Gaussian Process Regression with Bayesian Model Averaging (GPR-BMA): Possibilities for Social Capital

Jacob Dearmon

Oklahoma City University

jdearmon@okcu.edu

October 17, 2014

Previous Social Capital Research

- Stylized Facts
- Possible Research Extensions
- GPR-BMA
- Sayesian Information Criterion (BIC)
- O Applications: Simulation
- Ø Applications: Boston Housing Dataset
- Opplications: Fernández Ley Steel Dataset
- **9** Concluding Remarks: Addressing the Stylized Facts of Social Capital

Dearmon and Grier (2009)

Per-capita income panel regressions.

	Dependent variable: In(RGDPPC)							
	(OLS)	(2SLS)	(OLS)	(2SLS)	(OLS)	(OLS)		
In(RGDPPC) (lagged)	0.903 ***	0.910 ***	0.901 ***	0.910 ***	0.904 ***	0.895 ***		
	(0.014)	(0.014)	(0.014)	(0.014)	(0.013)	(0.013)		
ln(Edu)	0.005	0.024	-0.027	-0.006	-0.014	0.106*		
	(0.027)	(0.028)	(0.029)	(0.030)	(0.028)	(0.054)		
$\ln\left(n+g+d\right)$	-0.060	-0.066	-0.040	-0.046	-0.034	-0.027		
	(0.048)	(0.050)	(0.048)	(0.048)	(0.046)	(0.046)		
In(Inv/GDP)	0.184	0.135	0.182	0.128	0.307 ***	0.179 ***		
	(0.028)	(0.034)	(0.027)	(0.033)	(0.051)	(0.027)		
In(Trust)			0.048 ***	0.049 ***	0.197 ***	0.123 ***		
			(0.017)	(0.017)	(0.055)	(0.031)		
$ln(Trust) \times ln(Inv/GDP)$					0.086 ***			
					(0.030)			
$ln(Trust) \times ln(Edu)$						0.067		
						(0.024)		
td2	0.113	0.114	0.116	0.117 ***	0.118	0.112 ***		
	(0.028)	(0.030)	(0.027)	(0.027)	(0.026)	(0.026)		
td3	0.036	0.036	0.054	0.055	0.056	0.053		
	(0.028)	(0.029)	(0.028)	(0.029)	(0.027)	(0.027)		
td4	0.066 **	0.064 **	0.077 ***	0.075 ***	0.075 ***	0.079 ***		
	(0.027)	(0.027)	(0.026)	(0.027)	(0.025)	(0.025)		
Nobs	119	119	119	119	119	119		
R ²	0.989	0.988	0.989	0.99	0.990	0.990		

Notes: Standard errors are in parentheses.

' Significant at 10%.

" Significant at 5%.

" Significant at 1%.

3

(日) (同) (三) (三)

Trust and Development

- Column 3- Trust
 - 1 std increase in *Trust* increases *RGDPPC* by 2.4%
- Column 5- Trust, Interaction with Inv/GDP
 - 1 s.d. increase in *Trust* increases *RGDPPC* by 2.8%
 - 1 s.d. increase in Inv/GDP increases RGDPPC by 7.4%
 - Increasing Trust by 1 s.d. will increase Inv/GDP's impact to 8.6%
- Column 6- Trust, Interaction with Edu
 - 1 s.d. increase in *Trust* increases *RGDPPC* by 3%
 - 1 s.d. increase in Edu increases RGDPPC by 1.1%
 - Increasing Trust by 1 s.d. will increase Edu's impact to 2%

Social Capital Research- Dearmon and Grier (2011)

Trust and the accumulation of physical and human capital

- Human and physical capital are endogenous
- Modeled jointly using 3SLS
- Trust has a nonlinear effect on outcomes

Stylized Facts

Onlinear relationship

• Nonlinear relationship between trust and economic outcomes

2 Levels Matter

• Trust's effect depends on the level of other variables

Marginal Effects

• Implies that trust's marginal effect may differ across variables, countries, or groups

Research Extensions

Nonlinear Relationship

- Current: Nonlinear relationship specified by researcher
- **Proposed**: Technique should identify the unknown nonlinear relationship

② Explanatory Variables

- Current: One set of explanatory variables is chosen
- Restriction: True set of explanatory variables is unknown
- **Proposed**: Use larger set of candidate explanatory variables, address model uncertainty

Marginal Effects

- Current: Restricted by chosen nonlinear specification
- **Proposed 1**: Marginal effects based on estimate of unknown nonlinear function that accounts for model uncertainty
- Proposed 2: Marginal effects are localized and differ by observation

Gaussian Process Regression

- A nonparametric technique that identifies an unknown nonlinear function
- Produces localized marginal effects that differ by observation
- Can easily capture non-separable behavior

Bayesian Model Averaging

- Allows for a large number of candidate explanatory variables
- Provides a natural measure of statistical relevance
- Addresses model uncertainty

GP Equations

• Stochastic Process: $(y(x) : x \in X)$ where $x = (x_1, ..., x_k)$ **2** G.P. Prior: $y(x) \sim \mathcal{G}.\mathcal{P}.[0, c(x, x')]$ Solution: $c_{\omega}(x, x') = v \cdot \exp(\frac{-1}{2r^2} \cdot \sum_{i=1}^{k} (x_i - x'_i)^2)$ • Hyperparameters: $\omega = (v, \tau)$ **4** Measurement Error: $\tilde{y}(x) = y(x) + \varepsilon$, $\varepsilon \sim N(0, \sigma^2)$ • Hyperparameters: $\theta = (\omega, \sigma^2)$ **(b)** Distribution: $\tilde{y} \sim MVN(0_n, K_{\theta}(\tilde{X}))$ • where: $K_{\theta}(\tilde{X}) = c_{\omega}(\tilde{X}, \tilde{X}') + \sigma^2 I$ and $\tilde{}$ denotes training sample Marginal Likelihood: $(\tilde{\gamma}|\tilde{X},\theta) = (2\pi)^{\frac{-n}{2}} \cdot det[K_{\theta}(\tilde{X})]^{\frac{-1}{2}} \exp(\frac{-1}{2}\tilde{\gamma}'(K_{\theta}(\tilde{X}))^{-1}\tilde{\gamma})$

Model Averaging Equations

• Prior for Model Size:
$$p(q) = rac{\lambda(1-\lambda)^{q-1}}{(1-(1-\lambda)^k)}$$
 where $q=1,..,k$

< 4 ₽ × <

3

Gaussian Process Regression with Bayesian Model Averaging

GPR-BMA

- **9** Joint Posterior: $p(\delta, \theta | \tilde{y}, \tilde{X}) = p(\tilde{y} | \tilde{X}, \theta, \delta) p(\theta) p(\delta)$
- Gibbs Sampling on Conditional Posterior
 - $p(\theta|\delta, \tilde{y}, \tilde{X})$ use Hamiltonian Monte Carlo
 - $p(\delta|\theta, \tilde{y}, \tilde{X})$ use Metropolis Hastings
- Is For Metropolis Hastings step
 - $\bullet\,$ Change a single element of $\delta\,$ using a birth-death step
 - Use the following acceptance ratio: $r = \frac{p(\tilde{y}|\tilde{X},\theta,\delta^*)}{p(\tilde{y}|\tilde{X},\theta,\delta)} \frac{p(q^*)}{p(q)} R$

Theoretical Results

Key GPR Results

- Predictive distribution is multivariate normal
- **2** Conditional Mean: $E(y_l|x_l, \tilde{y}, \tilde{X}) = c_{\omega}(x_l, \tilde{X})(K_{\theta}(\tilde{X}))^{-1}\tilde{y}$

Source Conditional Variance: $var(y_l|x_l, \tilde{y}, \tilde{X}) = c_{\omega}(x_l, x_l) - c_{\omega}(x_l, \tilde{X}) * (K_{\theta}(\tilde{X}))^{-1} * c_{\omega}(\tilde{X}, x_l)$

Key GPR-BMA Results

- **9** Model Probability (*N* denotes num. of draws): $\hat{p}(\delta|\tilde{y}, \tilde{X}) = \frac{N(\delta)}{N}$
- **2** Variable Inclusion Probability for x_k : $\hat{p}(\delta_k = 1 | \tilde{y}, \tilde{X}) = \frac{N_k}{N}$
- Prediction at observation *I*: $E(y_{l}|x_{l}, \tilde{y}, \tilde{X}) = \frac{1}{N} \sum_{i=1}^{N} E(y_{l}|x_{l}, \tilde{y}, \tilde{X}, \theta_{i}, \delta_{i})$
- Marginal effect at observation *I* for variable j: $\frac{\partial(y_i|x_i, \tilde{y}, \tilde{X})}{\partial x_{ij}} = \frac{1}{N} \sum_{i:\delta_{ij}=1} \frac{\partial c_{\omega_i}}{\partial x_{ij}} (\mathcal{K}_{\theta_i}(\tilde{X}))^{-1} \tilde{y}$

3

• • • • • • • • • • • •

Gaussian Process Regression with Bayesian Model Averaging- Extension

Bayesian Information Criterion

- Significantly reduces computational time
- Eliminates the need for HMC
- Evaluate only once per new model drawn rather than for each draw of theta
- Can be used where the number of parameters change with model size eliminating the need for a computationally expensive reversible jump process
 - Anisotropic covariance function can be be used:

$$c_{\omega}(x, x') = v \exp(\frac{-1}{2} \sum_{j=1}^{k} \frac{(x_j - x'_j)^2}{\tau_j^2})$$

Techniques

Methods

- Method 1: GPR-BMA isotropic
- Method 2: GPR-BIC-BMA isotropic
- Method 3: GPR-BIC-BMA anisotropic

Metrics

- Metric 1: Variable Inclusion Probability
 - App. to Social Capital: Given a set of candidate explanatory variables, what is trust's variable inclusion probability?
- Metric 2: Estimate of the Unknown Nonlinear Function and M.E.'s
 - App. to Social Capital: Given a certain model, what is the unknown function that maps the chosen explanatory variables to economic growth?
- Metric 3: Localized Marginal Effects
 - App. to Social Capital: How does trust's marginal effect vary across countries?

Simulation

Simulation-Setup

•
$$y = 5x_1^3 + 10x_1^2 - 5x_2^2 + x_1x_2 + u$$

•
$$u = \rho W u + e, e \sim N(0, I)$$

•
$$E\left[\frac{\partial y}{\partial x_1}\right] = 15x_1^2 + 20x_1 + x_2$$

•
$$E[\frac{\partial y}{\partial x_2}] = -10x_2 + x_1$$

Variable Inclusion Probabilities

Variable	Average SEM- BMA	Average SAR- BMA	Average GPR- BMA	Average GPR-BIC- BMA (Isotropic)	Average GPR-BIC- BMA (Anisotropic)
x1	0.427	0.213	1	1	1
x2	0.275	0.192	1	1	1
x3	0.241	0.203	0	0	0
x4	0.215	0.152	0	0	0
x5	0.234	0.192	0	0	0
Time (secs.)	1	7	549	33	16
umber of Draws	500	500	500	500	500
Num. of Obs.	150	150	150	150	150

Prediction- RMSE

Variable	Average GPR- BMA	Average GPR-BIC- BMA (Isotropic)	Average GPR-BIC- BMA (Anisotropic)
У	2.094	2.566	1.375
ME x_1	3.102	4.091	2.666
ME x_2	0.873	1.214	0.675
Time (secs.)	549	33	16
Number of Draws	500	500	500
Num. of Obs.	150	150	150

イロト イヨト イヨト イヨ

э

Boston Housing

Background

• Harrison and Rubinfeld 1978; 506 observations- census tract level

Variable Inclusion Probabilities

Variable	GPR-BIC-BMA (Isotropic)	GPR-BIC-BMA (Anisotropic)
CRIM	0.997	0.997
ZN	0.000	0.014
INDUS	0.881	0.482
CHAS	0.000	0.028
NOX	0.999	0.997
RM	1.000	1.000
AGE	1.000	1.000
DIS	1.000	1.000
RAD	1.000	0.131
TAX	1.000	1.000
PTRATIO	0.040	0.882
В	1.000	1.000
LSTAT	1.000	1.000
LAT	0.866	0.032
LONG	0.079	1.000

Average Marginal Effects

Variable	Average GPR-BIC-	Average GPR-BIC-
	(Isotropic)	(Anisotropic)
CRIM	-0.69	-0.51
ZN	0.00	0.00
INDUS	0.25	-0.23
CHAS	0.00	0.00
NOX	-0.68	-0.25
RM	3.50	3.41
AGE	-2.19	-2.10
DIS	-1.35	-2.57
RAD	2.00	0.11
TAX	-2.64	-2.73
PTRATIO	-0.02	-0.56
в	-0.66	-0.09
LSTAT	-2.59	-2.37
LAT	0.61	0.02
LONG	-0.10	-1.46

Boston Housing

Localized Marginal Effects

Jacob Dearmon (OCU)

October 17, 2014 17 / 19

Fernández Ley Steel

Background

• JAE 2001: 72 countries, 42 can. exp. var.; iso. GPR-BMA results

Localized Marginal Effects for Investment

Country	E. Jay	NE Inv	Country	E. Jay	NF. Inv
Malawi	0.211	0.092	Algeria	0.145	0.016
Canteroon	0.202	0.039	Brazil	0.144	0.053
Kenna	0.201	0.060	Chile	0.143	0.056
Tanzania	0.199	0.082	Panama	0.141	0.040
Nigeria	0.199	0.076	Marcico	0.138	0.045
Madagascar	0.198	0.104	Costa Rica	0.136	0.041
Ethiopia	0.196	0.110	Argenting	0.136	0.066
Uganda	0.195	0.099	Taiwan	0.135	0.042
Zimbabwe	0.191	0.069	Portugal	0.133	0.038
Congo	0.190	0.054	Uniguas	0.132	0.055
Zaire	0.189	0.098	Venezuela	0.129	0.039
Ghava	0.155	0.036	Spath	0.128	0.033
Senegal	0.187	0.084	Cyprus	0.124	0.006
Zambia	0.178	0.013	India	0.123	0.035
Philippines	0.174	0.061	Greece	0.120	0.004
Pakistan	0.174	0.069	United Kingdom	0.119	0.038
Haiti	0.169	0.097	Hong Kong	0.117	0.043
Morocco	0.164	0.073	South Korea	0.117	0.038
Thailand	0.164	0.061	Ireland	0.116	0.011
Bolivia	0.161	0.063	hay	0.113	0.013
Tunizia	0.160	0.061	Deromark	0.110	0.019
Botrwana	0.160	0.045	Australia	0.103	0.010
Turkey	0.159	0.056	Belgium	0.107	0.008
Honduraz	0.159	0.054	Sweden	0.107	0.002
Sri Lanka	0.158	0.062	Austria	0.105	0.039
El Salvador	0.155	0.077	Germany	0.102	0.000
Malazia	0.155	0.025	Israel	0.102	0.019
Paragua	0.154	0.078	Canada	0.102	0.022
Peru	0.154	0.070	Switzerland	0.101	0.001
Jordan	0.153	0.045	Netherlands	0.101	0.007
Guatemala	0.153	0.052	France	0.100	0.007
Dominican Republic	0.153	0.061	United States	0.098	0.023
Nicaragua	0.152	0.047	Noneay	0.097	0.000
Colombia	0.148	0.056	Finland	0.091	-0.015
Ecuador	0.146	0.028	Japan	0.075	0.001
Jamaica	0.146	0.046	Singapore	0.054	0.023

Jacob Dearmon (OCU)

Future Research

- Identify a large set of candidate explanatory variables for development and social capital
- allow for an unknown nonlinear relationship and model uncertainty
- 3 Identify how the marginal effect of trust varies across countries
- **O** Draw targeted policy conclusions based on marginal effect differences