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Dearmon and Grier (2009)
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Social Capital Research- Dearmon and Grier (2009)

Trust and Development

Column 3- Trust

1 std increase in Trust increases RGDPPC by 2.4%

Column 5- Trust, Interaction with Inv/GDP

1 s.d. increase in Trust increases RGDPPC by 2.8%
1 s.d. increase in Inv/GDP increases RGDPPC by 7.4%

Increasing Trust by 1 s.d. will increase Inv/GDP‘s impact to 8.6%

Column 6- Trust, Interaction with Edu

1 s.d. increase in Trust increases RGDPPC by 3%
1 s.d. increase in Edu increases RGDPPC by 1.1%

Increasing Trust by 1 s.d. will increase Edu‘s impact to 2%
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Social Capital Research- Dearmon and Grier (2011)

Trust and the accumulation of physical and human capital

Human and physical capital are endogenous

Modeled jointly using 3SLS

Trust has a nonlinear effect on outcomes
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Social Capital Research

Stylized Facts

1 Nonlinear relationship
Nonlinear relationship between trust and economic outcomes

2 Levels Matter
Trust’s effect depends on the level of other variables

3 Marginal Effects
Implies that trust’s marginal effect may differ across variables,
countries, or groups
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Social Capital Research

Research Extensions
1 Nonlinear Relationship

Current: Nonlinear relationship specified by researcher
Proposed: Technique should identify the unknown nonlinear
relationship

2 Explanatory Variables
Current: One set of explanatory variables is chosen
Restriction: True set of explanatory variables is unknown
Proposed: Use larger set of candidate explanatory variables, address
model uncertainty

3 Marginal Effects
Current: Restricted by chosen nonlinear specification
Proposed 1: Marginal effects based on estimate of unknown nonlinear
function that accounts for model uncertainty
Proposed 2: Marginal effects are localized and differ by observation
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GPR-BMA: Based on work with Tony E. Smith (UPenn)

Gaussian Process Regression

A nonparametric technique that identifies an unknown nonlinear
function

Produces localized marginal effects that differ by observation

Can easily capture non-separable behavior

Bayesian Model Averaging

Allows for a large number of candidate explanatory variables

Provides a natural measure of statistical relevance

Addresses model uncertainty
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Gaussian Process Regression

GP Equations

1 Stochastic Process: (y(x) : xεX ) where x = (x1, .., xk)
2 G.P. Prior: y(x) ∼ G.P.[0, c(x , x ′)]
3 Covariance Function: cω(x , x ′) = v · exp( −1

2τ2
·
∑k

j=1(xj − x ′j )
2)

Hyperparameters: ω = (v , τ)
4 Measurement Error: ỹ(x) = y(x) + ε, ε ∼ N(0, σ2)

Hyperparameters: θ = (ω, σ2)

5 Distribution: ỹ ∼ MVN(0n,Kθ(X̃ ))

where: Kθ(X̃ ) = cω(X̃ , X̃ ′) + σ2I and ˜ denotes training sample

6 Marginal Likelihood:

(ỹ |X̃ , θ) = (2π)
−n
2 · det[Kθ(X̃ )]

−1
2 exp(−12 ỹ ′(Kθ(X̃ ))−1ỹ)
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Bayesian Model Averaging

Model Averaging Equations

1 Model Vector: δ = (δ1, ..., δk)

where δk = 1 if xk is included, 0 otherwise

1 Prior for δ : p(δ) = p(δ|q)p(q)

where q is the model size

1 Prior for Model Size: p(q) = λ(1−λ)q−1

(1−(1−λ)k ) where q = 1, .., k
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Gaussian Process Regression with Bayesian Model
Averaging

GPR-BMA

1 Joint Posterior: p(δ, θ|ỹ , X̃ ) = p(ỹ |X̃ , θ, δ)p(θ)p(δ)
2 Gibbs Sampling on Conditional Posterior

p(θ|δ, ỹ , X̃ ) use Hamiltonian Monte Carlo
p(δ|θ, ỹ , X̃ ) use Metropolis Hastings

3 For Metropolis Hastings step

Change a single element of δ using a birth-death step

Use the following acceptance ratio: r = p(ỹ |X̃ ,θ,δ∗)
p(ỹ |X̃ ,θ,δ)

p(q∗)
p(q) R
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Theoretical Results

Key GPR Results

1 Predictive distribution is multivariate normal
2 Conditional Mean: E (yl |xl , ỹ , X̃ ) = cω(xl , X̃ )(Kθ(X̃ ))−1ỹ
3 Conditional Variance:

var(yl |xl , ỹ , X̃ ) = cω(xl , xl)− cω(xl , X̃ ) ∗ (Kθ(X̃ ))−1 ∗ cω(X̃ , xl)

Key GPR-BMA Results

1 Model Probability (N denotes num. of draws): p̂(δ|ỹ , X̃ ) = N(δ)
N

2 Variable Inclusion Probability for xk : p̂(δk = 1|ỹ , X̃ ) = Nk
N

3 Prediction at observation l :
E (yl |xl , ỹ , X̃ ) = 1

N

∑N
i=1 E (yl |xl , ỹ , X̃ , θi , δi )

4 Marginal effect at observation l for variable j:
∂(yl |xl ,ỹ ,X̃ )

∂xlj
= 1

N

∑
i :δij=1

∂cω i
∂xlj

(Kθ i (X̃ ))−1ỹ
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Gaussian Process Regression with Bayesian Model
Averaging- Extension

Bayesian Information Criterion

Significantly reduces computational time

Eliminates the need for HMC

Evaluate only once per new model drawn rather than for each draw of
theta

Can be used where the number of parameters change with model size
eliminating the need for a computationally expensive reversible jump
process

Anisotropic covariance function can be be used:

cω(x , x ′) = v exp(−12
∑k

j=1

(xj−x′j )
2

τ 2
j

)
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Techniques

Methods

Method 1: GPR-BMA isotropic

Method 2: GPR-BIC-BMA isotropic

Method 3: GPR-BIC-BMA anisotropic

Metrics

Metric 1: Variable Inclusion Probability

App. to Social Capital: Given a set of candidate explanatory variables,
what is trust’s variable inclusion probability?

Metric 2: Estimate of the Unknown Nonlinear Function and M.E.’s

App. to Social Capital: Given a certain model, what is the unknown
function that maps the chosen explanatory variables to economic
growth?

Metric 3: Localized Marginal Effects

App. to Social Capital: How does trust’s marginal effect vary across
countries?
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Simulation

Simulation-Setup

y = 5x31 + 10x21 − 5x22 + x1x2 + u

u = ρWu + e, e ∼ N(0, I )

E [ ∂y∂x1 ] = 15x21 + 20x1 + x2

E [ ∂y∂x2 ] = −10x2 + x1

Variable Inclusion Probabilities Prediction- RMSE
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Boston Housing

Background

Harrison and Rubinfeld 1978; 506 observations- census tract level

Variable Inclusion Probabilities Average Marginal Effects
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Boston Housing

Localized Marginal Effects

Jacob Dearmon (OCU) GPR-BMA October 17, 2014 17 / 19



Fernández Ley Steel

Background

JAE 2001: 72 countries, 42 can. exp. var.; iso. GPR-BMA results

Localized Marginal Effects
for Investment

Localized Marginal Effects
for Investment
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Concluding Remarks

Future Research
1 Identify a large set of candidate explanatory variables for development

and social capital
2 Allow for an unknown nonlinear relationship and model uncertainty
3 Identify how the marginal effect of trust varies across countries
4 Draw targeted policy conclusions based on marginal effect differences
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