (i) ¢ € PE N IR
(ii) V> € G int[IR(>)] # @ = @(>) N int[IR(>)] # D,
(iii) B is unrestricted, and
(iv}) u satisfies LPPE,
then @ cannot be weakly credibly implemented in (B, u).
Proof: Consider the example of given in the proof of the previous theorem. The argument is identical to
that given in the proof above, with the exception that the LPPE property is used to prove step 1, instead

of monotonicity. ]

The example given in this section is not pathological. Since it is designed to apply to every
sub-correspondence of PENIR, it has certain special properties. For any particular ¢ (consider, as an
excercise, the Walrasian correspondence) it can be seen that non-implementability argument given above is

generic.

4. Conclusions

This paper introduces the notion of credible implementation. This concept ensures that it is
rational for a designer to abide by the outcomes rules of the implementation mechanism even if the agents
choose strategies with zero probability of occurrence in equilibrium. We explicitly model the designer’s

utility via the social choice correspondence and her beliefs about the true state of the economy.

It is shown that the positive findings of Nash implementation theory are severely affected once a
credibility restriction is imposed. It is known that the Pareto correspondence and several
sub-comrespondences of the Pareto efficiency and individual rationality correspondence, such as the
(constrained) Walrasian correspondence, are Nash implementable. We show that (a) the non-dictatorial

Pareto correspondence can be credibly implemented (b) there exists no Pareto-efficient and individually



rational social choice rule that can be implemented in a credible manner and (c) there exists no

Pareto-efficient and envy-free social choice rule that can be implemented in a credible manner.

The paper establishes necessary conditions for credible implementability and shows that it is
possible to derive conditions on the designer’ beliefs that are sufficient for credible implementability.
An implication of these conditions is a paradoxical phenomenon: the less information a designer has, the
easier it is to achieve her objective. The intuition behind this is clear from our conditions: a designer
with relatively little information has a wider support for her priors -- which in tum gives her more room

to design a mechanism, since the outcome function can map to a larger subset of allocations.

Finally, the paper explores the robusmess of the negative conclusions by weakening the credibility
requirement. Such a weaker definition would require additional information about the designer’s
preferences, in excess of what is normally available in a standard social choice problem. We find that
there exists no Pareto-efficient and individually rational social choice rule that can be implemented in a

weakly credible manner under natural assumptions about the designer’s preferences.

The concems raised here also arise in other contexts such as implementation in more general domains
and implementation using solution concepts that refine Nash equilibda. In the case of the latter, the
results of Moore and Repullo (1988), Palfrey and Srivastava (1991) and Palfrey, Srivastava and Jackson
(1991) have shown that "almost” all social choice correspondences are implementable using alternative
refinements. On the other hand, by weakening the requirement of exactness of implementation, Matsushima
(1988) and Abreu and Sen (1991) have demonstrated similarly startling results. A natural line of inquiry
is: how are these strong results limited by a restriction of credibility? We shall address this in future

work.

In asymmetric information domains, the results have been largely negative (Palfrey and Srivastava

(1987), Chakravorti (1992a, 1992b)) to begin with. However, given the satisfaction of an incentive



compatibility requirement, positive results emerge. These are, in fact, made stronger by the use of

refinements (Palfrey and Srivastava (1989)). Here again, we must study the impact of credibility.

We close with the following observations:
(i) The credibility issue is especially severe for implementation theorems that require assumptions such
as the existence of a universally worst element (e.g. see Palfrey, Srivastava and Jackson (1991) on
bounded implementation or the papers on Bayesian implementation). It is hard to imagine that a designer
(whose preferences are given by a reasonable social chocie rule) can rationalize an outcome in which she
destroys all the goods in an economy. Even though in equilibrium, such a threat is never carried out, it

is an incredible one and will make the rationale leading to an equilibrium unravel.

(ii) Our concem for out-of-equilibrium moves has been voiced in the past in the context of
well-behavedness of the outcome function. The focus has been on continuity (Postlewaite and Wettstein
(1990)) and feasibility (Hurwicz, Maskin and Postlewaite (1984)). The issue of credibility has not been
addressed, though it may be tied into the concem for continuity and feasibility. = Moreover, the
credibility restrictions may be tied into the questions of renegotiation-proofness raised by Maskin and

Moore (1989) and others. We have made a beginning in this paper with the LPPE property.

(i1) It may be noted that the implementation mechanism given in the paper is immune to signals being sent
unilaterally by agents to the designer via disequilibrium moves and appealing to a Cho and Kreps
(1987)-type argument. No agent has an incentive to send such a message and thereby hope to influence the

designer’s beliefs.

(iv) Note that a revelation principle can be stated where we replace “implementability” with “credible
implementability”. The principle essentially states that any social choice that can be implemented using
an arbitrary game form can also be truthfully implemented using a direct revelation mechanism. But a

direct mechanism, appropriately defined, is always credible provided its outcome function is a selection

(S
o0



from the correspondence @. But that is exactly the manner in which a direct mechanism is constructed to

prove the principle.
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