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ABSTRACT

The purpose of this paper is to provide a new solution concept for
bargaining problems, which modifies Chun’s Equal-Loss Solution in a way
that ensures the individual rationality. We also consider its lexicographic
extension which turns out to be both individually rational and Pareto

Optimal. Characterizations of the proposed solutions are also provided.







I. INTRODUCTION.

A solution concept in axiomatic bargaining may be thought of as a
compromise between incumbents. Among the (mutually consistent) principles
characterizing a solution concept, there is wusually a fairness notion,
which makes it appealing as an arbitration scheme. Solution concepts
include those based on equal changes in payoffs. By considering the
"equal-gains" criterion from the status-quo, the egalitanian oclution
[Kalai (1977)] appears in a natural way, whereas by considering
"equal-losses" from the ideal point two other bargaining solutions were
found: the YU® solution [Yu (1973)], and the equal-Lass sclution [Chun

(1988)1.

In spite of their ethical appeal, the YU” and the equal-loss solutions
exhibit some shortcomings worth taking into account:(1) in general, the yu”
solution is multivalued; (2) as was pointed out by Thomson (1991), the
equal-loss solution is not individually rational for more than two agents.
Multivaluedness gives rise to indeterminacy of the proposal, whereas the
lack of individual rationality puts the stability of the solution outcome

into question.

In this paper we consider a new way of introducing the equal-loss
principle for bargaining problems. A new solution, the equal-loss*
solution, is proposed and axiomatically characterized. This solutioﬁ can be
viewed as a modification of the equal-loss solution, ensuring the

individual rationality of the outcome. According to our solution a unique



utility allocation is determined as follows: Starting from the ideal point,
identical utility losses are applied to all agents with the condition that
no one is below her status-quo level. If an agent reaches her status-quo,
then she is kept at this level whereas the rest of the agents follow up by
decreasing their utility levels by the same amount. A maximal  element

satisfying this property is then chosen.

Even though the equal-loss* solution is individually rational, it may
fail to be fully Pareto Optimal (only Weak Pareto Optimality can be
ensured). Pareto Optimality is obtained by considering the lexicographic
extension of the equal-loss* solution. Recently, Chun & Peters (1991)
proposed and axiomatically characterized the lexicographic extension of the
equal-loss solution, which, in the same way as the equal-loss solution
itself, may fail to be individually rational. Then, they suggested a
modification of the lexicographic equal-loss solution, in order to
guarantee individual rationality, and left its characterization as an open
problem. Interestingly, the lexicographic equal-loss* solution coincides
with the aforementioned modification of the lexicographic equal-loss
solution, Thus, by characterizing the lexicographic equal-loss* solution,

we also close the open problem posed by these authors.

Section 2 presents some preliminaries and definitions. Section 3
contains the characterization result for the equal-loss* solution. Section
4 is devoted to the definition and characterization of the lexicographic

equal-loss* solution. Section 5, with some comments, closes the paper.



2. PRELIMINARIES.

Following Nash (1950), a n-person bargaining problem is a pair (S,d),
where S is a subset of R, and d is a point of S. R” is the utility space,
S is the feasible set and d is the disagreement point. The intended
interpretation of (S,d) is as follows: the agents can achieve any point of

S if they unanimously agree on it. Otherwise, they end up at d.

Given a class of n-person bargaining problems, a solution is a
function F which associates to every problem in the class (S,d), a point

F(S,d) in S, representing the agreement made by the agents.

Let Zn be the class of bargaining problems (S,d) such that S c¢ R" is
convex, closed and comprehensive (if x € S, and y = X, then y € S)(lz and

such that there exists x € S, with x > d.

Whenever (S,d) e Zn, we shall call IR(S,d) the set of individually

]

rational points, i.e., IR(S,d) { x € S | x = d}. PO(S) will denote the
set of Pareto Optimal elements, and WPO(S) the set of weakly Pareto Optimal
elements, iie., PO(S) = { x e S | if y =2 x, then y ¢ S }, and

WPO(S) = {x € S | if y >> X, then y ¢ S}).

Vector inequallities will be =, > >>.



By considering al(S,d) = max {Xi| x € IR(S,d)}, i = 1,...,n, we
construct the ideal paint a(S,d), such that for every i, it gives the
maximal obtainable utility levels of each agent, subject to the condition
that all agents achieve at least the utility levels of the disagreement

point.

A class of solutions for this kind of problems was proposed by Yu
(1973), sharing the idea of looking for the clasent point in IR(S,d) ta the
ideal  point. Then, by  means of considering a particular fémily of
PP,

n
distances in R", namely, dp(x,y) =[ ¥ I(xi - yl)l 1 = p < o , and

i=1

dm(x,y) = max IXi - y.|, he obtained a family of solutions to the
1
bargaining problem, namely those which minimize the adequate distance to

the ideal point, and he called them YUP, 1 = P = o,

Strictly speaking, neither YUl, nor YU” are solutions to the
bargaining problem, since the associated norms Il.lll, II.IIoo are not strictly
convex, and therefore both YUI, YU® can be multi-valued [see Freimer & Yu

(1976)].

It is worth mentioning that YU®(S,d) € WPO(S)nIR(S,d), for 1 < p < w,

and YU%S,d) ¢ WPO(S)nIR(S,d), for q = 1, .

Moreover, as was pointed out by Chun (1988), in the case n = 2, one of
the elements in YUOO(S,d) corresponds to that point x in WPO(S)nIR(S,d) such

that Ial(S,d) - xll = IaZ(S,d) - le. Taking this idea into account, Chun




proposed a new solution concept, EL, the equal-foss aclution, as a variant
of the YU® solution, i.e. that point EL(S,d) = ¥y in S such that
Iai(S,d) - yil = IaJ(S,d) - yjl, Y 1i,j, and this common difference is
minimum. Chun’s defence of his proposed solution is made on the grounds of
the equal Loss principle, namely, equalization across agents of the losses
from the ideal point, in a similar spirit to that of the egalitarian
solution [Kalai (1977)], which equalizes the gains across agents, from the
disagreement point. Nevertheless, a main shortcoming of this proposal is
that, for more than two agents, it is not individually rational [see

Thomson (1991)].

In order to avoid previous shortcomings, a modification of the

equal-loss solution will be proposed. Some notation is first necessary.

For A ¢ IR", S8A represents the northeast frontier of set A; we shall
denote by Co(A) the convex hull of set A, and by Com(A) the comprehensive

hull of set A. CoCom(A) is simply the convex-comprehensive hull of set A.

Let N = {1,2,...,n} denote the set of indices in R". For a given
subset Q € N, N/Q will be the complement of Q on N. If z, y € R", by
considering the partition {Q,N/Q} in the set of indices, we shall call

n . . = . .
(zo,yN/Q) the vector t € R such that ti—zi if i € Q; ti v, if i e N/Q.

Let (S,d) € Zn, x €8S, QcN, and let q = card Q. We shall denote SZ

the projection of S on R? given in the following way:

SQ = { yQ | (yQ,xN/Q) €S )



Consider now the following definition:

Definition 1: The equal-Loss* asolution , EL* ¥'— R, associates to

each problem (S,d)e}" the unique point of S which satisfies:

(1) If EL(S,d) e IR(S,d), then EL*(S,d) = EL(S,d)
(2) If EL(S,d) ¢ IR(S,d), let Q={jeN / ELJ(S,d) z dj). Then
VieNAQ ELT(S,d) = d1

VY j € Q apply the previous process to bargaining problem (Sg,dQ).

Since for the bipersonal case EL(S,d) is individually rational, this

process finishes, and the equal-loss* solution is well defined.

It is straightforward to check that definition 1 is equivalent to the

following definitions, where S is the comprehensive hull of set IR(S,d):

Definition 1': The equal-foss* salution, EL* : Y™

n .
> R, associates to

each problem (S,d) e Zn the unique point of S which satisfies:

(1) If EL(S,d) € IR(S,d), then EL*(S,d) = EL(S,d)
(2) If EL(S,d) ¢ IR(S,d), let Q = { j € N | ELJ(§,d) = dj). Then,

EL

(S,d) d,l VieNAQ

EL (S,d)

[ B 1

=d .
EL (8% ) v .
ASHEN JeQ

10



n .
> R, associates to

Definition 1’°: The equaf-Loss* sabution, EL* : Y¥°
each problem (S,d) € ¥ the alternative:
d if EL(S,d) < d

ELX(S,d) = . VieN

EL1(§,d) if ELl(é,d) = d

The intended interpretation of the equal-loss* solution is the
following: it equalizes the losses from the ideal point whenesen it
nepnesents an acceptable agreement fon all agents. If it does not, it is
because there are some agents that at the equal-loss solution are below
their status-quo. In this case, we accept smaller losses for these agents,
keeping them at their disagreement level, and only equalize losses from the
ideal point for those agents who do not reach their disagreement utility
level in the equal-decreasing procedure. In this way we find a compromise
between the equal-loss principle and the possibility of agreement among all

agents,

The relationship between EL(S,d) and EL*(S,d) has been given in
Definition 1: They coincide whenever the (strict) application of the
equal-loss principle is consistent with agreement among agents. The

relationship between YU®(S,d) and EL*(S,d) is contained in Proposition 1.
In order to obtain this result, we first present a lemma:

Lemma l.- Let (S,d) € zn ,and Q = {i € N | ELi(S,d) = di}. Let a(S,d) be
the ideal point. Consider now any x € IR(S,d).

Then, if Iak(S,d) - xkl = max (Ial(S,d) - xll}, k € Q.

1



Proof:

The result is obvious if EL(S,d) e IR(S,d). Let us now look at the
case in which EL(S,d) ¢ IR(S,d).

Consider d = 0. Since x e IR(S,d), then x > 0, and a(S,d) - x z 0. Let
k be an index such that ak(S,d) - x = al(S,d) - X, VieN.

As S is a comprehensive set, we can construct an element y € S such

that y, = X

k

» ¥, = % If §# k, with a(S,d) - y= aJ(S,d) Yy VijeN

Therefore, the equal-loss straight line EEL intersects S in an element z

such that z, z 0, and, in consequence, ELk(S,d) =z 0, and k € Q.-

Proposition 1.- For every (S,d) e Zn, EL%(S,d) belongs to YUm(S,d).

Proof':
Assume d = 0. Let x* = EL¥(S,d). By construction, x* € IR(S,d), and
therefore x* > 0, and a(S,d) - x* = 0. Suppose that x* does not minimize

dw[a(S,d),S]. Then there exists y € IR(S,d) such that

#*
max [al(S,d) - x1] > max [ai(S,d) - yi] = ak(S,d) =Y,
Then we can distinguish the following cases:

(i) If EL(S,d) e IR(S,d), then EL(S,d) = EL*(S,d), and therefore ai(S,d) -
* * L *

X, = aJ(S,d) - Xj, YV i,j € N. In consequence, ak(S,d) - X, > ak(S,d) - Y
and x: <y, But both x*, y € SIR(S,d) = WPO[IR(S,d)], and therefore there
exists h € N such that y, = X:. In consequence, ak(S,d) -y, < ak(S,d) -

X* = a (S,d) - xaIE =< a (S,d) - y . Contradiction.
k h h h h

12



(ii) If EL(S,d) ¢ IR(S,d), by Lemma 1 over (S,d), we know that k is in
Q={i e N / EL1(§,d) = dl) .Moreover, let at(S,d) - Xt = max [ai(S,d) - Xt].
Again by Lemma [, t € Q, and therefore, at(S,d) - X: = ak(S,d) - x: >

ak(S,d) - Y and x: <y Reasoning as before, we conclude that there

#*
exists h € N such that Y, = X, .

#*
Let us now notice that there must be h € Q such that Y, = X, . Suppose

0 if i € N/Q,

1

this is not true. Then, define z in the following way: z,

*
z =Y in the case where i € Q. Let now consider ZQ, xQ e RY. We have

z > x*. Furthermore, x* = EL[§d,d ] = EL(Sd,d ), since EL[§d,d ] is in
Q Q Q Q Q Q Q Q Q
the set IR(§g,dQ), and therefore X: € WPO(S:). In consequence, zQ ¢ Sg,

and thus y ¢ S. Contradiction.

*
Thus, there exists h € Q such that ' = X, . In this case, ak(S,d)

<al(s,d) - x =al(S,d-x =a(Sd Contradicti
v, <a(Sd) -x =af(Sd -x =aflsd -y. Contradic ion. [
Chun (1988) noticed that for 2-person bargaining problems

EL(S,d) € YUm(S,d). Since for n = 2, EL(S,d) is individually rational,

Chun’s remark turns out to be a particular case of Proposition 1.

13



3. CHARACTERIZATION OF THE EQUAL-I.OSS% SOLUTION.

In order to characterize the equal-loss* solution, we consider the

following axioms:
(WPO) Weak Paneta Optimality. For all (S,d) € =" , F(S,d) € WPO(S).

(AN) dnonimity. For all (S,d) e Zn and for all permutations m: N—— N,

Fln(S),n(d)] = nlF(S,d)].

(T.INV) Jnanslation $wsaniance. For all (S,d) € ¥ and for all t € R",

F(S+{t}, d+t) = F(S,d) + t.

(CONT) Gantinuity. For each sequence ((Sk,dk)} c Z‘n, and every (S,d) e Z",
if s* converges onto S in the Hausdorff Topology, and dk=d V k, then

F(Sk,dk) converges onto F(S,d).

(ITTA)  Fndependence of Indinidually Frrational Altennatives. For all

(S,d), (s’,d") € ", if IR(S,d) = IR(S’,d"), then F(S,d) = F(S’,d’).

(W.MON) Weak Monotonicity. For all (S,d), (S’,d’) e Y, if S ¢ S, and

d=d’, and a(S,d} = a(S’,d’), then F(S,d) = F(S’,d’).
(R.ID.MON) Rational $deal Paint Monotonicity. V (S,d), (S,d’) € ¥, d = &’

v i, if aj(S,d) = aj(S,d’) for j # i, al(S,d) = ai(S,d’) and

Fi(S,d) = d;, then Fi(S,d’) = FI(S,d).

14



WPO requires for there to be no feasible alternative in which all
agents are better off than they are at the solution outcome; AN says that
the names of the agents do not affect the solution outcome. T.INV requires
the choice of origin for the utility functions to be irrelevant. CONT
implies that small variations in the opportunity set without changes in the

disagreement point cause small variations in the solution.

I1IIA asks the solution not to take into account those alternatives

which are not individually rational.

W.MON was introduced by Kalai & Smorodinski (1975) for two- person
bargaining problems, and was extended to n-person bargaining problems by
Roth (1979). This property says that, if the feasible set expands in such
a way that neither the disagreement point nor the ideal point change, then

no agent may be worse-off.

R.ID.MON, requires that an increase of disagreement point in such a
way that the ideal point for agent i does not increase, but this change
does not affect the other agents’s ideal point, would not benéfit her,
unless she is better off at the new disagreement level. This axiom can be
viewed as a weakening of the Ideal Point Monotonicity (ID.MON.), introduced
by Chun (1988), which requires that a decrease of an agent’s ideal point,
while the feasible set remains fixed, would not benefit her. For n = 2,
this axiom is essentially equivalent to that of Disagreement Point

Manotonicity [Thomson (1987)], which requires that an increase of an

15



agent’s utility level at the disagreement point, cetenia panibus, will not

hurt her [see Chun (1988)].

Our aim is to present a characterization result for the equal-loss*

solution. In order to do so, let us start with the f ollowing lemmas:

Lemma 2.- The equal-loss* solution satisfies weak monotonicity.

Proof:

Let (S,d), (S',d’) e Zn such that ScS’, d=d’, and a(S,d) a(s’,d’).

Let S = ComlIR(S,d)], §'= Com[IR(S’,d’)]. Then ScS’, and a(S,d) = a(S’,d’).
Since the equal-loss solution, EL, satisfies W.MON [see Chun (1988)], we
get EL(S,d) = EL(S’,d’). Now, by considering definition 1’’°, we obtain

ELX(S,d) = ELX(S’,d"). [l

Lemma 3.- The equal-loss* solution satisfies rational ideal point
monotonicity.
Proof;

Let (S,d), (S,d’) e Y" such that al(S,d) = a(s,d) vj#, a(sd) =
2,(s,d), d = &), and EL¥S,d) = d' (2. Let S = Com I[IR(S,d)],
S’=Com [IR(S’,d’)], then ScS’. Taking into account that the equal-loss
solution satisfies W.MON and ID.MON [confront Chun (1988)], we can apply
ID. MON. to (S,d’), (S,d) and W.MON to (§,d’),(S’,d’) concluding that

ELI(§’,d’) < ELl(é,d) (3).

16



We shall analyze two possible cases:
(i) if ELl(g,d) z dl, then ELT(S,d) = ELl(é,d), moreover we have that:

EL (§,d’)(%)ELi(S,d7 = EL(S,d)

2)

ELT(S,d’) = (
d’i = ELT(S,d)

(ii) if ELi(é,d) < d, then EL¥(S,d) = d. Now, by considering (1) and (2),
we get d; = dl, and taking into account (3), ELi(é’,d’) < cl1 = dl’.

¥S.d') = & =
Therefore, ELI(S,d ) d dx'-

Lemma 4.- If F is a solution to the bargaining problem such that F is WPO,

CONT and IIIA, then F(S,d) € IR(S,d), V (S,d) € En

Proof:

Let (S,d) € }:n such that WPO(S) = PO(S), and let us denote
s! = Com{IR(S,d)}. Suppose F(S,d) ¢ IR(S,d), and consider (S,d) and (S',d).
Then, by IIIA, F(S,d) = F(s',d). Now, taking into account that F is WPO, if

F(S,d)¢IR(S,d) it follows that F(S,d)¢ s!. Contradiction.

Finally, for an arbitrary element in ¥, we apply CONT. [l

Theorem 1.- The equal- loss* solution is the only solution satisfying

WPO, AN, T.INV, IIIA, W. MON, R.ID.MON, and CONT.

17



Proof’;

Obviously, EL¥* satisfies WPO, AN, T.INV. IIIA and CONT. Moreover, EL*
verifies W.MON and R.ID.MON [lemmas 2,3].

In order to prove uniqueness, let F be a solution for which the axioms
hold, and consider a problem (s,d) € Zn, such that

WPOIIR(S,d)] = PO[IR(S,d)]. We shall analyze two possible cases:

(i) If EL(S,d) € IR(S,d), by T.INV. we can assume a(S,d) = (1,...,1).

Let EL*(S,d) = x, st = Com [IR(S,d)], p € A(n—l) a normal vector to
the supporting hyperplane of S at x, H(x) = {y € R'| py = px), and
finally, S* = { y e H (x) | y = a(S,d)).

Let us now choose yi as the maximal weakly Pareto Optimal point in s?

i i

such that y: = ai(S,d) = 1, y; =y =« V j,k # i. Let «* = min ocl, and

define z' e R", such that z; = al(S,d) = 1, zj = o if j # i. Finally, let
s® = CoCom (x,zl,...,zn). |

By taking d* = (oc*,...,oc*), d*¥ = d, we get that a(SS,d*) = (1,...,1),
and by applying WPO and AN, F(Ss,d*) = X. By applying W.MON. to (SS,d*) and
(Sz,d*), we conclude that F(Sz,d*) = X. Now, by considering R.ID.MON. for
(Sz,d*) and (Sz,d), we get that F(Sz,d) = x, and taking into account that
the solution satisfies WPO, and F(S.Z,d) eIR(Sz,d) flemma 4], we conclude
F(Sz,d) = x. By W.MON. on (S?d) and (Sl,d), we obtain F‘(Sl,d) = x, and
taking into account that F(Sl,d) € IR(Sl,d), we can apply W.MON. to (Sl,d)

and (S,d), concluding that F(S,d) = x.

18



(ii) If EL(S,d) ¢ IR(S,d) we will show that F(S,d) = EL*(S,d) by means of

mathematical induction. Let us denote Q = { i € N | ELi(é,d) z dl).

(ii)-(a). Let P = N/Q = {j}. By AN we can assume j = n . Now, by

T.INV we can take al(S,d) =1V i# n Thus EL¥S,d) = (x,.,x 1,dn) with

1 n-

X=X, = .. = x =7 Again by T.INV, assume dlrl = y concluding that
-

EL*(S,d) = (Xl,..,X ) = X.

n

Define now the sets Sl, T and C in the following way:
s' = Com({IR(S,d)}
T is a closed, comprehensive and convex subset of R" such that:

IR(T,d) = IR(S,d)

(T%,d ) = Com IR(S%,d )
Q Q Q Q
{x € T] x ¢ IR(T,d)} is as great as possible.
Notice that we can find e € {Rn, e = d, such that en= dn=-xn, and
a(T,e) = (1,..,1). Moreover Com{IR(T,d)} = s! by construction.
C = CoCom { x (z4,d), (z5d),...(z"%d), (d ' a(S,d)), where
Q' n Q n Q n Q n
zé d: e R™! are elements defined for (Sg,dq) in the same way as zi, d* for
(S,d) in (i).
Then, by (i), F(T,e) = x. Take now (T,e) and (T,d). Then, by

R.ID.MON., and since F(T,d) € IR(T,d) [Lemma 4], we conclude F (T,d) = X =
n

*

d. By IUA on (T,d) and (s',d), F(s',d) = F(T.d). Since (d ,d) s d we can

o

*

apply R.D.MON to (s'd), (Sl,(d:,dn)) and get F(s,(d),d)) = F(s'a),
then, by Lemma 4, Fn(Sl,(d:,dn)) = X Considering W.MON for (Sl,(d:,dn)),
(C’(dZ’dn)) and again taking into account Lemma 4, Fn(C,(d:,dr)l) = X By

applying WPO and AN to (C,(d:,dn)), we obtain FI(C,(d:,dn)) = X VieQ, and

19



in consequence, F(C,(d:,dn)) = X, By W.MON we get that F(Sl,(d:,dn)) = X,
By applying R.ID.MON to (Sl,(d:,dn)) and (Sl,d) we get that F(S',d) = x and
taking into account that the solution satisfies WPO and F‘(Sl,d) € IR(Sl,d)

[lemma 4], we conclude F(Sl,d) = x. Finally, by IIIA, F(S,d) = x.

(ii)(b) In the case whereby p = card P = k, assume that F(S,d) =

EL*(S,d) = x.

(ii)(c) Let now p = k+l. We assume jeP, J=1,2,..,k+l by AN. Now, by

T.INV take ai(S,d) = 1 VieQ and then EL*(S,d) = (dl,.,d X

X i
k+1 2 n) with

k+2

X o= = X =Y. Again by T.INV assume dJ =y, YV j € P, therefore
n

EL*(S,d) = (x, x,.., x ).
1 2 n
Define now the sets Sl, jT and C in the following way:
s' = Com(IR(S,d)}
For j=1,.,k+1, jT cR" is a closed, comprehensive and convex set such that:
IROT,d) = IR(S,d)

(jT: ,dH ) = Com IR(S: ,dH ) where Hj = N/{j} for j = 1,..,k+l.
J J J J

{x e jTI X ¢ IR(JT,d)) is as great as possible.

Notice that VjeP we can find, a vector Je e R", e = d Vj, such that
J
J
Moreover Com{IR(JT,d)) =g VjeP by construction.

e =jd=lx and aj(jT,je) = ai(jT,d) = 1 VieQ, ak(jT,Je) = ak(S,d) k#j keP.

1 2 n-k-1 *
C = CoCom {x, (dP,zQ), (dP,zq),..,(dP,zQ )’(a1(s’d)’d2""dk+1’do)"'
.,d,d,..,d a (S,d),d* )}, where zld" e R"™* ! are elements defined
1 2 K’ “k+1 Q Q, Q

for (Sg,do) in the same way as zi, d¥ for (S,d) in (i).

20



Thus, by the induction hypothesis [(ii)-(b)], we conclude F(JT,je) = X
vj=l,..,k+l. Take now (jT,je) and (JT,d). Then, by R.ID.MON., and since
FOT,d) € IRCT,d) [Lemma 4], we get Fj(jT,d) = d; VjeP. By WA on 0T,d)
and (Sl,d), for j =l,..,k+l, we can conclude that F‘(Sl,d) = F(JT,d) Y jeP.
Since (dP,dZ) = d we can apply R.ID.MON to (Sl,d), (Sl,(dp,dZ)) getting
F(s'(d,d7)) = F(sd), then, by Lemma 4, F (S',(d,d))) = F(s',d) vjeP.
Considering now W.MON for (Sl,(dp,dZ)), (C,(dp,d:)) and again taking into
account Lemma 4, Fj(C,(dP,dZ*)) = xJ VjeP. By applying WPO and AN to
(C,((dp,dZ)), FI(C,(dP,d:)) = X VieQ, and in consequence F(C,(dp,d:)) = X.
By WMON we get that F(S'(d,d)) = x. By applying R.ID.MON to
(Sl,(dp,d;)) and (Sl,d), we obtain that F(Sl,d) = x, and taking into
account that the solution satisfies WPO and F(Sl,d) € IR(Sl,,d) [lemma 4]

we conclude F(Sl,d) = x. Now, by IIIA, F(S,d) = x.

Finally, for an arbitrary element in En, we apply CONT.-
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4. THE LEXICOGRAPHIC EQUAL-LOSS* SOLUTION.

By introducing the Equal-Loss* solution for bargaining problems we
have solved the main shortcoming of the Equal-Loss Solution, namely, the
lack of individual rationality . Nevertheless, another problem remains, as
was the case in the Equal-Loss Solution, the lack of full Pareto

Optimality.

Recently Chun & Peters (1991) presented the Lexicographic Equal-Loss
Solution, as a way of ensuring Pareto Optimality when starting from the
Equal-Loss Solution. Unfortunately, the lexicographic equal-loss solution
fails to be individually rational. Thus, Chun & Peters proposed a
modification of the lexicographic equal-loss solution in order to get
individual rationality, in the following way: Starting with (S,d) e Zn,
consider S = Com(IR(S,d)], and then take LEL(S,d) = LEL(S,d). It can be
proved that LEL(S,d) turns out to be individually rational and Pareto
Optimal. The characterization of this new solution was left as an open

problem.

The aim of this Section is to introduce and axiomatically characterize
the Lexicographic Equal-Loss* Solution, as a way of ensuring Pareto
Optimality from the Equal-Loss* Solution. In a similar spirit, we start
from the Equal-Loss* Solution. If it is not Pareto Optimal, then we use a
lexicographic procedure in order to achieve a Pareto Optimal element.

Interestingly, by means of the aforementioned procedure, we will end up at
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LEL(S,d). Thus, by characterizing the lexicographic equal-loss* solution,

we close the open problem proposed by Chun and Peters (1991).

Let >1Z be the lexicographical ordering on R", i.e x >£ y (x,y € R")
if there is i € N with X, > Yy and xj = yj, for all j < i, Let ow:R"->R" be
such that for each x € R" there is a permutation m of N with a(x) = n(x),

and ocl(x) = ocz(x) = .= ocn(x). Then, the lexicographic maximin ondening

>€m on R" is defined by x >£{n y (X, € RY) if a(x) >£ aly).

Then we have the following definition:

Definition 2.- For a given problem (S,d) € En, the lexicagnraphic equal
Loon¥* aclution LEL*:Z“——> R", assigns to (S,d) the unique point of S

defined in the following way:

(i) Choose t € R", such that EL*(S*,d*) =k, VieN,
al(s*,d*) = 0V ieN such that EL(S,d) = d, s¥ = (s+t),
*
d = d+t.

*

#
(ii) find a maximal element in S with respect to >€m, X

(iii) LEL*(S,d) = x= -t.

LEL* is well-defined, and can be viewed as a modification.of the
equal-loss* solution, in order to ensure Pareto Optimality. Thus, by
starting from EL*(S,d), and by exhausting all possible gains of the agents
(without damaging any one), we reach the lexicographic equal-loss¥*

solution. Notice that LEL*(S,d) = LEL(S,d).
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There exists a simple procedure to find LEL*(S,d). First, take
s' - Com[IR(S,d)]. Now, decrease the utility of the n agents in N'=N
equally from a(Sl,d) along a(Sl,d)—cleNl (CIZO), until a boundary ‘point of
S1 is reached, say zl. If z1 € PO(SI), then z = zl. Otherwise, let Nz c N
be the largest possible subset of agents whose utilities can be equally
increased in a nonnegative direction starting from zl, i.e., follow the
direction z' + CZeNZ (cz > 0). Let z° be the maximal point in this

1 2

direction and still in S. If z° ¢ PO(SI), then z = zz. Otherwise we

continue along the direction z> + §3e 3 (§3>0), where N° ¢ N? is the

N

largest possible subset of agents for which an increase along 2%+ §3eN3 is
still possible. Etc. In this way we end up, after a finite number of steps,
at a point z e PO(S'). It is not hard to show that z = LEL*(S,d), by

adapting Lemma 3 in Imai (1983) to this context.

In order to characterize the lexicographic equal-loss¥* solution, we

introduce some additional axioms:
(PO) Paneto Optimality ¥V (S,d) € ¥°, F(S,d) e PO(S).

(R.W.MON) Restnicted Weak Maonotonicity vV (S,d), (S’,d") e ¥, if S ¢ S,

d = d and Sd L= S;, . for all i, then F(S’,d’) = F(S,d), where X,

is the (n-1) dimensional vector obtained after deleting the ith

>

component of x, and Sd iE the closure of (x_ll X € S, X = a(S,d)}.
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(RIAIP) Raticnal $ndependence of dltennatines othen than $deal Paint.
vV (S,d), (8,d") € ¥, if § ¢S, alS,d) = a(s’,d’) and- d = o

F(S,d) e IR(S’,d’), then F(S’,d’) = F(S,d).

(P.0) requires that the solution outcome should exhaust all gains

from cooperation.

(R.W.MON), introduced for 2-person problems by Kalai and Smorodinski
(1975) states that an expansion of the feasible set which does not affect
the ideal point should not hurt any agent. It was noted by Roth (1979) that
a straightforward extension of this axiom may be incompatible with Pareto
Optimality for more than 2-person bargaining problems. The version of the
axiom introduced here, compatible with Pareto Optimality, was presented by

Imai (1983), and also used by Chun & Peters (1991).

Finally, (RIAIP) is a modification of the axiom (IAIP), Independence
of Alternatives other than Ideal Point, introduced by Roth (1977), in which
it was required that, if the feasible set should shrink and the
disagreement point increases without affecting the ideal point, and the
solution outcome for the original point is still feasible and indinidually
natichal for the smaller problem, then the solution outcome for the smaller

problem should be the same as for the original one.

In order to prove the characterization result for the Ilexicographic

equal-loss* solution, let us start by presenting some lemmas:
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Lemma 5.- The lexicographic equal-loss#* solution satisfies restricted weak

monotonicity.

Proof:

Let (s,d), (8’,d’) e }" such that S € S, d = d’, and Sat = Si oy
for all i. Let T = Coml[IR(S,d)], T’ = Com[IR(S’,d’)].vThen T ¢ T’,.and for
all i, Td’_1 = T:i’,~1' Since the lexicographic equal-loss solution, LEL,
satisfies R.W.MON. [see Chun & Peters (1991)], we get LEL(T’,d’) =
LEL(T,d). Now, by the definition of LEL, we get LEL(S’,d’) = LEL(S,d), and

therefore, LEL*(S’,d’) = LEL*(S,d). il

Lemma 6.~ The lexicographic equal-loss¥ solution satisfies rational

independence of alternatives other than ideal point.

Proof':

Let (S,d), (S’,d’) e ¥" such that S’ € S, a(S,d) = a(S’,d’), d=d’ and
LEL*(S,d) e IR(S’,d"). Let T = ComlIR(S,d)], T’ = ComlIR(S’,d")]. Thus,
since d=d’, T" € T and a(T’,d) = a(T,d), given that LEL*(S,d) c IR(S,d).
Then, LEL*(S,d) = LEL*(T,d), and as LEL*(S,d) e IR(S’,d’), LEL¥(T,d) € T'.
Now, since the lexicographic equal-loss solution LEL satisfies IAIP
[confront Chun & Peters (1991)], we conclude that LEL(T’,d’) = LEL(T,d).

Then, by definition of LEL, we get LEL(S’,d’) = LEL(S,d) and therefore

LEL*(S’,d’) = LEL*(S,d). il

Theorem 2.- The Lexicographic Equal-Loss% Solution is the only solution on

Zn satisfying IIIA, PO, AN, T.INV., R.W.MON. and RIAIP.
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Proof:

For the proof of the Theorem, some additional notation is needed.
Given (S,d) e Zn, Int(S) is the internion of S. Moreover, given z,p € R", we
shall denote H(p,pz) = {x € R"| px = pz}.

LEL* satisfies R.W.MON and RIAIP (Lemmas 5,6). It is straightforward
to check that LEL¥* satisfies IIIA, PO, AN and T.INV. |

Note that V(S,d)ezn, if F(S,d) is a solution satisfying PO and IIIA,

then we can show in a similar way as in Lemma 4, that F(S,d)eIR(S,d).

We try to sketch the idea of the proof. The proof uses the procedure
for finding LEL*(S,d) as described above. We then we have to find
zl,...,zT, to obtain 2l = LEL*(S,d). First, by T.Inv. we may assume that

the ideal point has all coordinates equal to one. The main step lies in the

construction of a sequence of problems, whose solution outcome is

Consider a solution F for which all six axioms hold. Given (g,E) e Y,
let S = Com[IR(g,a)], and by T.INV. suppose that a(E,E) = e Let d’ = d,
d’e Int(S) such that d; = d; =1 - 8, V i,j € N, and a(S5,d’) = ey
Equivalently, we may well take, by T.Inv, d = O, and a(S,d) = SeN, s > 0.

Now let (Zt}:_1 be the sequence as defined in the process of finding

LEL*(S,d). We will show that F(S,d} = zT.Then, by PO we know that
F(S,d) e IR(S,d), and by RIAIP we obtain F(S,d) = z'. Then, by IIIA,
F(S,d) = z'.
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In order to prove that z' = F(S,d) we construct auxiliary problems.

Let Mt = N/Nt, pt = eMt, vV t =1,2,...,T, where M = 2 and pl = 0. We

define:
1t i t k _k k n
S o= H(eN, = zt) N [n Hp,pz) ] N (SeN— [R+) Yt=1,.,T
k=1
SZt = Slt N H(pt”,pt”zt”) Vit=1,.,T-1
s%t= Hee, = zf) ns Vt=1,.,T
s*= s s Vit=1,.,T

Then, by reasoning in an identical way to Chun & Peters’ (1991}, main
theorem, with the only substitution of IAIP by RIAIP, we get

F(s,d = z'. [l

The main idea is that all the auxiliary problems will have 2t as a
solution. The first problem, s is symmetric, and its solution is zl, by
PO and AN. Thus, by applying RIAIP, we get F(S*,d) = F(s®,d) = F(s*,q) =
zl. Now, by induction, and by using R.W.MON. and RIAIP, we obtain that the

solution for any problem t (t>2) must be greater or equal than the solution

outcome for (t-1), 2t Now, by PO we conclude that it is equal to 2",
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5. FINAL REMARKS.

The equal-loss principle is an attractive one when dealing with
problems of bankruptcy, property rights and taxation [see Auman & Maschler
(1985), Young (1987) (1988)], and is one which has been traditionally used
in distributive justice problems. Yet, its application to bargaining
problems may fail to be individually rational. This suggests the
convenience of an adequate modification in the form of applying it to
axiomatic bafgaining. The object of this paper has been to do ‘this, by

proposing the equal-loss* solution.

In order to ensure Pareto Optimality (and not only Weak Pareto
Optimality), Chun & Peters (1991) recently presented a variation of the
equal-loss solution, namely, the lexicographic equal-loss solution,
LEL(S,d), in which, by starting with EL(S,d), they construct a
lexicographic extension of EL(S,d), by means of increasing the utility
levels of some agents, without damaging the rest, and looking for a maximal
element in this way. It is worth pointing out that by means of this
modification, the lack of individual rationality problem remains unsolved.
Thus, they propose a modification of the lexicographic equal-loss .solution,
in order to ensure individual rationality, in the following way: For a
given (s,d) € Zn, consider s = Coml[IR(S,d)], and define
EEE(S,d) = LEL(§,d). It is worth noticing that this solution turns out to
be individually rational and Pareto Optimal, and they propose its

characterization as an open problem.
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In this paper we solve the proposed problem, but we come to the
solution in a different way. First, we solve the lack of individual
rationality fon the equal-foos solution, and then, we face the problem of
full Pareto Optimality by properly considering a lexicographic extension

of our solution.

The two proposed solutions, namely the equal-Laos* solution and its

Lexicagnaphic extension are axiomatically characterized.

It is worth noticing the relationship between the results provided in
this paper and the characterizations of both the equal-loss and the

lexicographic equal-loss solutions:

Chun (1988) characterizes the equal-loss solution by means of six
axioms: WPO, AN, T.INV, W.MON, CONT and ID.MON. In order to characterize
the equal-loss* solution apart from WPO, AN, T.INV, W.MON and CONT, we also
consider Raticnal $deal Paoint Monatonicity (R.ID.MON), which can be viewed
as a weakening of fdeal Paint Monatonicity (ID.MON), without taking into

account those alternatives which are not individually rational (IIIA).

Chun & Peters (1991) characterize the lexicographic equal-loss
solution by means of five axioms: PO, AN, T.INV, R.W.MON and IAIP. Our
characterization of the lexicographic equal-loss* solution is made by
introducing Fndependence of $ndividually innational dltennatinves (I11A),
and Rational $ndependence of dltennatives athen than the %deal Paint
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(RIAIP) [a weaker requirement than $ndependence of dltennatirnes athen than
Fdeal Paint (IAIP)], and considering exactly the same axioms as in Chun &

Peters: PO, AN, T.INV and R.W.MON.

Table 1 summarizes axiomatic properties of the solutions we introduce
in this paper together with the Nash (N), the Kalay-Smorodinsky (K), the
egalitarian (E), the lexicographic egalitarian (LE), the equal-loss (EL)

and the lexicographic equal-loss (LEL) solutions.
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TABLE 1

N K E LE EL LEL EL LEL
Weak Pareto Optimality yes yes yes yes yes yes yes yes
Pareto Optimality yes no no yes no yes no yes
Anonimity yes yes yes yes yes yes yes yes
Translation Invariance yes yes yes yes yes yes yes yes
Continuity yes yes yes no yes no yes no
Individual Rationality yes yes yes yes no no yes yes
Independence of individually
irrational alternatives yes yes yes yes no no yes yes
Weak Monotonicity no yes yes no yes no yes no
Restricted Weak Monotonicity no yes yes yes yes yes yes yes
Ideal Point Monotonicity no no no no yes yes no no
Rational Ideal Point
Monotonicity no no no no yes yes yes yes
Independence of Alternatives
other than Ideal Point no no no no yes yes no no
Rational Independence of
Alternatives other than Ideal
Point no no no no yes yes yes yes
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