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VECTOR MAPPINGS WITH DIAGONAL IMAGES
C. Herrero and A. Villar

ABSTRACT

i

A diagonal image may be defined as a point in the image of a
given mapping, whose components are all equal. More generally, we
shall say that a mapping F-D --> R, for D c R" has a
quasi-diagonal image at x € D, if Fi(x) > Fj(x) => X, = 0, for
all i = 1, 2, .. n. This paper investigates sufficient
conditions for a set-valued mapping to have quasi-diagonal images
(in an extended sense). More specifically, we shall show that an
upper-hemicontinuous correspondence, with nonempty, compact and
convex values, applying the cartesian product of an arbitrary
number of simplexes on the corresponding space, has a
quasi-diagonal image. Two applications are provided in order to

illustrate the usefulness of these points in economic modelling.



I.- INTRODUCTION.

The purpose of this paper is to analyze the existence of a
particular type of values in the image space of a standard class
of operators defined on arbitrary products of Euclidean spaces.
These particular values will be called diagonal images, and will
be precisely defined later on. Intuitively;/ a diagonal image is a
point in the range of a given mapping, whose components are all
equal. i

In order to motivate the problem we are going to deal with,
let F:[RI: -——> R" be a single-valued mapping (where R" stands for
the n-vector space of real numbers, and IR:_1 ={xe R/ x20) ),
and let e be a point in lRi1 whose components are all equal to one.
Finding a diagonal image may be described as the search for a
pair of points (x’, A), with x’ € lR:l and A € R, such that:

F(x’) =2 e (1]
When there exists such a pair of points, we shall say that F has a
diagonal image at x’ (observe that when A = O, a diagonal image
yields a solution to the equation system F(x) = 0).

Suppose now F applies IR:_1 X IRI: into IRn+k. We can also say that
F has a diagonal image if a point x’ and two scalars, A, & exist

such that:

F(x)=A , forall i=12,...,n
! ']

Fi(x’) =8 , for i = n+l, n+2, ..., n+k



(in general we may have a mapping defined on the cartesian product
of an arbitrary number of Euclidean spaces, i.e., given a set of
indices 1, consider, for any i € I, a natural number n(i), and the

euclidean space Ian. Let E =171 Rn(l), and consider a mapping

1€1

from E into itself. Then, we will require Ai’ i € T scalars for

the definition of a diagonal image).

Consider now the following variant of problem [1l: Find

x* € [RE, and B scalar A such that, for all j = 1,2, ..., n:

F.(x*) =z A
J [2]
Fx*)>A==>x*=0

J J

Problem [2] constitutes a generalization of problem [1]. When
such a pair of points (x*, A) exists, we shall say that F has a
quasi-diaganal inage at x*. Observe that such a point yields a
solution to the complementarity problem:

G(x) =0

x G(x) =0
where G(x) = F(x) - A e, and x G(x) stands for the usual inner
product. -

Suppose now F applies IR:’1 X IR}: into an+k.

As in the previous
case, we can also say that F has a quasi-diagonal image if a point

x* and two scalars, A, 8 exist, such that:



Vij=1,2..,n F.(x*)z2A & F_(x*)>A==>x*=0
J J J [2’]
V j = n+l,..., n+k, Fj(x*) =23 & Fj(x*) > 8 ==> x*; =0

(similarly, any number of n-vector spaces can be considered).

Problem [2’] constitutes the extegsion of problem [1’]
analogous to [2] with respect to problem’ [1]. It is clear that all
points satisfying [1] (resp. [1']) also satisfy [2] (resp. [2’]).
Although the donverse is not generally true, when x* is strictly
positive, a quasi-diagonal image turns out a diagonal one. As the
reader may well guess, quasi-diagonal images can be shown to
exist in many contexts where diagonal images are not possible (as
it is the case for the function F:IRE --> IR2 given by: FI(X) = X,
Fz(x) =Xt X, ¢ 2).

From a formal viewpoint, quasi-diagonal images are closely
related to the existence of fixed points and the solvability of
variational inequalities and complementarity problems [see Villar
(1990) and the references provided there]. Furthermore, the
solvability of some economic problems can be formulated as the
search for a quasi-diagonal image [see for instance Herrero &
Villar (1990)].

Section II analyzes the existence of quasi-diagonal images
for set-valued mappings. The key result of this Section shows that

an upper-hemicontinuous correspondence, with nonempty, compact and



convex values, applying the cartesian product of an arbitrary
number of simplexes on the corresponding space, has a
quasi-diagonal image.

Sections III and IV provide two different applications, in
order to illustrate the usefulness of this result in economic
modelling. The first one considers the problem of distributing a
bundle of k goods among n agents in tﬁé presence of consumption
externalities, so that the resulting allocation could be deemed
egalitanian. g‘hen, the existence of Lindahl equilibria is analyzed
in a model with several public goods, when personalized prices may

enter the utility functions.



II.- THE EXISTENCE OF QUASI-DIAGONAL IMAGES.

In order to facilitate the exposition, let us introduce the

following definition:

Definition.- Let E be a locally convex Hausdorff topological vector
space. We shall say that "D ¢ E ---> E is a regular mapping
on D, if there exists an upper hemiébntinuous correspondence,
w:D ---> R" such that, for all x € D,

(a) px) ¢ I'(x)

(b) p(x) is nonempty, compact and convex.

Remark.- A regular corresponce is a (possibly set-valued) mapping
containing an  upper hemicontinuous subcorrespondence  with
nonempty, compact and convex values. A particular family of
regular mappings is given by those correspondences which allow for
continuous selections (this can be ensured if either T is
nonempty, convex valued and F-l(y) is open for each y in T(D)
[Browder (1968)], or T is lower hemicontinuous, with nonempty,
closed and convex values [Michael (1956)]). Trivially, an upper
hemicontinuous correspondence with nonempty, compact and conveXx
values is regular, and a single-valued miapping F is regular if and

only if it is continuous on D.

Let n(i) denote a positive integer, for any i € I, where I

stands for an arbitrary set of indices. Call Ei = [Rn(l), and let
E=1 Ei , and consider the following definition:

iel



Definition.- Let I:E --> E be a given correspondence. We shall say
that T' has a quasi-diagonal image at x* if there is some
y* € I'(x*) and scalars Ai, i €l such that, V i € I,

y¥.z A, & x*

* ¥. = 0 whenever y*. > A, , j = 1,2,..., n(i)
ij i ij ij i

Define now for each i € I the unitary simplex S; ¢ Eg¢

n(1)
Si=(XEEi/ )X xj=l,szo)
Jj=1
Denote ’5oy ¥ the cartesian product of those simplices, that

is,

The following Lemmas will facilitate the proof of our main

result:

Lemma 1.- Let X be a topological space, Yi a compact space,
vV iel and Ti: X -=> Yi a regular mapping. Let

Y= Yi and T: X --> Y such that T(x) =[] Ti(x). Then,
1€1 1€1

T is regular.
Proof.-
By Tychonoff’s Theorem [see Kothe (1969), p. 18], Y and T(x)
are compact spaces, for every x € X. Moreover, since Gr 'I‘i is
closed ¥V i € I, Gr T is closed as well [ see Border (1985), prop.

11.25], and, since Y is compact, T is regular.

10



Lemma 2.- Let K be a nonempty compact convex subset of a locally
convex Hausdorff topological vector space, T: K --> K an
upper hemicontinuous mapping with nonempty, convex and

closed values. Then T has a fixed point.

[A proof of this result can be found in Marchi & Martinez Legaz

(1989), cor. 3.3, and Istratescu (1981), cor. 10.3.10].

We are now ready to state and prove the main result of this

Section:

Theorem.- Let I':¥ --> E be a regular mapping. Then I' has a
quasi-diagonal image.
Proof.-
E is Hausdorff and locally convex [see K&the (1969), p. 207},
and, by Tychonoff’s Theorem, S is a compact subset of E.
Viel let Ti: S --> Ei be the projection of I' on Ei’ and
Fi = co Ti(S)’ the convex hull of Ti(S).Fi is a compact and

convex set [see Border (1985, 11.16)]. Let F =7 Fi' F is a

compact and convex subset of E, and ' = 1] Ti'
1€1
Now define a correspondence 7i:F ——=> Si as follows:

ari(z)=(yieSi / yiziSyizi,VyieSi}
Clearly LA is a nonempty, convex-valued correspondence.
Furthermore, 'yi is upper hemicontinuous.Then, 7:F --> S, given by
7z) =10 7i(z) is regular.

i€l
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Define now a new correspondence, ¢ from ¥#xF into itself as
follows:
#(y, z) = 7(2) x I'(y)
By construction, ¢ is an upper-hemicontinuous correspondence with
nonempty, compact and convex values, applying a compact and convex
set into itself. Thus, Lemma 2 applies, and a point (y*, 2z*¥)
in ¢(y*, z*) exists, so that,
y* € 7(z*), z* € T(y%)
By definition of ¥ we have:
y*{ 5‘; = min. X z‘; , for all X, in Si’ that is,if we
call min z*; = Ai' we get
ZTIYTI Tt zrn(l)yrn(l) = Al
since the first part of the inequality is a convex combination of
numbers which are equal to or greater than Al. Hence the equality
is only possible if z*:J = Al whenever y’;j > 0, for all i €
I, all j = 1,2,..., nw.

What this Theorem means is that we can find points y* in ¢,
z* in T(y*) such that, for each i e I, every z*;j [i = 1,2,...,
n(i)] either takes on a common value (Al, say), or else y’;j equals
zero. Thus in particular, when y* is an interior solution we have:

* =% = = z¥ = A iel

e

i1 iz inth i

12




Remark.- The same proof can be applied in order to show the
existence of points x* € ¥, y* e I'(x*) such that,

* < . ¥ ==> * =
ylt m?x ylj xlt 0

Let now Sk stand for the cartesian product of k simplexes in
&Y (that is, nl) = n@) = .. = ok = q, and s* ¢ R%). The

following Corollary is obtained:

Corollary.- Let I‘:Sk --> R™ be a regular correspondence. Then,
there exist points x* € Sk, y* € I'(x%), such that,
v >y? ==> X% = X% =.=x% =0
Proof. -
Define a mapping ‘Il:Sk -—> ank as follows: for each x € Sk
¥(x) = I'(x) X T(x) X ... X I'(x)
that is, ¥(x) stands for the cartesian product of k identical
sets, I'(x). Clearly ¥ satisfies the hypothesis of the Theorem and

then there exist points x* € Sk, p* € ¥(x*) such that

* S : * == -
Pit Bi m;n. plj > pu 0

By construction,
p* = (y*’ y*’ ey y*)

Hence the result follows.

13



II.- APPLICATIONS (I): THE EXISTENCE OF EGALITARIAN ALLOCATIONS.

Consider a public choice problem in which a planner has to
allocate k divisible goods among n agents by means of transfers,
in an environment characterized by the presence of consumption
externalities. We shall assume that agents’ preferences may be
represented by continuous utility fuﬁt/:tions, and that either
interpersonal welfare comparisons can be performed in ordinal
terms, or that payoff functions represent relative gains for

i

non-comparable but cardinal utilities [see Villar (1988), Herrero

& Villar (1990) for a detailed discussion of this kind of

problem].
Let i = 1, 2, ..., n be the subscript identifying the
different agents, and j = 1, 2, ..., k that identifying the
. . k
available goods. A point X, € IR+, X, = (xil’ Xins wees xik)’

denotes the amounts of goods corresponding to the ith agent. A

point x = (x, x e xn) in Rfk will be called an allacation.

r -2
We shall suppose that all goods are "private goods".

Each agent is assumed to have a continuous utility function
defined over entire allocations, ui:[Rilk ==> R. Then, u(x) is the
n-vector of utility values for a given allacation, that is,

u(x) = [ u, (x), u,(x), ..., u (x) ]

k

n n
where u:!R+ --> R".

An allocation x* € IR_I:k will be called egalitanian if, for all

i, t = 1,2,..., n, ui(x’*) > ut(x’*) implies x‘; = 0. That is, we

14




shall say that an allocation is egalitarian when all individuals
have the same payoffs, or else those with higher ones receive
nothing).

let w € IRI: denote the bundle of commodities to be

z, = wj }. A point in

(e I

distributed. Let S(wj) ={ze€ IRE /

i=1

S(wj) describes a distribution of the available amount of
g

commodity j between the n agents. Call S(w) = T| S(wj). A point
j=1

in S(w) describes an allocation of w.
4
The f olléwing result is obtained as an immediate application

of the Corollary.

Proposition 1l.- Let w € Rl: be a given bundle of goods, and
nk n . 1s .
u:IR+ --> R a continuous n-vector of utility functions.

Then, there exists an egalitarian allocation x* € S(w).

This Proposition ensures that we can always distribute a
given bundle of commodities so that all individuals getting a
positive amount of at least one good, will have the same payoffs.
All kind of consumption externalities are allowed for, provided

utilities are continuous.

15



IV.- APPLICATIONS (II): THE EXISTENCE OF LINDAHL EQUILIBRIA IN A

MODEL WITH SEVERAL PUBLIC GOODS AND PRICE EXTERNALITIES.

Consider an economy in which there are k public goods and a
single private one [see Milleron (1972), for details]. We want to
analyze the existence of Lindahl equilibria when prices may affect
utilities.

The possibility of prices affecting utilities has been
analyzed in private goods economies [see for instance Kalman
(1968), Arrow i; Hahn (1971, Ch. 6), Grandmont (1983, Ch. 1)]. In

the context of public goods this seems a very natural framework:

my willingness to pay may depend on what others are going to pay.

There are n consumers, each one endowed with wj units of the

|Rk+1

private good (j = 1,2,..., n). X. ¢ stands for the jth

J
consumer consumption set. Consumers welfar¢ -.epends on the amounts
of public and private goods they enjoy, and on the vector of
Lindahl prices. Hence we can write the jth consumer utility
function as follows:
Ui, X Rfk >R , j=12..,n

where uJ.(xJ., Yy, p) makes explicit that the jth consumer welfare
depends on the private good she consumes, xJ., the amounts of

public goods provided, y = (yl, Yoreees yk), and the vector of

Lindahl prices,

16




where pij denotes the jth consumer contribution to the provision
of the ith public good.

Concerning consumers we shall assume:

A.l.- For each j = 1,2,..., n:

(a) X_j is a nonempty, compact and convex subset of IRk+1.

+
(b) u, is continuous and quasi-concave in its arguments, and
strictly increasing in xj.
(c) w, € rel.int.X..
J J
i
This is a standard assumption. In particular, let us point
out that the compactness of X.i is assumed for the sake of
simplicity, and that the insatiability hypothesis in (b) implies

that the private good will always have a positive exchange value

(so that it can be taken as the numéraire).

For each vector of Lindahl prices, p € IR:_lk, the jth consumer
demand is obtained from the solution to the following program:
Max. u.(x., j, )
i%j y, P

s.t.

For each given p = p, let Ej(l-)) stand for the set of
solutions to this program. Under assumption (A.1), the following

properties follow:

(i) €j(§) is nonempty, compact and convex.

17



(ii) EJ. is upper hemicontinuous (the maximum theorem applies

here).

Let now dJ.:IRf:k—-> IRI_: » J = .L,2,..., n , stand for the
projection of the demand mapping Ej on the public goods space
(that is, dj(p) is the jth consumer demand for public goods).
Since u,. is increasing in xJ., there is no loss of information When
the demand for the private good is ignored. Furthermore, cl.j
preserves properties (i) and (ii) above'.

i

We shall suppose that each public good is competitively
produced by single-production firms using the private good as
an input, under constant returns to scale. The private good is
taken as the numeéraire.

Each firm producing the ith public good faces an output price

given by

‘O

]
"o

o

ij

For the sake of simplicity we shall choose units so that the
supply correspondence for the ith public good, i = 1,2,..., k, is

only defined if P; = 1

Since each dj may be understood as the intersection of two

nonempty and closed-valued upper hemicontinuous correspondences,

E) and 7 where 'afj(p) = XJ n IRI_:, for all p [see Hildenbrand
(1974, Prop. 2a, p. 231)].

18




Summarizing:

A.2.- Public goods are competitively produced by single-production
firms. The aggregate supply correspondence for the ith public
good, i = 1,2,..., k , is given by:

0, when P; <1
Si(pi) = [0, +®), when p; = 1

undefined, when,pi >1

Then, a findahl Equilibrium with (possibly) positive supply
i
of public goods is a pair (y*, p*) , y* € IRI:, p* € IRx_:k, such that:

nox
(i) For all i = ,L,2,..., k, ¥ p,.=1
y=1

(ii) For each j = 1,2,..., n, there is some y‘] € dJ.(p*)
satisfying the following two requirements:
. J *
<
(i,a) y; =y;

(ii.b j * *
ii,b) ¥y < ¥; implies pij =0

for all i = 1,2,..., k.

That is, p* yields a Lindahl equilibrium if it equalizes the
demand for the ith public good, i = 1,2,..., k, for every consumer
with a positive personalized price (that is, a positive
contribution to the provision of this public good). Notice that

the budget constraint ensures the feasibility of such allocation.

The next result follows:

19



Proposition 2.- Let an economy satisfying assumptions (A.1) and
(A.2). Then, there exists a Lindahl equilibrium for this
economy.

f‘roof .=

First notice that we may restrict our search for equilibrium

k
points to the cartesian product of k unit simplexes, S =x111 Si’
where:

n
n
Si—{piEIR-r/Elpij_l)

Each of theie simplexes describes how the total cost of a public
good is distributed among the n consumers. Moreover, every demand
correspondence, dj’ is upper-hemicontinuous with nonempty,
compact and convex values. Then, defining I'(p) as the cartesian
product of those dj(p), j = L2,..., n, the result follows from
the Theorem.

Finally, the Walras Law ensures that the market for the

private good will also be in equilibrium.

Proposition 2 shows that a Lindahl equilibrium exists for an

economy in which there are k public goods and a single private

one, when prices may affect utilities, under constant returns to

scale.

20



Remark.- The availability of an existence result compatible with
the presence of price externalities, and applicable to any
countable number of simplices, becomes specially interesting when
we think of the possibility of a sequence of time periods (the

allocation of bundles of public goods involving "the future").
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