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ON THE NON-COOPERATIVE FOUNDATIONS
OF COOPERATIVE BARGAINING

Luis C. Corchén and Klaus Ritzberger

ABSTRACT

In this note we challenge the non-cooperative foundations of cooperative
bargaining solutions on the grounds that the limit operation for approaching a
frictionless world is not robust. We show that when discounting almost ceases
to play a role, any individually rational payoff can be supported by some
subgame perfect equilibrium. To select the "correct' point imposes excessive

informational requirements on the analyst.






1. INTRODUCTION

The Strategic Approach to bargaining analyzes such models by means of
non-cooperative game theory. The seminal contribution by Rubinstein (1982)
considered a two players infinite horizon model with alternating offers which
possesses a unique subgame perfect equilibrium as long as players are not
infinitely patient (variants of this model are considered in Stahl (1972)) and
Binmore & Dasgupta (1987)). A celebrated result (see Shaked & Sutton (1984),
Binmore, Rubinstein & Wolinsky (1986)), establishes that, if the common
discount factor tends to one, equilibrium payoffs tend to an equal split of
the pie. This has been viewed as providing a non-cooperative foundation of
cooperative bargaining solutions such as the Nash Bargaining solution.
Analogous results can also be proved if the proposer is chosen by nature in
each bargaining round (see Rubinstein & Wolinsky (1985), Binmore (1987)). The

latter is what we refer to as the random proposer model(l?

In this paper we show that the limit result is an artifact of the
particular discount parameter sequence that has been used. If, instead of
supposing identical discount parameters for the two players, a slightly
different sequence, converging to the same limit, is considered, any split of
the pie can be generated as a subgame perfect equilibrium outcome in both the
alternating offer and the random proposer model. We emphasize that the
sequence used to prove our result can be chosen arbitrarily close to the one

considered by Shaked & Sutton (1984) and Binmore, Rubinstein & Wolinsky (1986)

One motivation for our note is the fact that the equal split solution
selects only one point among a continuum of limit points, since if the common

discount factor is 1 any strictly positive payoff can be supported as a

(1) The determinacy of the solution in  all these models contrasts with  Folk
Theorems for infinitely repeated games (see Friedman (1971), Fudenberg &
Maskin (1986)) in which any  individually rational payoff is supportable by a
subgame perfect equilibrium, if the discount factor is sufficiently close to
one. This discrepancy of  results is due to the fact that  bllateral bargaining
models do not have a supergame structure.



subgame perfect equilibrium (see Binmore, Rubinstein & Wolinsky (1986),
Proposition 1). Thus, the only argument in favor of the equal split is the
observation that it can be approximated by the outcome under sufficiently
large interior uniform discount factors. In other words, the correspondence
which maps the common discount factor into equilibrium payoffs is not lower
hemi-continuous at 1. However, this discontinuity is only an artifact of the
particular sequence which is typically chosen. If discount factors of players
are just slightly different, it is possible to approach any strictly positive
payoff. In other words, the correspondence mapping pairs of discount factors
to equilibrium payoffs is continuous. Therefore, the asymptotic
non-cooperative foundation of the cooperative Nash bargaining solution cannot
be regarded as robust, since in a neighbourhood of the point of no discounting
the non-cooperative bargaining model with an infinite time horizon loses all
its predictive power. In this sense, we are back to the old presumption,
challenged by the original limit results, that the outcome of bilateral

monopoly is undetermined in a frictionless world.

For the case of three bargaining partners it has already been shown that
with sufficient patience any payoff vector can be supported by some subgame
perfect equilibrium (Osborne & Rubinstein (1990) credit this result to A.
Shaked, see also Herrero (1985)). The nature of the argument is, however,
different from the one employed here, The three players example uses
non-stationary strategies to establish multiplicity. In this note we will
(have to) use the unique (stationary) strategies from Rubinstein’s original
analysis. Thus our argument is not based on adding strategic options by

introducing a third player, but on a careful way of approaching limits,

The phenomenon encountered here may in fact be generated by the infinite
time horizon rather than by the special structure of bargaining models. An
analogous result was first discovered by Giith & Ritzberger (Jan. 1992) within
the context of durable goods monopolies with an infinite time horizon. There,
as well as here, it turns out that with an infinite time horizon the slightest
difference between the players’ time preferences has an enormous impact on the

equilibrium, such that when discounting is small anything may happen.



The rest of the paper is as follows. In Section 2 we sketch both the
alternating offer and the random proposer model and we prove our main result
for these two models. Section 3 is a (somewhat technical) generalization of

the previous result. Finally, Section 4 gathers our final comments.

2. THE MAIN RESULT IN TWO BILATERAL BARGAINING MODELS

We consider two models in the tradition of Rubinstein (1982). In both
models two players, named 1 and 2, negotiate on how to share a pie of unit
size. Both players are risk neutral and like pie. Player 1 (resp. 2) discounts
future payoffs by a discount factor p (resp. 8) € [0, 1l. Time is divided into
discrete periods and is assumed to be of infinite length. The last assumption
has the advantage that it removes one potential friction, namely a finite
horizon, which may otherwise bias the solution via backward induction. Hence
the only remaining friction is that players are not infinitely patient. In
every period the two players engage in a constituent extensive form game which
will be referred to as a bargaining round. The two models differ with respect

to how bargaining rounds are organized.

In the version of the model which corresponds to Rubinstein’s (1982)
original contribution player 1 starts in the first round by making a proposal,
denoted by x € [0, 1], on how to share the pie between him (with share x) and
player 2 (with share 1 - x). Upon hearing player 1's proposal, player 2 then
decides whether to accept it, in which case the game ends and the proposal is
implemented, or to reject it. In the latter case, a new bargaining round is
entered with the roles of players reversed. We will refer to this version as

the alternating of fer model.

In the other version of the model a chance move at the beginning of each
round decides whether player 1 (with probability « € (0, 1)) or player 2 (with
probability 1 - «) is the proposer in this round. The rest works as in the
previous model except that the roles of the players are never reversed. We

will refer to this version as the random proposer model.



It is not difficult to show that the equilibrium payoffs from the unique
subgame perfect equilibrium for the alternating offer model are

V.= (1 - 8)/(1 - 8p) (for player 1) and v,z 8(1 - p)/(1 - 8p) (for player 2)

and for the random proposer model expected equilibrium payoffs are (see

Appendix)
u = «(1-8)/(1-(1-a)p -a8) and u = (1 - o)1 - p)/U-(1-a)p -uB).

Let us introduce some notation. A smooth path is a pair of c” functions
(8(t), p(t)) such that &, p : R— (0, 1) and 111{1 S(t) = 111’{1 00p(t) = 1
In the following theorem w will represent the predetermined share of the pie
of player 1, € the maximum distance between &(t) and p(t), and u(s(t), p(t))
the utility enjoyed by player 1 in the subgame perfect equilibrium when

discount factors are 8(t) and p(t).

Theorem 1. Given w € (0, 1) and € > 0, 3 a smooth path (p(t), 8(t)) such that
a) | p(t) - &(t) | <e VteR  and
b) u(s(t), p(t)) = w Vit e [R++'

Proof: We will start with the proof for the random proposer model. First, let
us fix € > 0 and define the smooth path by
pt) =l-eca(l-w e and 8(t) =1-€ (1 -a) we.
Clearly | p(t) - 8(t) | = ¢ e_t| w -« | <& and u(d(t), p(t) = w.

For the alternating of fer model define the smooth path by

p(t) =1-e(1-w)etand 8(t) =1/ (1+ e we ). Thus
| o0 = 8(t) | < (1 - pt)/(1 - w pt) = (1-ptH/(1-w)=ece <e
and again u(s(t), p(t)) = w.m

1l

IA

As the Theorem states, discount factors supporting an arbitrary
equilibrium payoff can be chosen arbitrarily close to each other. The
asymptotic equal split result quoted above arises only when limits are taken
exactly along the diagonal. Once slightly different sequences are considered

(but still along perfectly smooth paths) the whole interval between zero and



one can be traced out as the limit set. Geometrically speaking, equilibrium
payoffs as a function of 8 and p are a continuous correspondence which is set

valued only at the point (1, 1), where its value is the whole interval.

Notice that in Theorem 1, in the case of the random proposer model, the
particular sequences chosen to do the job are such that (1 - 8)/(1 - p) is
constant along the smooth path. This has the advantage of interpreting the
sequence as arising from games in which there is a shorter and shorter delay
between offers (i.e. bargaining gets more and more intense) in a linear way.
In the random proposer model the required sequence could also been chosen such

that the previous ratio remains constant along the smooth path.

3. A GENERALIZATION

One may think of the explicit formulae for the players’ shares in
equilibrium as an equilibrium outcome correspondence mapping the frictions p
and & into equilibrium outcomes. The two cornerstones of our result in

Section 2 are that

1) the interior of the simplex of the players’ shares is contained in the
value of the equilibrium outcome correspondence at the point of no frictions,
and

2) the equilibrium outcome correspondence is lower hemi-continuous at the

point of no frictions.

In this Section we will generalize and sharpen the result from Section 2
for a whole class of games which encompasses ‘many non-cooperative models of
bargaining on the division of a unit pie. The emphasis will be on how one
obtains predictions on a frictionless world from knowledge on a world with
frictions. In our view this is what the "non-cooperative foundations of the

cooperative (Nash-bargaining) solution" attempt to do.

For concreteness again consider the alternating offer bargaining model by

Rubinstein (1982). But now imagine that the delay between successive



bargaining rounds depends on the identity of the responder. Humans tend to
have different reaction times under different technologies. Let player i’s, i
= 1,2, reaction time be the time span that it takes player i to respond to an
offer with either an acceptance or a counteroffer, and denote this time span
by Al. Thus in a subgame that starts with an offer by player i the closest
time when a payoff can be had is AJ, j # 1, time units in the future.
Alternatively one may think of Al, i =1, 2, as the length of time for which a
player can commit himself (Sutton (1986) p. 712). The vector (Al’Az) € 733
represents the frictions in this game. But these frictions depend on the
technology available to the players, i.e. the players’ reaction times will
vary with the available technology for computations and communication. Since
in the real world only technologies with non-vanishing frictions are feasible,
(Al, Az) € 7{1, and an analyst attempting to generate predictions for a
frictionless world must be content with extrapolating observations in a world

with frictions to the limiting point where frictions vanish.

Still more concretely imagine that experiments are run with the same two
players under different technologies that are continually upgraded. First
players are only equipped with paper and pencils, to do their calculations,
and a messenger service that carries their letter back and forth. Then players
are given pocket calculators, but still have to use the mail service. Then the
mail is substituted for by fax machines. Eventually players are given PC’s
instead of pocket -calculators, the PC’s being equipped with e-mail. Then
telephones are introduced, and so on. Given player-specific skills the
reaction times of players will vary with the technology. But, if the game has
a unique solution for non-vanishing frictions, the analyst can reconstruct how

the reaction times vary with the technology.

To help the analyst we will allow her to take uncountable infinitely many
observations (and technologies) such that she can reconstruct a continuous
path on how frictions A € ‘Rf vanish. The formal reason for this is that the
analyst will eventually have to apply I’Hospital’s rule which is inapplicable
with only countably many observations. However, when in the end the analyst
comes up with a single-valued prediction on how the pie will be shared under a
perfect computation and communication technology (A = 0), we may still not

trust her. And we will now explain why.

10



Consider a class of n-person games I'(A), parameterized by a vector of

frictions A e ®R", together with an equilibrium outcome correspondence
+

F: RI: — Snml, where Sn_1 is the (n-1)-dimensional simplex. The class of

games I'(A) is characterized by the following assumptions:

(F.1) F(0) > int S™7
f (A)

1

(r.2) F (4) = , VA e fR+n\ {0), Vi = 1,...,n

f (A)
j=1]
(r.3) f: R* —s R is smooth, i.e. f e CAR"), f(A) >0, VYA e R, and
i + + i ++ i ++

f‘i(O) =0, Vi = 1,...,n.

All the models mentioned in the previous Section fall into this class.
Even the three-players example with subgame perfect stationary equilibrium
strategies as the solution concept is a member of this class. Also, it can be
shown that the model of commitment studied in Muthoo (1992) falls in this

class.

Since a world where cooperative solution concepts make sense is
presumably one without frictions, the non-cooperative foundations of
cooperative solutions consist of letting A approach =zero. The last part of
(I.3) makes explicit that this is not a trivial operation, because at A = O
each share Fi(A) becomes an indeterminate number. Indeed it has been shown
(Binmore, Rubinstein and Wolinsky, 1986, Proposition 1) that in the limit,
A = 0, any distribution x € s"™' can be supported by a subgame perfect
equilibrium: (I'.1). To obtain a determinate solution in the limit thus
requires a special way of approaching the limit A = 0. This way Iis

traditionally an application of I’Hospital’'s rule.

Within the present framework an application of 1’Hospital can be
characterized as follows: A path of frictions, m, is a stratifiable and
1-dimensional subset of 7%? with the property that the origin 0 e 7%2 is an

element of m. Let || denote the set of all paths w of frictions.

DEFINITION. An outcome x € Sn_1 is attributable to the frictionless world by
l’Hospital, if there exists m € || such that

leA*"o,AenF(A) = x

11



Some consequences of the definition of paths are worth noticing. First,
because m is stratifiable, it is a finite union of smooth manifolds with
maximum dimension 1 (because it is a l-dimensional stratifiable set).
Consequently, there exists a neighborhood On of the origin 0 € 73: and (n-1)
. . _ . n
md’(lependent and slmooth functions gi8 v & = (g1""’gn—1)’ g: On N ?%H—)
R™" such that g~ (0) = m n (91[ n 7%':+ (Guillemin and Pollack, 1974, p. 24). We
will say that a function g (91[ N ﬂl—) R locally cuts out m, if gT_Il(O) =
mn O n R and the Jacobian D g (A) is of rank n-1 for all A e g_l(O). By

b4 ++ A®m T
definition for every m € 1 there exists a function g, which locally cuts out

.

Denote by f(A) [f1(A)""’ fn(A)]’ the (column vector of the f;s
corresponding to some A € 73’: and let DAf (0) be the Jacobian matrix of f
evaluated at A = 0 e 7%2 Denote by e’ = (1,...,1) the (row) summation vector.

It is now easy to see that:

Lemma 1. An outcome x e S™' is attributable to the frictionless world by

l’Hospital, if and only if
x & Image(D,f(0)) n S"™.

Proof: (i) Suppose

n-1

dn e M: lim F(A) = x € S
en

AVo,A

Let g, be a function that locally cuts out m and denote by DAgn(O) its
Jacobian matrix evaluated at A = 0 € n, viz. the limit of DAgn(A) along g;(O)
as A — 0 (this exists by virtue of the existence of a continuous extension of
the Jacobian to the boundary of (9TI n 7%?). Let ker(DAgn(O)) denote the kernel
of the Jacobian evaluated at A = 0. Then by l’Hospital

— ’ | -1
x = [’ D,f(0)y]” D,f(0)y,

for some y € ker(DAgn(O)). This implies x € Image(DAf(O)) n s™

12




(ii) Suppose x € Image(DAf(O)) n S™. Choose an (nxn - 1) matrix A with
rank n-1 such that ker(A) c 17%: v .‘R’j and

DAf(O)ker(A) = AX,

for any A € R. Define the function g: fR:H R by g(A) = AA. Then g cuts out
the path m = ker(A) € 1 and
lim

A‘I/O,AenF(O) = [e’D,f(O)ker (A)]_lDAf(O)ker(A) = X.8

All the models that were mentioned in Section 2 do in fact satisfy
det(DAf(O)) # 0 such that Image(DAf(O)) n s® = s"! In other words: for all
these models the set of outcomes attributable to the frictionless world by
I’"Hospital is the full simplex s"! This does not mean that anything can be
attributed to the frictionless world. If our analyst has sufficient knowledge
on how the frictions become smaller as the technology improves, she may still

be able to select a single point from s

Still, at least in our view, the operation of approaching the limit,
i.e. the operation of attributing a solution to the frictionless world, should
satisfy some basic robustness property. The most basic robustness property
that comes to mind in this context is, of course, continuity. However, this is
something that unfortunately fails whenever continuity is required on the

mapping from I to s"! defined by lim F(A). To show this we proceed in

AYo,Aem
two steps.

Lemma 2. If det(DAf(O)) # 0, then for any function g, that locally cuts out
nel
dim [Lim

A"’o,AEnF(A) ) = dim [ker(AAgn(O))] -1

Proof: Define the set Hf = {A € R" e’DAf(O)A = 1}, If DAf(O) is
non-singular, then e’DAf(O) # 0 such that Hf is a (n-1)-dimenstional hyperplane
in R" which does not contain the origin. Let g be a function that locally cuts

out m and note that by definition dim ker(DAg(O)) z 1 Since H_ is a

(n-1)-dimensional hyperplane which does not contain the origin and ker(D Ag( 0))

13



is a linear subspace of R" of minimum dimension 1 which does contain the
origin, one has Hf + ker(DAg(O)) = R" whenever Hf n ker(DAg(O)) # 0, such that
the intersection H n ker(DAg(O)) is transversal. We show that this
intersection is non-empty: If it would be empty, then 3y € R" \ {0} such that
ker(DAg(O)) + y € Hf, because ker(DAg(O)) must then be parallel to the
hyperplane Hf such that an affine translation will make them coincide. Since O

€ ker(DAg( 0)) this implies y € Hf with the consequence that
e’DAf(O)[ker(DAg(O)) +yl=1> e’DAf(O)ker(DAg(O)) = {0}.

Since this would imply that ker(DAg(O)) = {0} in contradiction to
dim [ker(DAg(O))J = 1, the conclusion is that the intersection Hf N ker(DAg(O))

is non-empty and transversal,
For a non-empty and transversal intersection we have
codim [Hf N ker(DAg(O))] = codim(Hf) + codim [ker(DAg(O))]

(Guillemin and Pollack, 1974, p. 30) such that we have to conclude
dim [anker(DAg(O)) = dim [ker(DAg(O))] - 1. Together with the hypothesis
rank(DAf( 0)) = n this yields the statement of the Lemma, because

limAJ'o,AenF(A) = DAf(O)[Hf n ker(DAg(O))].l

Lemma 2 says that our analyst, in order to extrapolate the solutions F(A)
to A = 0, needs to extend a function &, which locally cuts out the path 7 of
her observations to gn(O) -or at least she needs to extend the derivatives of
this function g, which cuts out m. Between two different functions g, and g,
which both cut out m our analyst cannot distinguish. And this is the reason,
why we would not trust her when she comes up with a point prediction for the

frictionless world,

Theorem 2. If the limit operation, defined by
- lim A"'o,AeIf;(A)’

is continuous, then its value is Sn_1 for all m € TI.

14



Proof: Assuming that the limit operation is continuous we first show that for
any 1 € T its value must be (n-1)-dimensional. Fix some m € Il and let g be any

Ffunction which locally cuts out m. Define a new function gg by

g(a) = [2'1‘=1 Ai] g(h)

Then, g (0) = g (0) and

DA;;(A) = [ Z"AJ DAg(A), VA € g_l(O),
i=1

implies from Zr;_l Ai > 0, YA € g_l(O), that é also cuts out mw. However,
DAé(O) = 0 implies ker(DA;;(O)) = R”, such that from Lemma 2 the dimension of

the image set (of the limit operation) is n - L

By the explicit representation of the limit operation at the end of the
proof of Lemma 2 we obtain from Hf nR" = Hf that
N _ = n-1
leA*lfo,AenF(A) = DAf(O)Hf S
Since, therefore, all paths mw € 1 map into S" this is the only value

which can render the limit operation continuous.m

Thus no topology on II can make the limit operation continuous whenever it
attempts to generate singleton predictions. Such single-valued predictions for
the frictionless world are only feasible in a continuous fashion, if the
knowledge on m extends smoothly beyond what can be observed: If m would be a
smooth manifold (of dimension 1) that passes through the origin from .‘Rl into
RT_, then a topology on the set of paths can be constructed (by measuring
angles or distances between the kernels of the Jacobians of functions that
locally cut out paths) with respect to which the limit operation can be

continuous even if its predictions are singletons. But how is the knowledge on

such paths generated?.
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4. CONCLUSIONS

In this note we have shown that, if we allow for the discount factors of
players to be just slightly different, any partition of the pie can be
supported as a subgame perfect equilibrium when discount factors are close to
one. From an intuitive point of view the result is driven by the fact that
when players are very patient, the smallest discrepancy in time preferences
causes enormous differences in equilibrium payoffs. This intuition carries
over to other models (e.g. the durable monopoly model considered by Giith &
Ritzberger (Jan. 1992)) and the authors have the strong suspicion that it
might carry over to more infinite horizon models. In particular, in bargaining
models with more than two players, even if they have a unique equilibrium (see
Chae & Yang (1988), Yang (1992) and Asheim (1992)), the problem revealed in

this note is likely to reappear.

The conclusion from the above is that, if the cooperative bargaining
solution is to have any non-cooperative foundations, then it takes a world
with non-vanishing frictions. However, our result points out that to choose
the "right" frictions in infinite horizon models is a delicate task, because
what is obtained in the limit depends very much on the sequence under
consideration (for an alternative way to remove frictions see S jostrom
(1991)). That such delicacy with respect to limit operations is not shared by
other parts of economic theory is exemplified by core convergence theorems
which demonstrate that the core shrinks to the competitive equilibrium under
fairly general circumstances. In Hildenbrand’s words "The conclusion (that the
dif ference between the core and the competitive equilibria tends to zero when
the economy is large enough), to be of general relevance, should be robust to
small deviations from the strict replication procedure" (italics added)
(Hildenbrand  (1987) p. 116). The non-cooperative models of bargaining
considered in this note do not exhibit the analogous robustness property with

respect to discounting.

16
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APPENDIX

In this Appendix we derive the corresponding formulae for the random
proposer model.

Let X resp. X (y, resp. y) be the supremum (resp. infimum) of accepted
equilibrium offers made by player 1 (2). Let x (y) denote an accepted
equilibrium offer by player 1 (2). Denote by u i = 1, 2, player i expected
equilibrium payoff. An offer which satisfies

1- x> 8lal - x)+ (1 - ayl

will certainly be accepted by player 1, because in none of the (identical)
subgames of the future she can get more than «(l - x) + (1 - «)y by the
definition of x and y. But then 1 - &8la(l - x) + (1 - «)yl > x implies that
there exists some € > O such that the offer x + & is strictly preferable for

player 1 and x + ¢ will still be accepted by player 2. Consequently

x z1-8lafl - x)+ (- a)yl (1.1)

By an analogous argument with the roles of players reversed

yz1l-plaex+(-al-yl (1.2)

On the other hand, if the offer x by player 1 is to be accepted by player
2, then it must satisfy 1 - x =z §lall - x) + (1 - a)yl, because otherwise
player would be better off with waiting for the next period. Consequently, the
largest accepted equilibrium offer which player 1 can make in any equilibrium

must satisfy

1-8la(l - %)+ (1 -ayl zx (2.1)
And analogously for player 2
l-plax+-a)l-ylzy (2.2)
Substituting (1.2) into (2.1) and lengthy calculations yield
1 - & [1-0-apl/il-Q0-ap-adlzx (3.1)
Also, substituting (2.2) into (1.1) we get
1 - & [-0-awpll-0-ap-adl=x (3.2)

which shows that x = x = x.
An analogous reasoning for player 2 shows that
y=y=y=0-p) (1-adlll-(1-ap- adl
Finally since u= ax o+ (1 - a)l - y) and u = all - x) + (1 - «a)y we

obtain the desired result.m
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