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TECHNOLOGICAL CHANGE AND MARKET STRUCTURE:
AN EVOLUTIONARY APPROACH.

F. Vega-Redondo

ABSTRACT

The paper studies an inter-temporal market context in which firms
innovate, imitate, and compete in quantities and technological choices each
period. Potential entrants enter if there are profitable opportunities;
incumbent firms exit when they go bankrupt. The key aspect of the model is
that technological change evolves along a directed graph. This graph
reflects both the direction of technological change and the magnitude of
costs involved in switching technologies. In this set-up, our main concern
is to explore the implications of different technological structures on
entry/exit dynamics and on the evolution of market characteristics (market

concentration, profitability variance, etc.)







"Time is invention, or it is nothing at all".

Bergson [1911, p.361](1)

1.- INTRODUCCION

Following Schumpeter, the effect of an industry’s market structure on
its rate of technological change has long been a central concern of the
Theory of Industrial Organization. In this paper, 1 shall focus on a
reciprocal issue which, some important exceptions notwithstandingEZ) has
attracted much less attention in recent literature. Namely, the role played
by technological change in shaping some of the industry’s "structural”
characteristics; in particular, of course, its degree of concentration, but

also some of its more dynamic features such as the industry’s pattern of

exit and entry.

We shall also be concerned with providing some insight on what the
recent handbook survey of Cohen & Levin (1989) has viewed as an important
gap in existing literature, viz., the lack of theoretical work addressing
the persistence of major inter-firm differences in  profitability
performance. As reported by Schmalensee (1987), "orthodox" approaches for
explaining these differences (like linking them to market concentration or
some measure of industry-wide differential efficiency) simply do not work.

A reason suggested for this failure is that, as Cubbin & Geroski (1987)

conclude in another empirical paper in the same volume, "...considerable
1
Quoted in Prigogine & Stengers (1987, p. 92)
2 .
See Phillips (1966), Nelson & Winter (1974), Levin (1981), or Mansfield

(1983).




(3)

heterogeneities exist within most industries. That is, most firms’
profitability experience differs considerably from those of their closest

rivals." (Emphasis added.)

Our approach to studying the above set of issues will be to propose a
model of market dynamics in which both strategic and path-dependence
considerations are jointly taken into account. To incorporate the latter,
the model will exhibit a somewhat "biological" flavor. In particular, the
set of technological options will be endowed with a directed-graph
structure, each of the firms that are currently active advancing along
possibly different edges of it through the accumulation of short-run
strategic choices. The graph structure will formalize two key features of
the model. On the one hand, the idea that innovation is a gradual
accumulation of know-how along a certain technological direction; on the
other hand, that imitation may involve switching costs, possibly

substantial.

Market exit and entry will be modeled explicitly as follows. A
potential entrant enters if it can profitably do so given its technological
possibilities. On the other side of the coin, an incumbent firm remains in
the market only if it is able to meet a certain viability constraint. (For
simplicity, we shall require non-negative profits every period.). As we
shall see, this leads, under certain technological scenarios, to a
continuous turnover in the set of active firms. As Schumpeter would phrase
it, technological change in such contexts becomes a force of "creative

destruction".

There exists a rather small literature which shares with this paper a
similar evolutionary approach and concern. Noted representatives of it are
Futia (1980), Nelson and Winter (1982), or Iwai (1984a&b). Among those
pursuing a more standard approach but with a similar concern (to model the

process of industrial innovation and diffusion), that of Jovanovic [1982]

3
The authors study a sample of 217 UK firms during the period 1951-77.




could be singled out from a much more abundant literature. None of the
papers mentioned, however, exhibits the blend of acute path-dependence and

strategic considerations which is key to our present approach.

The paper is organized as follows. The next section describes the
different components of the model. In Section 3, we conduct the analysis
and discussion. The paper concludes with a summary in Section 4. The proofs

of the results are contained in an Appendix.

2.- THE MODEL

I divide the presentation of the model into the following parts:
(2.1) the firms; (2.2) the market; (2.3) technology; (2.4) technological

change; (2.5) exit and entrance; (2.6) strategic game.

2.1. The Firms

There is a set 1 ¢ N of potential firms in the market. As we shall
explain below, only a fraction of them will be generally active at any
given point in time. Time is measured discretely. At each t = 0,1,2,...,
the ©behavior of any firm i € I is characterized by the pair
(o x (1) e ® x R, ™"
produced by firm i at t, xi(t) its ouput, and ® stands for the set of all

where ﬂl(t) denotes the "product variety"

possible product varieties. Implicitly, therefore, we assume that each firm
produces only a single variety at each point in time. If 191(1:) = @, Wwe
interpret it to mean that firm i is not active at t. This, in particular,

means that its output x (t) must equal zero.
1

4
R will denote the non-negative reals; R the positive ones.
+ ++




2.2. The Market

In the Chamberlin’s monopolistic-competition tradition we shall assume

that each firm i confronts an i-specific inverse-demand function

f: 0 x IRi — R, (1)

1

which, for each variety and output profiles ¥ € @ and X € IRi, determines

the market-clearing price for the product sold by firm i, f i(@,)_g). The

dependence of f (.) on the market pattern of product varieties is contained
1

in the following assumption:

(A.1) There is a real function p: @ — IR+ ( pl@) = O ) such that VieN,
the i-specific demand function fi(~) has, for any (’Q,)_() € @ x IR+,

the following representation:
£.(0,%)= P (p(9) _ , X)
for some function
P: R' x [RI —> R,
i + + +
which is homogeneous of degree zero in p(@,),EI and satisfies
11

Pi(-) — 0 as Y x  —> w. Moreover, Ye > 0, 3v > 0 such that
1

p(ﬂi)
if = v for some j # i, then P (p(v)
p('g) i iie
J

;X) = € for all g_(e[Ri.

I

The precedent assumption has the following interpretation. The effect
of product diversity on market demand is fully summarized by the value of
some real function p(-), which may be viewed as measuring the market value
(for short, we shall speak of the "quality") of each variety. For technical
reasons, we normalize matters and assume that only relative qualities
matter (i.e., each Pi is homogeneous of degree zero in quality levels). We
shall further suppose that if the quality of the variety produced by some
firm 1 deteriorates sufficiently relative to that of a competitor, so do

its "market conditions", as reflected by its corresponding demand function




Pi(-). Such market conditions are assumed bounded in the sense that no firm
can sell at some positive price if an arbitrarily large overall quantity
floods the market. A simple example which satisfies (A.1) is given by a
demand function of the form:
p(«?i) «
= 2
P (9,x)= — (i)(ziEEI X)) (2)
p(®)
where a > 0 and ;3(12) stands for the average quality offered by the active
firms in the market, and ¢(-) is some appropriately decreasing real

function.

2.3. Technology

For the sake of focus, diversity across firms will be centered on the
market value of the variety it produces, not on its production technology.
In this latter respect, we shall conveniently assume that all varieties are
produced under the same simple cost structure: a fixed cost M and a

constant marginal cost ¢, both positive.

Firms will be diverse because, in general, they will confront
different  decision problems over existing product varieties. Such
asymmetries among firms will be the result of the following two phenomena.
On the one hand, different innovation experiences. On the other hand,

the existence of switching costs in implementing imitation choices.

In order to formalize these matters, the set ® of possible product
varieties will be endowed with the structure of a directed graph (a
"digraph"), the direction reflecting technological precedence.(S) When two
different varieties, ®, ¢, are adjacent consecutive vertices of © (i.e.
there is an "arrow" in the graph going from ¢ to 9’), we write ¢ pu ¥ and

say that © directly precedes (technologically) #’. Compositions of u give

The elements of © are usually known as "vertices", the graph specifying
which vertices are connected by "edges" and in what direction. See Berge

(1985) for a classical reference on Graph Theory.




rise to the relation of general (as opposed to immediate or direct)
technological precedence as follows. When © and ¢ are joined by a u-chain
starting at ® and ending at ©®, we simply say that ¢ technologically
precedes ®° and write & B ®’. (For the sake of formal convenience, we make
9 B o, i.e., ® is joined to itself by a up-chain of length zero). Motivated
by our interpretation of B as a binary relation expressing technological
precedence, we assume that ¢ is an ordering -- in general, a partial one.

Or, in the language of Graph Theory, (8, u) is an acyclic digraph.

We now propose a notion of technological distance on (@, p). If ¢

B-precedes ', the technological distance d(®, 9') € N is taken to be the
usual one considered in Graph Theory, namely, the length of the shortest
p-chain joining ¢ and ®’. When © does not B-precede ®’, we generalize the
precedent notion by proposing a concept of technological distance

reminiscent of biological contexts. For all ¢, ¢’° € @ denote
P, 9’) ={0 €@ 9B % &8 B 9’} (3)

i.e., the set of common predecessors of both ¢’ and ¢'’. We define

d(®’, ) = min {d(s, 9’): ¢ € P(v’, 9)}, (4)
where we adopt the convention that d(¢,9) = O and, if P(®’,9’) = o,
d(®’,9’) = w. Note that d(.) is not a distance function in the usual

mathematical sense. In particular, it is not symmetric. If, for example,

9 B ¥, ¢ 9, we have d(¢9,9’) > O whereas d(9’,9) = O.

Consider a firm currently producing the variety ¢ and considering
whether to change its production to some other variety . We shall assume
that if this shift is performed, the firm will have to incur in some
switching costs. Switching costs may be given different interpretations,

not necessarily exclusive.(b) One possible interpretation 1is that the

For empirical evidence and a good discussion on the importance of
switching costs in the process of technological change, the reader may
refer, for example, to David (1985a & b), who discusses specific cases,

or Basalla (1988) who provides a general perspective on these issues.
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firm’s plant (or any other type of sunk investment) is geared towards
producing variety ¢ and needs to be adapted in order to produce the
different variety ®’. A related explanation has to do with the existence
of learning costs in training the firm’s workers to produce a different
variety. In any event, switching costs will be linked to the technological
distance between the former and final varieties, as reflected by a

. (7
f unctlon( )

7 Nu {0} — R, (5)

assumed increasing, with (1) = ¥(0) = O (i.e., "gradual” adjustment and no

ad justment is costless)fg)

for all n € N. Thus, for any contemplated shift from ¢ to © the switching

and the gradient 7(n+l)-y(n) bounded above zero

cost is given by

7(9,9°) = 7(d(9,9")), (6)

where d(-) is as defined above.

2.4. Technological Change

(i) Innovation

Since our concern in this paper is not to explain the rate of
innovation but its induced consequences, I shall assume that each firm’s
innovation is the result of an stochastic process of "inventing by doing".
Each period, every firm that remains active in the market obtains an
invention draw from the set of varieties that are technological successors
of the one it previously produced. Such an invention becomes then currently

available for adoption if the firm so decides.

7

[N denotes the natural numbers.

We assume that ¥(1)=0 in order to avoid that the innovation process may

reach a standstill (see below).

1




By assumption (A.1), the "market value" of  a given product variety o
is fully captured by its associated p(9). Let S(®) = {8 € 8 9 p ¢’}
denote the set of direct successors of ¢, assumed finite for simplicity. We

postulate:

(A.2)Xi) At each t, every firm i € I with xi(t—l) > 0 obtains an innovation
draw J i(t) from the set S(¢.(t-1)) of technological successors of the

1
qualily previously produced. These draws are obtained according to the

i = 2
with Aﬁi(t—l)(ﬁ) w for all €

1
S(@i(t-l)) and a common w > 0. If xi(t—l) = 0, then STi(t) = o

(discrete) density function A@_(t-n

(i) Vo € ©, 3 & € S(8) such that p(8) < p(®).

(iii) There exists some & > O such that V9 € ®, 3 & € S(9) such that
p(d) = € p(®) = p(®’), ¥ e S(v)

. . . . 9
By Part (i) of the precedent assumption, every firm obtains one()

innovation draw to be used next period if, and only if, it is currently

active. The fact that A is assumed with full support implies, in

@i(t—l)
view of part (ii), that every active firm has always positive probability
of obtaining an innovation draw which is not" successful”, i.e., yields a
variety of lower quality than the one currently produced. By Part (iii), on
the other hand, there is always positive probability of obtaining a
worthwhile invention with a quality increase ratio of at least £ We shall
also need that any such increase ratio be bounded above. For simplicity, we

assume that & itself is the upper bound.

(ii) Technological Diffusion

Technological know-how on the arising product varieties will be
assumed to filter gradually through the industry with some lag. To model

this, denote by K(t) the set of state-of-the-art product varieties at t in

The fact that the number of draws in one rather than a finite number is

inessential for our purposes.

12




the sense that this set is currently available to every firm in the
industry (either if it is currently active or a potential entrant). As time
proceeds, this set is enlarged by past inventions as they all become
progressively available with some finite lag s € N (an ar‘bitr’ar'y(lo)
parameter of the model). The parameter s may be interpreted as reflecting
some unavoidable gradualness in the process of diffusion or some legal

limits to it induced by, say, a patent system. Formally, we postulate:

K(t) = K(t-1) U ﬂi(t—s), (7
i€l

for all t € N, where K(0) = @, and we use the convention fTi(t—s) = g if
t <s. (See Section 3 for a description of the initial conditions on

7.(0).)

2.5. Exit and Entrance

Let F(t) < I denote the set of potentially active firms in the market
at time t. Only those firms in F(t) may participate in the market and
produce a positive output. The set F(t) is partitioned into two subsets,
N(t) and E(t). The set N(t) includes those incumbent firms that entered the
market in the past and still remain in it. On the other hand, E(t) includes
those firms which are currently considering entry at t. The set F(t)
changes through time as a result of the processes of exit and entrance in

the industry.

Exit is modeled in a straightforward way. If an incumbent firm
i € N(t) is not able to make non-negative profits (net of any switching
costs), then we assume that it goes bankrupt and is forced to exit the
market. For simplicity, we assume it may never participate in the market

again. That is, i ¢ F(t) for all T > t.

10

Any value for s is consistent with our qualitative results. In fact, what
matters for them is the ratio g/s of maximum quality innovation per 'lag
period”.

13




Entry, on the other hand, is modeled gradually as follows. At each
t € N, the set E(t) is composed of only one firm, that indexed e(t), which
is the current potential entrant. Assuming firms are listed in the order of
potential entrance, we choose e(t) as the firm with lowest index which has
never yet entered. If given the game which is described in the next
subsection, the firm e(t) decides to enter the market, e(t) € N(t+l1) -i.e.,
it becomes an incumbent next period- and e(t+l) = e(t) + 1, as long as e(t)
was not the last firm in I. If it instead decides to remain away from the
market, we shall assume that it still remains the potential entrant at t+l.

Thus, e(t+1l) = e(t).

2.6. Strategic Game

At each t, the players involved in the game are those in the set F(t).

We shall consider a two-stage game, as follows.

In the first stage, each firm i € F(t) chooses simultaneously a

product variety in

o) =KW u[U 7@ (8)

T=t
which is its action space in the first stage of the game. Note that for the

entrant e(t),
®e(t)(t) = K(t),

since 5’76(“(1') = @ for all T = t. Also notice from (7) that @ € K(t) for

all t. If the entrant chooses ¢ W - @, we interpret it to mean that the
e

potential entrant decides to stay out and wait for the next period.

Given their choices in the first stage, firms compete as Cournot
oligopolists in the second stage, choosing (simultaneously) how much output
to produce of the selected variety. Let (9(t), x(t)) be the variety and
output profiles prevailing at any chosen t. Given %(t-1), the variety
profile prevailing in the precedent period, payoffs are as follows. For the

incumbent firms i € N(t),

14




ni(t_?(t), x(1),9(t-1)) = lﬂi(@(t),)_((t)) - q(ﬁi(t—l),ﬁi(t)) (9)
where
llli(@(t),g(t)) = Pi(t_9(t),>_<(t)) xi(t) - M - cxi(t)

denotes current profits gross of switching costs. And for the potential

entrant, e = e(t),

m (9(t), x(£),8(t-1)) = y (8(¢),x()) if o (t)*e, (10a)

T (9(t), x(1),8(t-1)) = O if & (t)=o. (10b)

Only the first contingency of (10) requires explanation. It expresses the
idea that if the potential entrant indeed enters (ﬂe(t)atz), it is subject
to no switching costs. The underlying assumption here is that, since the
entrant has no previous technological base to switch from, it may acquire
the state-of-the art technology of K(t) at no adjustment cost. We could
assume, however, that the entrant has to pay a fixed entry cost for
adopting any such technology without affecting our analysis. For the sake

of implicitly, we take such fixed cost to equal zero.

Under our assumption that, within each stage, the choice of actions is
made simultaneously by all the incumbent firms and the potential entrant,
we have a standard two-stage game in which strategies for each player i are
of the form («91, xi(.)). First, they include a choice of product variety
among those feasible for the particular agent. Second, they specify a
function expressing produced output contingent on the variety choices made

by all agents in the first stage.

Denote by A(®) = {i € I. & =# &}, i.e., the set of active firms
= 1

induced by 9. We postulate:

(A3)i) ¥V ¢ € @I, there exists a Cournot-Nash equilibrium (CNE) for the
second stage of the game x*(8) such that, for all i e A(9), l/ﬁ;(@) =

wi(ﬂ, x*(®)) is continuous in [p(ﬁj)],EI , monotonically increasing in
- - j

15




p(ﬁi) if X’.f('é‘) > 0, and non-increasing in p(ﬁj), Jj =i
(ii) 3y > O such that V¢ € @)I, if the cardinality |A(9)]
p(z‘}i) =p, > 0 for each i € A(9), the CNE profits !,b?‘('é‘) z 7.

2 and

By (A.3(i)), a symmetric Cournot-Nash equilibrium exists in the second
stage of the game. (For simplicity, we take it to be in pure strategies.)
Conditions on demand and costs that guarantee such existence are standard

D This then ensures equilibrium existence for the whole

in the literature.
game, since the action space in the first stage of the game is finite. We
also postulate in part (i) of (A.3) that the equilibrium profits of every
active firm i are monotonically increasing in the quality of its respective
é‘i and non-increasing in that of its competitors. This natural requirement
may be easily verified for the specification proposed in (2) if 4) is of a
standard type (linear, with constant elasticity, ete.). Finally, part (ii)
of (A.3) simply establishes that the "size" of the market is large enough

to allow for the coexistence of at least two symmetric firms.
3.- ANALYSIS

At t = 0, we assume N(O) = {1} with ?71(0) = 8% and p(t‘}o] > 0.
Starting from such initial conditions, we shall study the ensuing evolution
of the industry under different assumptions on both entry conditions and

technological characteristics.

Entry conditions will be captured by the cardinality of the set I of
potentially active firms. If this set 1is finite, we interpret it to
represent a context of limited entry. If we assume instead that the set I
has infinite cardinality, market entry is interpreted unlimited (i.e., open

to an infinite number of potential firms).

1
Essentially, they hinge upon the strict quasi-concavity of the profit
functions which are induced by the demand and cost functions.
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As for technological conditions, we shall focus on two polar and
stylized contexts which highlight best the type of issues involved. In one
of these alternative contexts we shall postulate that, with some finite
(although arbitrarily long) maximum recurrence, the technological structure
includes "branching and seminal innovations" (for short, we shall call them

basic innovations). A certain variety qualifies as such if:

(i) it embodies essential technological know-how incorporated in all
its successors (i.e., it represents for them a sort of indispensable
"building block"),

(ii) it is not the unique quality-enhancing innovation, as viewed from

their immediate technological predecessors.

To define (i) and (ii) formally, I introduce two additional pieces of
notation. First, for any © € ® we shall denote by E(®) the set of
technological successors of ¢, ie.,, Z(8) = {8 € @ o B ¥} Second, for
any ©, ® € ©, we shall write as x(®’,9’) = (01,192,...,'8m) a typical
p-chain of technologically consecutive varieties joining ¢ and ¢’. That is,

¢ =9,9 uo  (i=1,2,....m), 8 = 9.
1 i i+l m

Denote by @)b the set of all basic innovations and let 3 € @b.
Corresponding to (i) and (ii) above, such a variety must meet the following

two formal requirements:

(i)’ Vo' ¢ E@), ¥’ € E(B), ¥V x,9’) = (©,0,..,0 ), 8 = o for some
i=2,...,m

(ii) v0 e ® s.t. & € S(®), p@) > p®), and I ® # & s.t. ¥ € S(®) &
p(®’) > p(9).

Condition (i)’ formalizes (i) by requiring that every p-path joining
any variety o ¢ x(®) and another variety o’ € x(8) must necessarily
include &. It is in this sense that we say that & is an essential building

block  for its technological successors. Condition (ii)’ is a

17




straightforward formalization of (ii). The first of the scenarios we shall

consider is characterized by the following condition:
(B) There exists some q € N such that:

[6°,07€ ©, o B §°, d(®,9)=2q] » [I6c0: o B & B ©° & S(®) n © 2]
b

The precedent condition states that basic innovations always become
reachable (i.e., are among the possible successors of prevailing varieties)
within some pre-specified maximum number of "u-steps". The motivation for
this condition derives from the work of a number of scholars in the field
of technological change who have stressed that, in technologically dynamic
contexts, such "branching" inventions tend to arise quite recurrently.uz}
Along the new technological line they open, further innovations build upon
a specific type of know-how which brings them apart from alternative
technological courses, equally viable ex-ante. Admittedly, the
technological implications of (A.2) are rather special. Its role, however,
should not be evaluated literally but in terms of its wusefulness as a

theoretical benchmark. A particularly simple case which meets (B) is that

where the ordering B induces on ® a tree-like structure.

Assumption (B) will be contrasted with a polar alternative scenario in
which no innovation ever stands out as ‘"basic". Since wunder these
circumstances the technological structure must be to some extent
interwoven, we shall focus on the stylized case where such structure is, in
fact, linearly PB-ordered. That 1is, a <context in which no distinct
technological paths ever arise since all varieties belong to the same one.

Formally,

12
See, for example, Rosenberg (1986, pP- 23-27) or Basalla (1988, pp.189-

204) for a good discussion of these issues and a number of illustrative

examples. Just to note a few of them we can mention the cases of vacuum

tubes/semiconductors, natural/artificial fibers, gasoline/diesel engines
for automobiles, or piston/jet engines for planes. All of these pairs of
alternative technological courses were originally developed along

separate lines. In some of these «cases, not both of them survived in the

long run.

18




(L) ® is totally B-ordered (i.e., B defines a total order on ©).

Substantial generalizations of (L) would suffice for our purposes. We

focus on it, however, as a specially clear-cut alternative to (B) above.

3.1. Scenario (B)

We first establish that if there is Ilimited entry (i.e., the
cardinality of I is finite) and (B) applies, then the market structure will
eventually evolve into a monopoly with only one firm remaining in the
market. All other firms, sooner or later, will be forced out of it by

bankruptcy. Formally:

Proposition 1: Assume (B) and |I|< w. There exists with probability

one a firmi eI and to e N such that F(t) = (i} for all t = to.

The essential intuition of this result is as follows. Under (B), the
technological process of innovation and imitation within the industry will
eventually lead to a situation where each firm follows a separate
"technological line". When this occurs, the independent technological
evolution of each firm will lead to a point where one of them so dominates

the others that only the former will survive.

If instead of limited entry, there is an infinite set of potential
entrants, we establish next that, under (B), there will be a continuous
process of firm turnover. The intuition here springs from that
of the former result. Specifically, no firm will survive forever;
eventually, every firm will be forced out of the market with full
probability. A straightforward implication of this result is that every
firm in I (no matter how high its entry index) will eventually enter the

market. This will compare drastically with our conclusion in this respect

19




for scenario (L) - see Proposition 5 below. A formal statement of these

conclusions now follows.

Proposition 2: Assume (B) and [I| = «. Viel, there exists with

probability one some T € N such that i € A(t) and i ¢ A(t) for all

¢ > 1:.(13)

The dynamics established by the precedent proposition may be seen as a
stylized formalization of Schumpeter’s "merciless" and never-ending process
of creative destruction. In view of Proposition 1 (which established that,
under limited entry, an eventual monopoly will obtain) the question
now arises as to whether this conclusion will be maintained if entry is

unlimited. The following straightforward result addresses this question.

Proposition 3: Assume |I| = o. There exists some € > 1 such that, if

€ =< &, then |A(t)] = 2 for all t € N.

Note that the precedent proposition does not depend on the
technological scenario considered, (B) or (L). In both of them, unlimited
entry precludes monopoly. This will be achieved, however, with drastically
different underlying dynamics in each scenario: under (B), with continuous
firm turnover and occasionally large profitability differences across
active firms {(see Proposition 4 below); under (L), with neither firm
turnover nor large differences in firms’ performance (see the next

subsection).

The pattern of firm bankruptcy underlying the conclusions of
Propositions 1 and 2 implies the occurrence of significant profitability
differences among active firms (in particular, of course, among those that
survive till next period and those that do not). In general, these
differences have to be linked (if & 1is small) to large technological

differences across firms (that is, to large technological distances between

3
Abusing notation, we write At) for Alvw). We will adopt similar
conventions in other analogous cases when there is no risk of
misunderstanding.
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the varieties they produce). That these differences will recurrently become

arbitrarily large is established by the following proposition.

Proposition 4: Assume |I| = w. There is some & > 1 such that, if § = &,

then V R > O, V t € N, there is probability one (conditional at t) that
d(ﬂi(t’),ﬁj(t’)) = R for some t’ =t and i,j € A(t’).

We now compare the previous conclusions with those of scenario (L).

3.2. Scenario (L)

The following proposition stands in stark contrast with Propositions 1

and 2.

Proposition 5: Assume (L). There is some & > 1 such that if € = €, then

A(t) € A(t+1) for all t € N.

The above proposition establishes that, in scenario (L), no firm will
ever be forced out of the market by bankruptcy if innovation is
sufficiently gradual (£ is not too large). Note that this conclusion is L
independent of the cardinality (finite or infinite) of the set I. To obtain ;
a more ready comparison of this result and those derived in the previous
subsection for scenario (B), we state next an immediate corollary of it. At
each t € N, denote by m(t) the highest index included in the current A(t).

We have:

Corollary: Assume (L). There exists some £ > 1, m, m € N, such that

if € = &, then m1+1 = m(t) = m, for all t.

In combination with Proposition 5, the precedent corollary establishes

clear-cut differences between the dynamics of each of our considered
scenarios. In contrast with (B), scenario (L) neither leads to the eventual
establishment of a monopoly under limited entry nor, under unlimited entry,

to a never-ending process of firm turnover (c.f. Propositions 1 and 2).
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As for the emergence of inter-firm differences in technology and

performance, we shall also be led to marked contrasts. Denote

n*(t) = max { m (t), i € A(t) },

and
m(t) =max { O, min { m (t), i € A(Y) } } ,

the maximum and minimum profit levels (losses are considered null

profits) prevailing at any time t.

Proposition 6: Assume (L). For all 8 > O, there exists some & > 1 such

that if € = &, then (m*(t)/ m,(t)) = 1+8 for all t € N.

And with respect to inter-firm technological differences, we have:

Proposition 7: Assume (L). There exists some é > 1 such that if & = é,

max { d(z‘:‘i(t),ﬂj(t)), i,j € A(t)} < s for all t € N, where s is the

diffusion lag.

The precedent analysis may be summarized by the following table. (The
numbers in parentheses refer to the propositions which establish the result
in question. The different assumptions on the cardinality of the set I
which are arranged vertically (|I| finite or infinite) only apply to
scenario (B) since our results for scenario (L) are independent of this

cardinality.)
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1] € o

(B)

(L)

(1)
For some i € I, T € N

F(t) = (i} vtz =~

(5)
A(t) c A(t+1)

Yt € N

(2)

m(t) —— w

(5)

vt e N, m(t) = m

The model of market technological processes proposed in this paper has

In addressing the above points,

(3) (5)
vt € N, |A(t)] =z 2 vt e N, [A(t)] =z 2
(2) (6)
¥t e N, 3t’= t: ¥vs > 1, 3 > 1: ¥t € N
n*(t’) w*(t)
—_ = - =148
T, (t’) m,(t)
(4) (7)
YR > 0, Vt e N, 3Jt’= t: vi,j e A(t),

d(o, (t’ ),0J_(t’)) = R

d(ﬂi(t),ﬁj(t)) =

S

4.- CONCLUSION

stressed the following points:

considerations. Among others, we may list:

23

we have abstracted from

(1) Technological change is a highly path dependent process.
(2) Firms’ technological choices are subject to switching costs.
(3) Firms’ survival requires meeting some bankruptcy constraint.

(4) Market entry is dependent on technological availability.
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(a) Firms’ decisions and their viability (bankruptcy} constraints are
really inter-temporal, i.e., neither "myopic" nor "instantaneous".

(b) Innovation is the outcome of an economic decision, not merely the
result of learning-by-doing activities; So is, for that matter, diffusion
and imitation.

(c) The activity of firms is subject to both considerations of scale

and essential domains of uncertainty.

Existing literature in Industrial Organization has addressed the
precedent issues with a variety of approaches and emphases (see Tirole
(1988) for a comprehensive survey). For our present purposes, it was
thought best to avoid them in order to focus on our primary concern.
Namely, to explore the implications of alternative technological structures
and their associated processes of technological change on some of the
industry’s structural properties: market concentration, entry/exit

dynamics, and inter-firm variability in technologies and performance.

Our main conclusions in this respect can be summarized as follows. If
the technological structure exhibits "branching" (i.e., occasionally
divergent technological lines), the evolution of the market will be, either
towards monopoly if entry is limited, or to a process of continuous
turnover if the set of potential entrants is unlimited. In either case, the
differences among active firms in both the technological and profitability

spheres will become large.

Such conclusions contrast with those obtaining within a technological
scenario in which, loosely speaking, all product varieties belong to the
same technological line. Under these circumstances, no incumbent firm is
ever forced out of the market. Thus, in particular, the number of active
firms in it is a never decreasing set which reaches the upper bound which
the market can support. Moreover, at any point in the process, the
technological and profitability profiles of active firms never becomes too

heterogeneous.
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APPENDIX

Proof of Proposition 1:

Suppose that, for all t € N, either |A(t)] =z 2 or/and E(t) # @. The
proof builds a contradiction upon this hypothesis in two steps. First we
show that, for all t and any two firms in [A(t)UE(t)], there Iis
(conditional at t) probability one that either one of them goes bankrupt or
that the technological distance between the varieties produced by them will
become arbitrarily large. Second, we prove that the latter possibility
implies that (again with full probability) one of those firms will go

bankrupt sooner or later.

For simplicity of exposition, we carry out the argument for the case
I = {1,2}. Its extension to an arbitrary (finite) I is straightforward.
Denote by B(9) = {8 € @b: ¢ B ©), i.e., the set of basic inventions

B-preceding any given ¢ € 8. We shall need the following lemma.

Lemma: Choose any given time t, and assume that [A(t)UE(t)] = {1,2)
for all t = t. Vr € N, there exist some 8 > O and v € N such that Vt =
t there is probability (conditional at t) of at least § that for some

L,j =12, i#j:

(i) B(z‘}i(t+v)) \ B(ﬂj(t+v)) = Dij(t+v) =2 ;

(ii) 3 9 € Dij(t+v) such that p(ﬂk(t+v)) > p(d) £ for each k = 1,2.

Proof: Given t (= 1) and its corresponding 191(1:) and @Z(t)
prevailing at it, consider the following sequence of events associated to
some given Ve Y, V,E N. [We suppose w.l.o.g. that p(ﬁl(t)) z p(ﬂz(t)),
where recall that p(z?z(t))=0 if 192(t)=z, i.e., firm 2 is not active at t.]
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(1) In the time interval [t+1 , t+v1]:

I
I

(a) For T £ p(@z(r—l)) if 2 € Alt-1).
(b) For T = t. Lty p('Bl(‘C)) p(ﬂl(r—l)).
(c) | p(o,(t+v))) - p(o (t+v)) | = &

t+1,...,t+v1, p(ﬂz(l'))

]

(2) In the time interval [t+v1+1 , t+v2]:

(a) For T = t+v1+1,...,t+v2—2, i=1,2, p(z‘)i('c)) =& p( 1‘}1(7-1)).
(b) For some i,j = 1,2, i#j, 1‘}i(t+v2) € @b, 19j(t+v2) 3 E('Bi(t+v2)).
(c) | p(® (t+v.)) = p(B(t+v ) | =¢

(3) In the time interval [t+v2+1 , t+v3]:
p(ﬁl(t)) =£ p('ﬁi(‘t—l)) for each i = 1,2.

We now argue that there is some 8 > 0 and some pre-specified bounds on
Ve Vo and Vs such that the string of events described in (1) through (3)
has probability no smaller than 8 for all time t. Starting by the events in
(la) and (1b), these have, by (A.2), positive probability for any given v,
The fact that v, (which is chosen to satisfy (3c)) may be bounded above

independently of t derives from the fact that either:

(i) both firms belong to A(t) and thus, by virtue of (A.1), p(ﬂz(t))
z v p(ﬁl('r—l)) for some pre-specified v > 0, or
(ii) firm 2 does not belong to A(t) and, by (A.3(ii)), it can be

ensured that vls s, where s is the diffusion lag.

With respect to (2), assumption (A.2) induces positive probability to
(2a) for any v, By this same assumption and condition (B), (2b) and (2c)
obtain with positive probability for some v, =V +*q+ 2, where q is the

parameter contemplated in the latter condition.

As in the case of (2a), the event described in (3) has positive

probability for any choice of v, If we make v = Vg part (i) of the lemma
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follows. By choosing A = v, v T o# 1, we also have part (ii), completing

the proof of the lemma.

Since the choice of 8 and v in the precedent lemma can be made
independently of t, it follows that (i) and (ii) will indeed obtain for

some t = t with probability one. By (ii) and (B) we shall have:
d(ﬁ_(f+v),ﬂj(f+v)) zr (11)
1

for each i,j = 1,2, i#j. By (A.l), profits for any individual firm are
bounded above by some 7. Choose r in the lemma such that '}(r) > m. Then
(11) implies that from t+v onwards, each firm will proceed along
independent technological lines, never imitating the other firm. Thus, (i),

(ii), and (11) will continue to hold for all t* = f+v.

Once shown that with probability one the two firms will eventually
become technological isolates, it is immediate to see that, given this
state of affairs, one of them will, again with probability one, go bankrupt
within finite time. For, choose € in (A.1) less than the marginal cost c.

By virtue of this assumption, if at some t € N we have:

p(® (1))
_J @ < v, (12)

p('&i(t))

then Pj(.) = ¢ and, therefore, firm j will necessarily obtain negative
equilibrium profits at t. From t+l onwards j ¢ F(t). Since, by (A.2), (12)
will obtain with probability one at some t = t, the desired contradiction

follows, completing the proof of the proposition. I

Proof of Proposition 2:

Given t € N, choose any i € A(t). Denote

F () ={je AMUER), j=i}, (13)
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and

M_i(t) ={ke F—i(t) : nk(t) z0 & l/lk(t) S l[lj(t), Vj e F_i(t) . (14)

Let j € M_i(t). Applying a logic analogous to that of Proposition 1, we may

conclude that, for any v > O, there exists some & > O, v € N, such that:

p(o (t+v))
= v, (15)

p(f}j (t+v))

with probability no smaller than 8. By choosing v small enough, (15) and
(A.1) imply that llli(t+v) < 0. Thus, firm i goes bankrupt at t+v and,
therefore, i & F(t+v+l). Since the choice of 8 and v can be made
independent of t, we conclude that firm i must go bankrupt, with
probability one, at some t’ = t. This then implies, in view of (A.3), that,
again with probability one, every firm in I will eventually enter the

market. |

Proof of Proposition 3:

By the monotonicity of each t/}’;‘(-) postulated by (A.3(i)), |N(t)| =z 1
for every t € N. (The firm producing the highest quality always survives
till next period.) Suppose that, at some given t, N(t) = {i} for some i €
I. If € were equal to one, (A.3(ii)) would imply that n:(t)(t) > 0 and,
therefore, |[A(t)| = |N(t)JUE(t)| = 2. Thus, by the continuity assumed in
(A.3(i)), there exists some € > 1 such that if & = £, the precedent

conclusion must still hold. This completes the proof. I

Proof of Proposition 4:

Consider any time t, and choose an arbitrary R > 0. Denote

M(t) = { k € F(t) : nk(t) =20 & wk(t) z l/lj(t), Vj e F(t) }, (16)
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and choose some i € M(t) and j € M_i(t], as defined in (14). By a line of
argument repeatedly used, we may choose 8 > O and v € N such that the

probability (conditional at t) of the event

d(@i(t+v),6j(t+v)) z R (17

is bounded below by &8. Thus, since 8 and v may be selected independently of

t, the conclusion of the proposition follows. l

Proof of Proposition 5:

In context (L), all firms i,j € A(t) will satisfy:
lﬂn[p(@i(t))] - Iin[p(t‘}j(t))]l =sin € (18)

for any t € N, where s is the diffusion lag. (Recall that we have assumed
that gradual adjustment is cost-less, i.e., (1) = 0.) Thus, if £ is small,

so will be the maximum quality ratio among active firms.

Denote |I| = m. For each i € I, consider the function
J: R —5 R,
1 +
defined by:
¥(p) = y*®), (19)

where p= p(é‘i) and p = (pi) For each n € N, n = m, let En stand for

ieN -~
the m-~dimensional vector (1,1,...,1,0,0,...) with 1’s in its n first

coordinates and O’s in the remaining m-n. Let
n=max {neN ¢ (£)>0,i=12,...,n} (20)
1 n

By (A.1), n is finite. Moreover, the monotonicity of each l/l’;(') postulated
by (A.3(i)) implies that n is the maximum number of firms which the market

can possibly accommodate. Choose z > O such that p°= £_ - (z,0,0,...) and
- n
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{ill(go) > 0. If € is chosen such that:
s tn € = -tn (1-2), (21)

we may ensure, in view of (16), that no firm ever active will later on

become bankrupt. This completes the proof of the Proposition. I

Proof of Corollary to Proposition 5:

By the precedent proposition, we can choose m_= n. From Proposition 3,

we can make m = L |

Proof of Proposition 6:

A direct consequence of (16). |

Proof of Proposition 7:

By (7), any variety ¢ € @i(t) available to firm i at t becomes
available to all other firms in the market at most s periods after, i.e., ©
€ K(t’) for all t° = t+s. Since we have assumed that (1) = O, this implies

the desired conclusion. [
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