Social capital and economic growth in Europe: nonlinear trends and heterogeneous regional effects

J. Peiró-Palomino E. Tortosa-Ausina

Universitat Jaume I and Instituto Valenciano de Investigaciones Económicas

Social capital, institutions and economic performance in times of crisis

Introduction

- 2 Empirical methodology
- Model, sample and descriptive statistics
- Results, parametric regressions
- 5 Results, nonparametric regressions

6 Conclusions

Outline

Introduction

- 2 Empirical methodology
- 3 Model, sample and descriptive statistics
- 4 Results, parametric regressions
- 5 Results, nonparametric regressions

6 Conclusions

・ 同 ト ・ ヨ ト ・ ヨ

- Theories explaining economic growth: geography, demography, institutions, education, financial development and...social capital
- Durlauf and Fafchamfs (2005): "A set of informal forms of institutions and organizations based on social relationships, networks and associations that create shared knowledge, mutual trust, social norms and unwritten rules"
- Some classical contributions are Putnam (1993); Knack and Keefer (1997); Zak and Knack (2001).
- Some recent contributions include Akçomak and Ter Weel, 2009; Dearmon and Grier (2009, 2011), Peiró-Palomino and Tortosa-Ausina (2013, 2014) Bjørnskov, (2006, 2012), Bjørnskov et al. (2013), Westlund et al. (2009, 2011, 2013).

- Theories explaining economic growth: geography, demography, institutions, education, financial development and...social capital
- Durlauf and Fafchamfs (2005): "A set of informal forms of institutions and organizations based on social relationships, networks and associations that create shared knowledge, mutual trust, social norms and unwritten rules"
- Some classical contributions are Putnam (1993); Knack and Keefer (1997); Zak and Knack (2001).
- Some recent contributions include Akçomak and Ter Weel, 2009; Dearmon and Grier (2009, 2011), Peiró-Palomino and Tortosa-Ausina (2013, 2014)
 Bjørnskov, (2006, 2012), Bjørnskov et al. (2013), Westlund et al. (2009, 2011, 2013).

- Theories explaining economic growth: geography, demography, institutions, education, financial development and...social capital
- Durlauf and Fafchamfs (2005): "A set of informal forms of institutions and organizations based on social relationships, networks and associations that create shared knowledge, mutual trust, social norms and unwritten rules"
- Some classical contributions are Putnam (1993); Knack and Keefer (1997); Zak and Knack (2001).
- Some recent contributions include Akçomak and Ter Weel, 2009; Dearmon and Grier (2009, 2011), Peiró-Palomino and Tortosa-Ausina (2013, 2014) Bjørnskov, (2006, 2012), Bjørnskov et al. (2013), Westlund et al. (2009, 2011, 2013).

- Theories explaining economic growth: geography, demography, institutions, education, financial development and...**social capital**
- Durlauf and Fafchamfs (2005): "A set of informal forms of institutions and organizations based on social relationships, networks and associations that create shared knowledge, mutual trust, social norms and unwritten rules"
- Some classical contributions are Putnam (1993); Knack and Keefer (1997); Zak and Knack (2001).
- Some recent contributions include Akçomak and Ter Weel, 2009; Dearmon and Grier (2009, 2011), Peiró-Palomino and Tortosa-Ausina (2013, 2014) Bjørnskov, (2006, 2012), Bjørnskov et al. (2013), Westlund et al. (2009, 2011, 2013).

イロン イロン イヨン イヨン

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)
- But...sometimes can be also negative

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)
- But...sometimes can be also negative

Helps in solving problems of collective action

Reduces monitoring costs

- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)
- But...sometimes can be also negative

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)
- But...sometimes can be also negative

イロト イロト イヨト イヨト

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)
- But...sometimes can be also negative

イロト イロト イヨト イヨト

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)

But...sometimes can be also negative

イロト イヨト イヨト イヨト

- Helps in solving problems of collective action
- Reduces monitoring costs
- Facilitates complex agreements by mitigating information asymmetries
- Eases knowledge diffusion and innovation processes
- Other (indirect) effects: financial development (Guiso et al., 2004), human capital (Bjørnskov, 2009; Dearmon and Grier, 2011), investment (Zak and Knack, 2001; Dearmon and Grier, 2011; Peiró-Palomino and Tortosa-Ausina, 2013b) or trade (Guiso et al., 2009)
- But...sometimes can be also negative

イロト イヨト イヨト イヨト

- European regional setting: mixed results in a frame of growth regressions with the most common indicators: trust, associational life and civic norms
- Schneider et al. (2000): trust negatively related to growth
- Beugelsdijk and Van Schaik (2005): trust nonsignificant but associational activities positive and significantly related to growth (especially active particiation)
- Akçomak and Ter Weel (2009): trust fosters innovation but not directly related to growth
- Peiró-Palomino, Forte and Tortosa-Ausina (2014): trust, associations and civic norms related to higher growth (using Bayesian methods)

- European regional setting: mixed results in a frame of growth regressions with the most common indicators: trust, associational life and civic norms
- Schneider et al. (2000): trust negatively related to growth
- Beugelsdijk and Van Schaik (2005): trust nonsignificant but associational activities positive and significantly related to growth (especially active particiation)
- Akçomak and Ter Weel (2009): trust fosters innovation but not directly related to growth
- Peiró-Palomino, Forte and Tortosa-Ausina (2014): trust, associations and civic norms related to higher growth (using Bayesian methods)

- European regional setting: mixed results in a frame of growth regressions with the most common indicators: trust, associational life and civic norms
- Schneider et al. (2000): trust negatively related to growth
- Beugelsdijk and Van Schaik (2005): trust nonsignificant but associational activities positive and significantly related to growth (especially active particiation)
- Akçomak and Ter Weel (2009): trust fosters innovation but not directly related to growth
- Peiró-Palomino, Forte and Tortosa-Ausina (2014): trust, associations and civic norms related to higher growth (using Bayesian methods)

- European regional setting: mixed results in a frame of growth regressions with the most common indicators: trust, associational life and civic norms
- Schneider et al. (2000): trust negatively related to growth
- Beugelsdijk and Van Schaik (2005): trust nonsignificant but associational activities positive and significantly related to growth (especially active particiation)
- Akçomak and Ter Weel (2009): trust fosters innovation but not directly related to growth
- Peiró-Palomino, Forte and Tortosa-Ausina (2014): trust, associations and civic norms related to higher growth (using Bayesian methods)

- European regional setting: mixed results in a frame of growth regressions with the most common indicators: trust, associational life and civic norms
- Schneider et al. (2000): trust negatively related to growth
- Beugelsdijk and Van Schaik (2005): trust nonsignificant but associational activities positive and significantly related to growth (especially active particiation)
- Akçomak and Ter Weel (2009): trust fosters innovation but not directly related to growth
- Peiró-Palomino, Forte and Tortosa-Ausina (2014): trust, associations and civic norms related to higher growth (using Bayesian methods)

イロン イロン イヨン イヨン

Considering ECE regions is important for some reasons:

- Social capital in ECE regions is lower than in Western regions. Some authors (see Rose, 2000; Paldam and Svendsen, 2001; Zükowski, 2007 and Fidrmuc and Gërxhani, 2008) suggest this is a consequence of the communist experience, which modified social patterns and negatively affected social capital
- ECE regions have experienced higher growth in recent times and they are catching up their Western peers (see Crespo-Cuaresma, et al. 2012)

Considering ECE regions is important for some reasons:

- Social capital in ECE regions is **lower** than in Western regions. Some authors (see Rose, 2000; Paldam and Svendsen, 2001; Zükowski, 2007 and Fidrmuc and Gërxhani, 2008) suggest this is a consequence of the communist experience, which modified social patterns and negatively affected social capital
- ECE regions have experienced **higher growth** in recent times and they are catching up their Western peers (see Crespo-Cuaresma, et al. 2012)

Considering ECE regions is important for some reasons:

- Social capital in ECE regions is lower than in Western regions. Some authors (see Rose, 2000; Paldam and Svendsen, 2001; Zükowski, 2007 and Fidrmuc and Gërxhani, 2008) suggest this is a consequence of the communist experience, which modified social patterns and negatively affected social capital
- ECE regions have experienced **higher growth** in recent times and they are catching up their Western peers (see Crespo-Cuaresma, et al. 2012)

イロト イロト イヨト イヨト

Considering ECE regions is important for some reasons:

- Social capital in ECE regions is lower than in Western regions. Some authors (see Rose, 2000; Paldam and Svendsen, 2001; Zükowski, 2007 and Fidrmuc and Gërxhani, 2008) suggest this is a consequence of the communist experience, which modified social patterns and negatively affected social capital
- ECE regions have experienced **higher growth** in recent times and they are catching up their Western peers (see Crespo-Cuaresma, et al. 2012)

イロト イヨト イヨト イヨト

Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)

Two indicators: trust and associational life (active participation)

- Use of nonparametric regression which permits shed light on:
 - Potential nonlinearities of the parameters
 - Regional parameter heterogeneity

- Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)
- Two indicators: trust and associational life (active participation)
- Use of nonparametric regression which permits shed light on:
 - Potential nonlinearities of the parameters
 - Regional parameter heterogeneity

- Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)
- Two indicators: trust and associational life (active participation)
- Use of nonparametric regression which permits shed light on:
 - Potential nonlinearities of the parameters
 - Regional parameter heterogeneity

- Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)
- Two indicators: trust and associational life (active participation)
- Use of nonparametric regression which permits shed light on:
 - Potential nonlinearities of the parameters
 - Regional parameter heterogeneity

- Analyzing the role of social capital in the enlarged EU (237 regions during the period 1995–2007)
- Two indicators: trust and associational life (active participation)
- Use of nonparametric regression which permits shed light on:
 - Potential nonlinearities of the parameters
 - Regional parameter heterogeneity

Introduction

2 Empirical methodology

- Model, sample and descriptive statistics
- 4 Results, parametric regressions
- 5 Results, nonparametric regressions

6 Conclusions

Parametric and nonparametric regressions

• Parametric (OLS) regressions

$$Y_{i} = \beta_{0} + \sum_{j=1}^{V} \beta_{j} Z_{ji} + \epsilon_{i}, i = 1, 2, ...n,$$
(1)

$$Y_i = m(Z_i) + \epsilon_i, i = 1, 2, ...n,$$
 (2)

- m(.) is an unknown smooth function capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute m(Z_i) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is required

Parametric and nonparametric regressions

• Parametric (OLS) regressions

$$Y_{i} = \beta_{0} + \sum_{j=1}^{V} \beta_{j} Z_{ji} + \epsilon_{i}, i = 1, 2, ...n,$$
(1)

$$Y_i = m(Z_i) + \epsilon_i, i = 1, 2, ...n,$$
 (2)

- m(.) is an unknown smooth function capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute $m(Z_i)$ based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is
 required

Parametric and nonparametric regressions

• Parametric (OLS) regressions

$$Y_{i} = \beta_{0} + \sum_{j=1}^{V} \beta_{j} Z_{ji} + \epsilon_{i}, i = 1, 2, ...n,$$
(1)

$$Y_i = m(Z_i) + \epsilon_i, i = 1, 2, ...n,$$
 (2)

- m(.) is an unknown smooth function capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute $m(Z_i)$ based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is
 required

Parametric and nonparametric regressions

• Parametric (OLS) regressions

$$Y_{i} = \beta_{0} + \sum_{j=1}^{V} \beta_{j} Z_{ji} + \epsilon_{i}, i = 1, 2, ...n,$$
(1)

$$Y_i = m(Z_i) + \epsilon_i, i = 1, 2, ...n,$$
(2)

- m(.) is an unknown smooth function capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute m(Z_i) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is required

Parametric and nonparametric regressions

• Parametric (OLS) regressions

$$Y_{i} = \beta_{0} + \sum_{j=1}^{V} \beta_{j} Z_{ji} + \epsilon_{i}, i = 1, 2, ...n,$$
(1)

$$Y_i = m(Z_i) + \epsilon_i, i = 1, 2, ...n,$$
(2)

- m(.) is an unknown smooth function capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute m(Z_i) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is required

Parametric and nonparametric regressions

• Parametric (OLS) regressions

$$Y_{i} = \beta_{0} + \sum_{j=1}^{V} \beta_{j} Z_{ji} + \epsilon_{i}, i = 1, 2, ...n,$$
(1)

$$Y_i = m(Z_i) + \epsilon_i, i = 1, 2, ...n,$$
 (2)

- m(.) is an unknown smooth function capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute m(Z_i) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is required

Parametric and nonparametric regressions

Parametric (OLS) regressions

$$Y_{i} = \beta_{0} + \sum_{j=1}^{V} \beta_{j} Z_{ji} + \epsilon_{i}, i = 1, 2, ...n,$$
(1)

Nonparametric (kernel) regressions

$$Y_i = m(Z_i) + \epsilon_i, i = 1, 2, ...n,$$
 (2)

- m(.) is an unknown smooth function capturing the conditional relationship between the dependent and the independent variables in the model
- Some alternatives to compute m(Z_i) based on the methods proposed by Li and Racine (2004) and Racine and Li (2004)
- Generalized product kernel methods, valid for both continuous and categorical variables
- Nonparametric regression permits estimating individual effects for every sample point (parameter heterogeneity)
- Neither a predefined functional form nor a distribution of the error term is required

10/37
Local-Constant Least Squares (LCLS)

- Particularly useful to identify relevancy of the regressors
- Estimates m(.) by calculating a local weighted average of the dependent variable Y_i considering the observations with similar values of the independent variables Z_i
- The bandwidths determine the quantity of averaged observations around each point z_i
- The estimator obeys to the following expression

$$\hat{m}(z) = \frac{\sum_{i=1}^{n} \mathcal{Y}_i \prod_{s=1}^{q} K\left(\frac{z_{si}-z_s}{h_s}\right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K\left(\frac{z_{si}-z_s}{h_s}\right)}$$
(3)

Local-Constant Least Squares (LCLS)

Particularly useful to identify relevancy of the regressors

- Estimates m(.) by calculating a local weighted average of the dependent variable Y_i considering the observations with similar values of the independent variables Z_i
- The **bandwidths** determine the quantity of averaged observations around each point z_i
- The estimator obeys to the following expression

$$\hat{m}(z) = \frac{\sum_{i=1}^{n} \mathcal{Y}_i \prod_{s=1}^{q} K\left(\frac{z_{si} - z_s}{h_s}\right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K\left(\frac{z_{si} - z_s}{h_s}\right)}$$
(3)

- Local-Constant Least Squares (LCLS)
- Particularly useful to identify relevancy of the regressors
- Estimates m(.) by calculating a local weighted average of the dependent variable Y_i considering the observations with similar values of the independent variables Z_i
- The **bandwidths** determine the quantity of averaged observations around each point *z_i*
- The estimator obeys to the following expression

$$\hat{m}(z) = \frac{\sum_{i=1}^{n} \mathcal{Y}_i \prod_{s=1}^{q} K\left(\frac{z_{si}-z_s}{h_s}\right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K\left(\frac{z_{si}-z_s}{h_s}\right)}$$
(3)

- Local-Constant Least Squares (LCLS)
- Particularly useful to identify relevancy of the regressors
- Estimates m(.) by calculating a local weighted average of the dependent variable Y_i considering the observations with similar values of the independent variables Z_i
- The bandwidths determine the quantity of averaged observations around each point z_i
- The estimator obeys to the following expression

$$\hat{m}(z) = \frac{\sum_{i=1}^{n} y_i \prod_{s=1}^{q} K\left(\frac{z_{si}-z_s}{h_s}\right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K\left(\frac{z_{si}-z_s}{h_s}\right)}$$
(3)

- Local-Constant Least Squares (LCLS)
- Particularly useful to identify relevancy of the regressors
- Estimates m(.) by calculating a local weighted average of the dependent variable Y_i considering the observations with similar values of the independent variables Z_i
- The bandwidths determine the quantity of averaged observations around each point z_i
- The estimator obeys to the following expression

$$\hat{m}(z) = \frac{\sum_{i=1}^{n} y_i \prod_{s=1}^{q} K\left(\frac{z_{si} - z_s}{h_s}\right)}{\sum_{i=1}^{n} \prod_{s=1}^{q} K\left(\frac{z_{si} - z_s}{h_s}\right)}$$
(3)

Local-Linear Least Squares (LLLS)

- Suitable to detect nonlinearities of the regressors
- It computes a weighted least-squares regression around every point z_i.
- Weights established by a kernel function and a bandwidth vector such that those observations closer to z_i receive more weight
- The estimator obeys to the following expression

$$Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i$$
(4)

$$\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y$$
(5)

 Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel

Local-Linear Least Squares (LLLS)

Suitable to detect nonlinearities of the regressors

- It computes a weighted least-squares regression around every point z_i.
- Weights established by a kernel function and a bandwidth vector such that those observations closer to z_i receive more weight
- The estimator obeys to the following expression

$$Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i$$
(4)

$$\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y$$
(5)

 Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel

- Local-Linear Least Squares (LLLS)
- Suitable to detect nonlinearities of the regressors
- It computes a weighted least-squares regression around every point z_i.
- Weights established by a kernel function and a bandwidth vector such that those observations closer to z_i receive more weight
- The estimator obeys to the following expression

$$Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i$$
(4)

$$\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y$$
(5)

 Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel

- Local-Linear Least Squares (LLLS)
- Suitable to detect nonlinearities of the regressors
- It computes a weighted least-squares regression around every point z_i.
- Weights established by a kernel function and a bandwidth vector such that those observations closer to z_i receive more weight
- The estimator obeys to the following expression

$$Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i$$
(4)

$$\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y$$
(5)

 Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel

- Local-Linear Least Squares (LLLS)
- Suitable to detect nonlinearities of the regressors
- It computes a weighted least-squares regression around every point z_i.
- Weights established by a kernel function and a bandwidth vector such that those observations closer to z_i receive more weight
- The estimator obeys to the following expression

$$Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i$$
(4)

$$\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y$$
(5)

 Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Local-Linear Least Squares (LLLS)
- Suitable to detect nonlinearities of the regressors
- It computes a weighted least-squares regression around every point z_i.
- Weights established by a kernel function and a bandwidth vector such that those observations closer to z_i receive more weight
- The estimator obeys to the following expression

$$Y_i \approx m(z) + (z_i^c - z^c)\beta(z^c) + \epsilon_i$$
(4)

$$\hat{\delta}(z) = [Z'K(z)Z]^{-1}Z'K(z)y$$
(5)

 Following Li and Racine (2007), a second-order Gaussian kernel is selected for continuous variables whereas for categorical variables the choice is the Aitchison and Aitken (1976) kernel

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

 Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)

- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing)
- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure
- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes irrelevancy
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes linearity
 - UB are defined as two standard deviations for continuous variables and (q_s - 1)/q_s for categorical variables (with q_s the number of values the variable can take)

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)
- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing)
- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure
- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes irrelevancy
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes linearity
 - UB are defined as two standard deviations for continuous variables and (q_s - 1)/q_s for categorical variables (with q_s the number of values the variable can take)

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)
- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing)
- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure
- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes irrelevancy
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes linearity
 - UB are defined as two standard deviations for continuous variables and (q_s - 1)/q_s for categorical variables (with q_s the number of values the variable can take)

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)
- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing)
- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure
- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **irrelevancy**
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **linearity**
 - UB are defined as two standard deviations for continuous variables and $(q_s 1)/q_s$ for categorical variables (with q_s the number of values the variable can take)

3

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)
- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing)
- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure
- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **irrelevancy**
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **linearity**
 - UB are defined as two standard deviations for continuous variables and $(q_s 1)/q_s$ for categorical variables (with q_s the number of values the variable can take)

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)
- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing)
- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure
- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **irrelevancy**
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes linearity
 - UB are defined as two standard deviations for continuous variables and $(q_s 1)/q_s$ for categorical variables (with q_s the number of values the variable can take)

- Independently of the approach, the important choice is not the kernel, but the bandwidth (in general in all nonparametric procedures)
- Unappropriate bandwidths may produce estimates with low variance and high bias (undersmoothing), or high variance and low bias (oversmoothing)
- Bandwidths are selected using least-squares cross-validation (LSCV), an automated bandwidth selection procedure
- The bandwidths not only determine the degree of smoothing:
 - In LCLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes **irrelevancy**
 - In LLLS when the bandwidth associated to one regressor hits its upper bound (UB), it denotes linearity
 - UB are defined as two standard deviations for continuous variables and $(q_s 1)/q_s$ for categorical variables (with q_s the number of values the variable can take)

(日)

Introduction

2 Empirical methodology

Model, sample and descriptive statistics

- Presults, parametric regressions
- 5 Results, nonparametric regressions

Conclusions

- The second sec

• Sample of 237 European regions (NUTS 2)

- Period of analysis 1995–2007. Two subperiods (1995–2002) and (2003–2007)
- Neoclassical growth equation (Solow, 1957) augmented with social capital
- TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
- ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
- Controls: initial GDP (GDP₀), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
- Different models (1–5) where the variables are included sequentially
- Data constraints on the social capital variables. (NUTS 1 level aggregation)

3

Sample of 237 European regions (NUTS 2)

- Period of analysis 1995–2007. Two subperiods (1995–2002) and (2003–2007)
- Neoclassical growth equation (Solow, 1957) augmented with social capital
- TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
- ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
- Controls: initial GDP (GDP₀), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
- Different models (1–5) where the variables are included sequentially
- Data constraints on the social capital variables. (NUTS 1 level aggregation)

3

- Sample of 237 European regions (NUTS 2)
- Period of analysis 1995–2007. Two subperiods (1995–2002) and (2003–2007)
- Neoclassical growth equation (Solow, 1957) augmented with social capital
- TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
- ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
- Controls: initial GDP (GDP₀), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
- Different models (1–5) where the variables are included sequentially
- Data constraints on the social capital variables. (NUTS 1 level aggregation)

3

- Sample of 237 European regions (NUTS 2)
- Period of analysis 1995–2007. Two subperiods (1995–2002) and (2003–2007)
- Neoclassical growth equation (Solow, 1957) augmented with social capital
- TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
- ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
- Controls: initial GDP (GDP₀), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
- Different models (1–5) where the variables are included sequentially
- Data constraints on the social capital variables. (NUTS 1 level aggregation)

- Sample of 237 European regions (NUTS 2)
- Period of analysis 1995–2007. Two subperiods (1995–2002) and (2003–2007)
- Neoclassical growth equation (Solow, 1957) augmented with social capital
- TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
- ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
- Controls: initial GDP (GDP₀), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
- Different models (1–5) where the variables are included sequentially
- Data constraints on the social capital variables. (NUTS 1 level aggregation)

- Sample of 237 European regions (NUTS 2)
- Period of analysis 1995–2007. Two subperiods (1995–2002) and (2003–2007)
- Neoclassical growth equation (Solow, 1957) augmented with social capital
- TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
- ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
- Controls: initial GDP (GDP₀), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
- Different models (1–5) where the variables are included sequentially
- Data constraints on the social capital variables. (NUTS 1 level aggregation)

(日)

- Sample of 237 European regions (NUTS 2)
- Period of analysis 1995–2007. Two subperiods (1995–2002) and (2003–2007)
- Neoclassical growth equation (Solow, 1957) augmented with social capital
- TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
- ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
- Controls: initial GDP (GDP₀), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
- Different models (1–5) where the variables are included sequentially
- Data constraints on the social capital variables. (NUTS 1 level aggregation)

(日)

- Sample of 237 European regions (NUTS 2)
- Period of analysis 1995–2007. Two subperiods (1995–2002) and (2003–2007)
- Neoclassical growth equation (Solow, 1957) augmented with social capital
- TRUST: percentage of respondents who declared trusting others in the social trust question. Source: EVS (1999)
- ACTIVE: percentage of people who voluntarily participate in at least one association (from 15 different). Source: EVS (1999)
- Controls: initial GDP (GDP₀), population growth (GPOP), capital formation (GFCF), human capital (HC), and capital city (CAPITAL). Source: Eurostat (1995–2007)
- Different models (1–5) where the variables are included sequentially
- Data constraints on the social capital variables. (NUTS 1 level aggregation)

Sample summary, ECE and non-ECE regions

	1995–2001							2002-2007					
	Non ECE regions			ECE regions			Non ECE regions			ECE regions			
Variable	Obs.	Mean	s.d.	Obs.	Mean	s.d.	Obs.	Mean	s.d.	Obs.	Mean	s.d.	
GGDP	190	0.050	0.031	46	0.102	0.031	192	0.036	0.014	46	0.111	0.045	
GDP_0	190	17,736	6,995	46	2,892	1,386	192	24,078	8,784	46	5,558	2,867	
GPOP	192	0.053	0.005	46	0.048	0.004	192	0.055	0.006	46	0.048	0.003	
GFCF	161	0.208	0.055	46	0.218	0.071	156	0.213	0.045	46	0.216	0.052	
HC	189	0.214	0.083	46	0.136	0.067	192	0.246	0.081	46	0.170	0.070	
TRUST	192	0.334	0.138	46	0.184	0.055	192	0.334	0.138	46	0.184	0.055	
ACTIVE	192	0.037	0.022	46	0.022	0.013	192	0.037	0.022	46	0.022	0.013	

・ 同 ト ・ ヨ ト ・ ヨ

Introduction

- 2 Empirical methodology
- 3 Model, sample and descriptive statistics
- 4 Results, parametric regressions
- 5 Results, nonparametric regressions

Conclusions

- The second sec

Ordinary least squares (OLS) estimation

Dependent variable: GDP growth (GGDP)									
	Model 1	Model 2	Model 3	Model 4	Model 5				
(Intercept)	0.405***	0.407***	0.419***	0.408***	0.401***				
	(0.018)	(0.019)	(0.017)	(0.018)	(0.018)				
$log(GDP_0)$	-0.039***	-0.039***	-0.041***	-0.040***	-0.040***				
	(0.347)	(0.002)	(0.002)	(0.002)	(0.002)				
GPOP	0.216	0.219***	0.073	0.049	0.116				
	(0.244)	(0.244)	(0.232)	(0.232)	(0.225)				
GFCF	-0.030	-0.031	-0.014	-0.008	-0.026				
	(0.028)	(0.028)	(0.027)	(0.027)	(0.026)				
HC	0.099***	0.098***	0.091***	0.094***	0.060***				
	(0.017)	(0.017)	(0.016)	(0.016)	(0.017)				
TRUST		0.003		-0.018*	-0.016				
		(0.011)		(0.010)	(0.010)				
ACTIVE			0.431***	0.463***	0.504***				
			(0.064)	(0.067)	(0.066)				
CAPITAL					0.022***				
					(0.004)				
Ν	404	404	404	404	404				
R ² (Adjusted)	0.531	0.530	0.578	0.580	0.616				
F _{STAT}	115.20***	91.94***	111.40***	93.69***	72.20***				
Time control	No	No	No	No	Yes				

Tests of appropriateness of the parametric models Hsiao et al. (2007)

	Model 1	Model 2	Model 3	Model 4	Model 5
Jn-statistic	12.828	10.580	5.676	9.820	9.764
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)

・ 同 ト ・ ヨ ト ・ ヨ

Introduction

- 2 Empirical methodology
- 3 Model, sample and descriptive statistics
- 4 Results, parametric regressions
- 5 Results, nonparametric regressions

6 Conclusions

- The second sec

Bandwidths for LCLS and LLLS estimators

Dependent variable: GDP growth (GGDP)											
		Mod	del 1	Model 2		Model 3		Model 4		Model 5	
Variables/method	UB	LCLS	LLLS	LCLS	LLLS	LCLS	LLLS	LCLS	LLLS	LCLS	LLLS
In(GDP ₀)	1.622	0.134	0.276	0.154	0.205	0.095	0.242	0.1528	0.261	0.287	0.748
GPOP	0.012	0.007	0.008	1,809	0.005	0.006	0.007	22,195	0.003	0.010	1,364
GFCF	0.106	0.016	0.057	149,738	0.033	0.016	0.042	383,800	0.025	1,149,916	0.035
HC	0.173	0.019	0.052	0.270	0.421	0.033	0.066	0.269	0.147	0.640	0.075
TRUST	0.278			2.05e-06	0.059			1.16e-04	0.065	0.005	0.029
ACTIVE	0.043					0.007	0.012	0.017	0.027	3.0e-04	0.024
CAPITAL	0.500									0.499	0.007
Time	0.500									0.007	0.024

Social capital indicators in Model 5

Control variables in Model 5

Peiró-Palomino and Tortosa-Ausina

Workshop on Social Capital

Valencia, 24th October 2014

23/37

LLLS quartile estimates for the continuous regressors

		Dep	endent varia	able: GDP g	rowth (GGL	DP)			
		Model 1			Model 2		Model 3		
Variables	Q1	Q2	Q3	Q1	Q2	Q3	Q1	Q2	Q3
In(GDP ₀)	-0.069	-0.047	-0.030	-0.071	-0.052	-0.040	-0.057	-0.041	-0.023
	(0.006)	(0.003)	(0.003)	(0.003)	(0.008)	(0.006)	(0.005)	(0.003)	(0.002)
GPOP	0.054	0.393	0.719	0.141	0.577	0.973	-0.280	0.116	0.989
	(0.213)	(0.097)	(0.210)	(0.338)	(0.139)	(0.202)	(0.114)	(0.214)	(0.277)
GFCF	-0.216	-0.091	0.025	-0.289	-0.142	0.027	-0.224	-0.065	0.088
	(0.040)	(0.034)	(0.006)	(0.033)	(0.015)	(0.028)	(0.033)	(0.009)	(0.037)
HC	0.020	0.101	0.143	0.035	0.093	0.129	-0.005	0.040	0.117
	(0.035)	(0.017)	(0.041)	(0.018)	(0.026)	(0.024)	(0.010)	(0.048)	(0.025)
TRUST				-0.008	0.033	0.069			
				(0.014)	(0.011)	(0.010)			
ACTIVE							-0.039	0.467	0.744
							(0.127)	(0.163)	(0.224)
Ν	404			404			404		
R ²	0.816			0.854			0.916		
Time/capital controls	No			No			No		

(日) (日) (日)
LLLS quartile estimates for the continuous regressors

Dependent variable: GDP growth (GGDP)							
	Model 4			Model 5			
Variables	Q1	Q2	Q3	Q1	Q2	Q3	
In(GDP ₀)	-0.052	-0.034	-0.021	-0.057	-0.035	-0.016	
	(0.005)	(0.011)	(0.003)	(0.004)	(0.003)	(0.001)	
GPOP	-0.538	0.388	0.921	-0.152	0.168	0.663	
	(0.364)	(0.872)	(0.347)	(0.000)	(0.000)	(0.000)	
GFCF	-0.276	-0.104	0.08	-0.354	0.024	0.139	
	(0.067)	(0.087)	(0.115)	(0.156)	(0.009)	(0.023)	
HC	0.000	0.051	0.149	-0.012	0.031	0.099	
	(0.012)	(0.005)	(0.017)	(0.012)	(0.003)	(0.011)	
TRUST	-0.050	0.024	0.083	-0.018	0.014	0.079	
	(0.028)	(0.010)	(0.026)	(0.011)	(0.003)	(0.037)	
ACTIVE	0.021	0.373	0.788	0.143	0.322	0.504	
	(0.120)	(0.050)	(0.128)	(0.041)	(0.094)	(0.086)	
Ν	404			404			
R ²	0.958			0.958			
Time/capital controls	No			Yes			

(日) (日) (日)

Densities of the estimated coefficients in Model 5, Sheather and Jones (1991)

Densities of the estimated coefficients in Model 5, Sheather and Jones (1991)

Peiró-Palomino and Tortosa-Ausina

Workshop on Social Capital

27/37

LLLS quartile estimates for the social capital variables in Model 5 across particular groups of regions

Dependent variable: GDP growth (GGDP)							
		TRUST			ACTIVE		
Split/variable	Q1	Q2	Q3	Q1	Q2	Q3	
Below median In(GDP0)	-0.081	0.041	0.097	0.055	0.288	0.592	
	(0.018)	(0.014)	(0.025)	(0.103)	(0.077)	(0.097)	
Above median In(GDP ₀)	-0.010	0.006	0.029	0.188	0.348	0.462	
	(0.003)	(0.003)	(0.041)	(0.038)	(0.015)	(0.068)	
Below median GFCF	-0.010	0.010	0.099	0.179	0.323	0.471	
	(0.011)	(0.004)	(0.018)	(0.023)	(0.077)	(0.079)	
Above median GFCF	-0.034	0.018	0.069	0.097	0.348	0.559	
	(0.008)	(0.019)	(0.016)	(0.062)	(0.016)	(0.080)	
Below median HC	-0.035	0.025	0.090	0.076	0.369	0.545	
	(0.014)	(0.017)	(0.011)	(0.050)	(0.045)	(0.079)	
Above median HC	-0.013	0.012	0.065	0.175	0.287	0.468	
	(0.006)	(0.007)	(0.014)	(0.069)	(0.014)	(0.060)	
Below median TRUST	-0.035	0.024	0.075	0.086	0.344	0.586	
	(0.015)	(0.017)	(0.013)	(0.073)	(0.077)	(0.089)	
Above median TRUST	-0.011	0.011	0.089	0.166	0.307	0.454	
	(0.004)	(0.004)	(0.017)	(0.060)	(0.015)	(0.018)	
Below median ACTIVE	-0.063	0.006	0.108	0.116	0.297	0.504	
	(0.017)	(0.003)	(0.045)	(0.051)	(0.014)	(0.056)	
Above median ACTIVE	-0.012	0.019	0.043	0.157	0.349	0.498	
	(0.012)	(0.006)	(0.052)	(0.031)	(0.013)	(0.071)	
ECE regions	-0.150	-0.086	0.045	-1.338	0.212	0.815	
	(0.012)	(0.019)	(0.029)	(0.064)	(0.104)	(0.079)	
Non ECE regions	-0.004	0.019	0.083	0.187	0.328	0.469	
	(0.003)	(0.008)	(0.016)	(0.052)	(0.070)	(0.060)	
				. □			

Peiró-Palomino and Tortosa-Ausina

Workshop on Social Capital

Densities of the estimated coefficients for TRUST in Model 5 across particular groups of regions, Sheather and Jones (1991)

Peiró-Palomino and Tortosa-Ausina

Workshop on Social Capital

Valencia, 24th October 2014

29/37

Densities of the estimated coefficients for ACTIVE in Model 5 across particular groups of regions, Sheather and Jones (1991)

Peiró-Palomino and Tortosa-Ausina

Workshop on Social Capital

Valencia, 24th October 2014

30/37

Nonparametric comparison of the estimated densities for different subgroups in Model 5 (Li, 1996)

		TRUST	ACTIVE
Below vs. above GDP ₀	t-statistic	46.951	13.288
		(0.000)	(0.000)
Below vs. above GFCF	t-statistic	17.757	7.163
		(0.000)	(0.000)
Below vs. above HC	t-statistic	12.338	12.150
		(0.000)	(0.000)
Below vs. above TRUST	t-statistic	23.646	12.003
		(0.000)	(0.000)
Below vs. above ACTIVE	t-statistic	2.768	0.271
		(0.002)	(0.393)
ECE vs. non ECE regions	t-statistic	36.520	59.054
		(0.000)	(0.000)

ヘロン 人間 とくほとくほとう

Dealing with endogeneity

• Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time

- Unfortunately, most of the referees in academic journals do not agree on this
- In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013)
- Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:
 - Stage I: LCLS estimation on the endogenous variables over a set of suitable instruments
 - Stage II: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.
 - Selection of instruments: Nobel strategy by Henderson's et al, (2013). The control variables instrument social capital

3

イロン 不得 とくほ とくほう

Dealing with endogeneity

- Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time
- Unfortunately, most of the referees in academic journals do not agree on this
- In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013)
- Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:
 - Stage I: LCLS estimation on the endogenous variables over a set of suitable instruments
 - Stage II: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.
 - Selection of instruments: Nobel strategy by Henderson's et al, (2013). The control variables instrument social capital

3

イロン 不得 とくほ とくほう

Dealing with endogeneity

- Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time
- Unfortunately, most of the referees in academic journals do not agree on this
- In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013)
- Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:
 - Stage I: LCLS estimation on the endogenous variables over a set of suitable instruments
 - Stage II: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.
 - Selection of instruments: Nobel strategy by Henderson's et al, (2013). The control variables instrument social capital

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dealing with endogeneity

- Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time
- Unfortunately, most of the referees in academic journals do not agree on this
- In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013)
- Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:
 - **Stage I**: LCLS estimation on the endogenous variables over a set of suitable instruments
 - **Stage II**: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.
 - Selection of instruments: Nobel strategy by Henderson's et al, (2013). The control variables instrument social capital

《日》《周》《日》《日》 - 日

Dealing with endogeneity

- Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time
- Unfortunately, most of the referees in academic journals do not agree on this
- In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013)
- Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:
 - Stage I: LCLS estimation on the endogenous variables over a set of suitable instruments
 - **Stage II**: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.
 - Selection of instruments: Nobel strategy by Henderson's et al, (2013). The control variables instrument social capital

《日》《周》《日》《日》 - 日

Dealing with endogeneity

- Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time
- Unfortunately, most of the referees in academic journals do not agree on this
- In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013)
- Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:
 - Stage I: LCLS estimation on the endogenous variables over a set of suitable instruments
 - Stage II: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.
 - Selection of instruments: Nobel strategy by Henderson's et al, (2013). The control variables instrument social capital

イロト 不得 トイヨト イヨト 二日

Dealing with endogeneity

- Endogeneity issues should not be a problem in the context of social capital due to the stability of social values over time
- Unfortunately, most of the referees in academic journals do not agree on this
- In the nonparametric framework, technical alternatives to deal with this problem are very recent and empirical applications of these methods virtually nonexistent (see, Henderson et al, 2013)
- Here the Su and Ullah (2008) procedure is used. It consists of the following two steps:
 - Stage I: LCLS estimation on the endogenous variables over a set of suitable instruments
 - **Stage II**: LLLS estimation on the original regression, including both the endogenous and the exogenous variables as well as the adjusted residuals from Stage I.
 - Selection of instruments: Nobel strategy by Henderson's et al, (2013). The control variables instrument social capital

э.

< ロ > < 同 > < 回 > < 回 > < □ > <

Dealing with endogeneity

Dependent variable: GDP growth (GGDP)											
		Mod	del 1	Model 2		Model 3		Model 4		Model 5	
Variables/method	UB	LCLS	LLLS	LCLS	LLLS	LCLS	LLLS	LCLS	LLLS	LCLS	LLLS
In(GDP ₀)	1.622	0.134	0.276	0.154	0.205	0.095	0.242	0.1528	0.261	0.287	0.748
GPOP	0.012	0.007	0.008	1,809	0.005	0.006	0.007	22,195	0.003	0.010	1,364
GFCF	0.106	0.016	0.057	149,738	0.033	0.016	0.042	383,800	0.025	1,149,916	0.035
HC	0.173	0.019	0.052	0.270	0.421	0.033	0.066	0.269	0.147	0.640	0.075
TRUST	0.278			2.05e-06	0.059			1.16e-04	0.065	0.005	0.029
ACTIVE	0.043					0.007	0.012	0.017	0.027	3.0e-04	0.024
CAPITAL	0.500									0.499	0.007
Time	0.500									0.007	0.024

A ►

IV estimation of Model 5 (Su and Ullah, 2008), bandwidths

		Stage	I (LCLS)	Stag	e II (LLLS)
	UB	D.V: TRUST	D.V: ACTIVE	UB	D.V: GGDP
$ln(GDP_0)$	1.622	0.111	0.179	1.622	1.181
GPOP	0.012	0.002	0.005	0.012	1,832.48
GFCF	0.106	0.117	0.017	0.106	0.028
HC	0.173	0.015	0.024	0.173	0.067
TRUST	0.278			0.278	0.071
ACTIVE	0.043			0.043	0.021
CAPITAL	0.500			0.500	0.001
Time	0.500			0.500	0.020
μ_{TRUST}				0.147	0.043
μ _{ACTIVE}				0.024	0.012

伺 ト イ ヨ ト イ ヨ

IV estimation, LLLS quartile estimates for the continuous variables in the instrumented Model 5 (Su and Ullah, 2008)

Dependent variable: GDP growth (GGDP)						
		Model 5			IV Model 5	
Variables	Q1	Q2	Q3	Q1	Q2	Q3
In(GDP ₀)	-0.057	-0.035	-0.016	-0.050	-0.039	-0.028
	(0.004)	(0.003)	(0.001)	(0.000)	(0.000)	(0.003)
GPOP	-0.152	0.168	0.663	-0.257	0.298	1.221
	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)	(0.000)
GFCF	-0.354	0.024	0.139	-0.288	0.006	0.105
	(0.011)	(0.004)	(0.018)	(0.020)	(0.025)	(0.022)
HC	-0.012	0.031	0.099	-0.048	0.038	0.112
	(0.008)	(0.019)	(0.016)	(0.062)	(0.016)	(0.080)
TRUST	-0.018	0.014	0.079	-0.046	0.034	0.121
	(0.011)	(0.003)	(0.037)	(0.008)	(0.018)	(0.020)
ACTIVE	0.143	0.322	0.504	-0.183	0.298	0.976
	(0.041)	(0.094)	(0.086)	(0.063)	(0.095)	(0.017)
Ν	404			404		
R^2	0.958			0.980		

・ 同 ト ・ ヨ ト ・ ヨ

Introduction

- 2 Empirical methodology
- 3 Model, sample and descriptive statistics
- 4 Results, parametric regressions
- 5 Results, nonparametric regressions

6 Conclusions

• The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth

- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one
- ACTIVE is significant in both the parametric and the nonparametric estimation
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered
 - Policies should be applied carefully in some regions where they might yield undesired effects

イロト イロト イヨト イヨト

- The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one
- ACTIVE is significant in both the parametric and the nonparametric estimation
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered
 - Policies should be applied carefully in some regions where they might yield undesired effects

イロン イロン イヨン イヨン

- The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one
- ACTIVE is significant in both the parametric and the nonparametric estimation
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered
 - Policies should be applied carefully in some regions where they might yield undesired effects

< ロ > < 同 > < 三 > < 三 >

- The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one
- ACTIVE is significant in both the parametric and the nonparametric estimation
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered
 - Policies should be applied carefully in some regions where they might yield undesired effects

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one
- ACTIVE is significant in both the parametric and the nonparametric estimation
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered
 - Policies should be applied carefully in some regions where they might yield undesired effects

< ロ > < 同 > < 三 > < 三 >

- The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one
- ACTIVE is significant in both the parametric and the nonparametric estimation
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered
 - Policies should be applied carefully in some regions where they might yield undesired effects

- The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one
- ACTIVE is significant in both the parametric and the nonparametric estimation
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered
 - Policies should be applied carefully in some regions where they might yield undesired effects

- The linear specification imposed by the parametric methods is not the true underlaying relationship between the two indicators of social capital and growth
- TRUST is not significant in the parametric analysis (in line with previous research for the European regions), but it is significant in the nonparametric one
- ACTIVE is significant in both the parametric and the nonparametric estimation
- The average coefficient provided by the parametric analysis simply does not reflect the effect of social capital in some regions
- The greatest differences appear when comparing ECE and non ECE regions.
- Some policy suggestions:
 - The existent stock of social capital in each region should be considered
 - Policies should be applied carefully in some regions where they might yield undesired effects

イロン イロン イヨン イヨン